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Abstract

A locating-dominating set in a graph G is a subset of vertices representing “detectors” which can
locate an “intruder” given that each detector covers its closed neighborhood and can distinguish its
own location from its neighbors. We explore a fault-tolerant variant of locating-dominating sets called
redundant locating-dominating sets, which can tolerate one detector malfunctioning (going offline or being
removed). In particular, we characterize redundant locating-dominating sets and prove that the problem
of determining the minimum cardinality of a redundant locating-dominating set is NP-complete. We also
determine tight bounds for the minimum density of redundant locating-dominating sets in several classes
of graphs including paths, cycles, ladders, k-ary trees, and the infinite hexagonal and triangular grids.
We find tight lower and upper bounds on the size of minimum redundant locating-dominating sets for
all trees of order n, and characterize the family of trees which achieve these two extremal values, along
with polynomial time algorithms to classify a tree as minimum extremal or not.

Keywords: locating-dominating sets, fault-tolerant, redundant locating-dominating sets, characterization,
NP-complete, extremal trees, density
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1 Introduction

Let G be a graph with vertices V (G) and edges E(G).

Definition 1. Given < ⊆P(V (G)), vertices v, u ∈ V (G) are separable if ∃A ∈ < such that v ∈ A⊕u ∈ A.

Definition 2 ([13]). < ⊆P(V (G)) is a distinguishing set if every distinct pair of vertices is separable.

In practice, a distinguishing set is often detector-based, meaning that it is generated from a set of vertices
representing the positions of detectors or sensors in the graph. The method to generate a distinguishing set
from a detector set varies depending on the capabilities of the detectors being used. Let S ⊆ V (G) be a set
of detectors and v ∈ S. We think of detector vertex v as having one or more physical sensors, each of which
may have a different detection region: the area in which the physical sensor can sense an intruder. Thus, v is
associated with a set of detection regions, denoted by R(v) ⊆P(V (G)). Then the generated set ∪v∈SR(v)
is a distinguishing set for sufficient choices of S.

The concept of a distinguishing set has also been studied under the name “identifying system”, introduced
by Auger et al. [1]. Our introduction of distinguishing sets being generated from sets of detection regions
R(v) ⊆P(V (G)) can be considered a generalization of their identifying systems. In one approach, Karpovsky
et al. [10] gives each detector vertex v a “ball” region covering all vertices which are at most distance r from
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v—which we will denote as Br(v) = {w ∈ V (G) : d(v, w) ≤ r}—in which v can sense intruders; this use of
ball regions is a special case of our detection regions where R(v) = {Br(v)}. In another approach taken by
Auger et al. [1] each detector is assigned a “watching zone”, which is a subset of vertices that the detector
can cover; this is closest to our set of detection regions R(v), being a special case where |R(v)| = 1. Many
other approaches have also been taken; Lobstein [11] maintains a bibliography of distinguishing-set-related
parameters, which currently has over 440 papers.

Definition 3. The open-neighborhood of a vertex v ∈ V (G), denoted N(v), is the set of all vertices adjacent
to v: {w ∈ V (G) : vw ∈ E(G)}.

Definition 4. The closed-neighborhood of a vertex v ∈ V (G), denoted N [v], is the set of all vertices adjacent
to v, as well as v itself: N(v) ∪ {v}.

The critical difference between different types of detector-based distinguishing (DBD) sets is the choice of
detection regions, R. For instance, identifying codes (ICs) are DBD sets with R(v) = {N [v]}, open-locating-
dominating (OLD) sets are DBD sets with R(v) = {N(v)}, and locating-dominating (LD) sets are DBD sets
with R(v) = {{v}, N(v)}.

Definition 5. For a DBD set S ⊆ V (G), a vertex v ∈ V (G) is k-dominated if |{u ∈ S : v ∈ ∪R(u)}| = k.

Definition 6. The domination count of a vertex v, denoted dom(v), is k if and only if v is k-dominated.

An important real-world application of distinguishing sets is in the creation of automated security systems
for locating an intruder in a facility, for locating a faulty processor in a multiprocessor network, etc.; in any
case, we term the phenomenon being detected the “intruder”. The information required to locate the intruder
would come from physical detectors, hence the utility of DBD sets. Let S ⊆ V (G) be the DBD set with
detection regions R. In typical applications, a detector vertex v ∈ S transmits some unique signal for every
distinct intersection of elements in R(v); that is, for every possible combination of overlapping detection
regions, of which there are precisely c distinct intersections, where c = |{∩A : A ⊆ R(v)}|. Note that this
calculation of c includes the empty set, which denotes that no intruder was detected by the sensor. In many
applications, the elements of R(v) are disjoint, in which case c = |R(v)| + 1. Typically, we think of the
signals as transmitting an integral value in [0, c), where 0 denotes no intruder being detected. From the
raw transmitted information, the system applies separability to either determine the exact location of the
intruder or conclude that there is none. We will assume that, at any given time, there is at most one intruder.

In this paper, we primarily focus on LD sets, which use R(v) = {{v}, N(v)}. For convenience, we
define a transmitted value of 0 to indicate no intruder being detected, 1 to indicate an intruder in the open
neighborhood N(v), and 2 to indicate an intruder at its location {v}. This assignment of 0, 1, and 2 is the
same convention as used in describing LD sets when first introduced by Slater [18, 17, 16].

Definition 7 ([17]). An LD set S ⊆ V (G) is a subset of vertices such that ∀v, u ∈ V (G) − S with v 6= u,
∅ 6= N(v) ∩ S 6= N(u) ∩ S.

As the application of distinguishing sets is in the real world, it is often the case that a detector in the
network may be faulty. These type of errors can be modeled by fault-tolerant variants of LD sets, which
include detector redundancies and the system’s ability to handle false negatives and false positives. In
this paper, we will explore redundant location-dominating (RED:LD) sets, which can tolerate one detector
malfunctioning or being removed. More general types of detector-based fault-tolerance have also been studied
by Seo and Slater [14, 15].

Definition 8. A redundant LD (RED:LD) set is an LD set S ⊆ V (G) such that for any detector v ∈ S,
S − {v} is also an LD set.
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(a)

(b)

Figure 1: Optimal LD (a)
and RED:LD (b) sets on
the Petersen graph.

Any superset of a DBD set is clearly also a DBD set, so we are interested
in the smallest sets with the given properties; this is especially important in
real-world applications, as each detector represents a piece of physical hardware,
making the smallest DBD set the most cost-effective. For a finite graph G, let
LD(G) and RED:LD(G) denote the cardinality of the smallest such sets in G.
For infinite graphs, we measure via the density, which is defined to be the ratio
of the number of detectors to |V (G)|. The minimum density of such a set in G
is denoted by LD%(G) and RED:LD%(G). In some cases, we may prefer to use
densities for finite graphs instead of cardinality.

As an example, consider the constructions of LD and RED:LD sets on the
Petersen graph, G, as shown in Figure 1. One can verify that the sets of
shaded vertices satisfy the requirements of their corresponding definitions, and so
LD(G) ≤ 4 and RED:LD(G) ≤ 6. Additionally, no smaller set exists which sat-
isfies the requirements; therefore, these are optimal, and we have LD(G) = 4 and
RED:LD(G) = 6. If we would prefer to use densities, we have LD%(G) = 4

10 = 2
5

and RED:LD%(G) = 6
10 = 3

5 .
In the following section, we characterize RED:LD sets on arbitrary graphs

and establish the existence criteria. In Section 3 we prove the NP-completeness
of the problem of determining the minimum cardinality of a RED:LD set. In
Section 4 we explore finding RED:LD sets in several special classes of graph,
including cycles, ladders, trees, and some infinite grids. Additionally, we find
tight lower and upper bounds on the size of minimum RED:LD sets for all trees
of order n, and characterize the trees which achieve these two extremal values.

2 Characterization and Existence

We will begin by establishing necessary and sufficient requirements for a RED:LD set in an arbitrary
graph, G. A characterization of (plain) LD sets is given by Theorem 1 for comparison.

Theorem 1 ([17]). A detector set S ⊆ V (G) is an LD set if and only if the following are true:

i. ∀v ∈ V (G)− S, |N(v) ∩ S| ≥ 1
ii. ∀v, u ∈ V (G)− S with v 6= u, |(N(v) ∩ S)4(N(u) ∩ S)| ≥ 1

Blidia et al. [2] proved a specific characterization for unique minimum LD sets in trees. Hernando et
al. [7] found Nordhaus-Gaddum bounds—tight bounds for a graphical parameter on sums and products of
G with G—for LD sets on families of graphs, and characterized the families. To the best of our knowledge,
there exists no previous characterization of RED:LD.

Lemma 1. Let S ⊆ V (G) be a RED:LD set and v ∈ S. Then

i. |N(v) ∩ S| ≥ 1
ii. ∀u ∈ V (G)− S, |((N(v) ∩ S)4(N(u) ∩ S))− {v}| ≥ 1

Proof. Suppose property i is false; then ∃v ∈ S such that |(N(v) ∩ S)| = 0. Because v is the only detector
that can detect an intruder at v, the set S−{v} cannot find an intruder at v, a contradiction. Next, suppose
that property ii is false. Then ∃v ∈ S and ∃u ∈ V (G) − S such that ((N(v) ∩ S)4(N(u) ∩ S)) − {v} =
∅. Note that v /∈ N(v), so v ∈ (N(v) ∩ S)4(N(u) ∩ S) if and only if v ∈ N(u). If v ∈ N(u), then
(N(v) ∩ S)4(N(u) ∩ S) = {v}, otherwise v /∈ N(u) and (N(v) ∩ S)4(N(u) ∩ S) = ∅. In either case, we see
the new set S′ = S − {v} results in v, u /∈ S′ but (N(v) ∩ S′)4(N(u) ∩ S′) = ∅, contradicting that S′ is an
LD set, completing the proof.
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Lemma 2. Let S ⊆ V (G) be a RED:LD set and v /∈ S. Then

i. |N(v) ∩ S| ≥ 2
ii. ∀u ∈ V (G)− S with u 6= v, |(N(v) ∩ S)4(N(u) ∩ S)| ≥ 2

Proof. Suppose that property i is false; then ∃v ∈ V (G)−S such that |N(v)∩S| ≤ 1. Additionally, note that
because v /∈ S, we require |N(v)∩S| ≥ 1 in order for S to be an LD set; so we assume |N(v)∩S| = 1. Then
N(v) ∩ S = {t} for some t ∈ S. The set S′ = S − {t} cannot detect an intruder at v, a contradiction. Next,
suppose that property ii is false; then ∃v, u ∈ V (G)− S with v 6= u such that |(N(v)∩ S)4(N(u)∩ S)| ≤ 1.
Note that |(N(v) ∩ S)4(N(u) ∩ S)| 6= 0 because this would contradict that S is an LD set; therefore, we
assume that |(N(v)∩S)4(N(u)∩S)| = 1, meaning (N(v)∩S)4(N(u)∩S) = {t} for some t ∈ S. Consider
the set S′ = S − {t}; then v, u /∈ S′ but N(v) ∩ S′ = N(u) ∩ S′, a contradiction.

Theorem 2. A set S ⊆ V (G) is a RED:LD set if and only if the following are true:

i. ∀v ∈ V (G), |N [v] ∩ S| ≥ 2
ii. ∀v ∈ S and ∀u ∈ V (G)− S, |((N(v) ∩ S)4(N(u) ∩ S))− {v}| ≥ 1

iii. ∀v, u ∈ V (G)− S with u 6= v, |(N(v) ∩ S)4(N(u) ∩ S)| ≥ 2

Proof. If S is a RED:LD set, then properties i–iii are given by Lemmas 1 and 2. For the converse, suppose
S ⊆ V (G) satisfies properties i–iii. Properties i and iii together are sufficient to invoke Theorem 1; thus,
S is an LD set. Now, suppose we remove a detector v ∈ S, creating a new set S′ = S − {v}. Let
a ∈ V (G) − S′ = (V (G) − S) ∪ {v}. If a ∈ V (G) − S, then property i gives us that |N(a) ∩ S| ≥ 2, which
means |N(a) ∩ S′| ≥ 1. Otherwise, a = v ∈ S; therefore, property i yields that |N(a) ∩ S| ≥ 1, and because
v /∈ N(v) we know |N(a)∩S′| ≥ 1. Thus, a is at least 1-open-dominated by S′. Next, let b ∈ V (G)−S′ with
a 6= b. If a ∈ V (G)− S and b ∈ V (G)− S, then property iii yields that |(N(v) ∩ S)4(N(u) ∩ S)| ≥ 2. This
means that the open-neighborhoods intersected with S have at least two differences; in removing a single
detector v ∈ S, we eliminate at most one of the differences, so |(N(v) ∩ S′)4(N(u) ∩ S′)| ≥ 1. Otherwise,
without loss of generality, let a = v ∈ S, which requires b ∈ V (G) − S because b ∈ (V (G) − S) ∪ {v}
and a 6= b by hypothesis. If a ∈ N(b), then property ii yields that |(N(a) ∩ S)4(N(b) ∩ S)| ≥ 2, meaning
|(N(a)∩S′)4(N(b)∩S′)| ≥ 1. Otherwise, a /∈ N(b) and property ii gives us that |(N(a)∩S)4(N(b)∩S)| ≥ 1;
in this case N(a)∩S = N(a)∩S′ and N(b)∩S = N(b)∩S′, so |(N(a)∩S′)4(N(b)∩S′)| ≥ 1. Thus, a and
b are 1-distinguished. As we’ve now demonstrated that all vertices in V (G)− S′ are at least 1-distinguished
and 1-dominated from one another, Theorem 1 yields that S′ is an LD set; and because v ∈ S was chosen
arbitrarily, S is a RED:LD set.

Definition 9. For a RED:LD set S ⊆ V (G) and u, v ∈ V (G), v is k-distinguished from u if |((N(v) ∩
S)4(N(u) ∩ S))− {v, u}| ≥ k.

Definition 10. [5] Two distinct vertices v, u ∈ V (G) are said to be twins if N [u] = N [v] ( closed twins) or
N(u) = N(v) ( open twins).

With Definitions 5 and 9, we see that Theorem 2 requires every vertex be at least 2-dominated, that each
detector/non-detector pair be 1-distinguished, and that each non-detector pair be 2-distinguished. Clearly,
a RED:LD set S exists if and only if δ(G) 6= 0, as detector vertices have no requirement other than being
2-dominated. We also see that if u and v are twins, then we require {u, v} ⊆ S in order to be distinguished.

Observation 1. A RED:LD set exists if and only if δ(G) 6= 0.

Observation 2. For a complete k-partite graph, if k = 2 or no part is a singleton, then RED:LD(G) = n.
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By Observation 1, we are guaranteed that a RED:LD set exists on any connected graph of order n ≥ 2.
From Observation 2, we see that all complete graphs and bipartite complete graphs (including stars) have
RED:LD(G) = n.

By Theorem 1, if a graph, G, has LD(G) = k, then there can be at most 2k − 1 non-detectors, one for
each non-empty subset of the k detectors.

Observation 3. If LD(G) ≤ k, then |V (G)| ≤ 2k + k − 1.

Theorem 3. If RED:LD(G) ≤ k, then |V (G)| ≤ 2k−1 + k − 2.

Proof. Suppose we have a RED:LD set, S ⊆ V (G), with |S| ≤ k; then by definition there exists a LD set S′

with |S′| ≤ k − 1. Observation 3 gives us that |V (G)| ≤ 2k−1 + k − 2.

Theorem 4. If k = 2j, there is a graph of size 2k−1 + k − 2 with RED:LD(G) = k.

Proof. We begin with a complete graph on k vertices, where every vertex is a detector. We then add an
additional

(
k
2

)
non-detectors which are adjacent to a distinct pair of detectors, an additional

(
k
4

)
non-detectors

which are adjacent to distinct sets of 4 detectors, an additional
(
k
6

)
non-detectors which are adjacent to

distinct sets of 6 detectors, and so on through
(
k
k−2
)

(as k detectors representing
(
k
k

)
were already created at

the beginning). It is easy to verify that ever vertex is at least 2-dominated, as each subset of the k detectors
was at least size 2, and all vertices are at least 2-distinguished because only even sized subsets were chosen.

Thus, we have
((
k
2

)
+
(
k
4

)
+ . . .+

(
k
k−2
))

+ k vertices in total. The summation
(
k
0

)
+
(
k
2

)
+
(
k
4

)
+ · · ·+

(
k
k

)
is

known to be 2k−1; thus, |V (G)| = 2k−1 − 2 + k, completing the proof.

For k = 2j + 1, the largest |V (G)| with RED:LD(G) = k we have constructed has |V (G)| = 2k−1 + k−5
2 .

Theorem 5. A (connected) graph, G, with n ≥ 3 has RED:LD(G) = n if and only if every vertex is a leaf
vertex, support vertex, or is a twin with some other vertex.

Proof. Firstly, from Theorem 2, we see that all vertices must be at least 2-dominated, implying all leaf and
support vertices must be detectors. We also see that if u, v ∈ V (G) are twins, then they must both be
detectors in order to be distinguished. Thus, if every vertex is a leaf, support, or twin vertex, RED:LD(G) =
n. For the converse, suppose that v ∈ V (G) is a non-leaf, non-support vertex which is not a twin with
any other vertex; let S = V (G) − {v}, and let u ∈ S. Because v is not a leaf vertex and it is the only
non-detector, it is at least 2-dominated, Additionally, because v is not a leaf or support vertex, if u is a
leaf node, then it is 2-dominated; otherwise, deg(u) ≥ 2, so u is at least 2-dominated by itself and one
or more of its neighbors. Therefore, all vertices are at least 2-dominated. From Theorem 2, we see that
two detectors have no distinguishing requirements, and there are no distinct pairs of non-detectors, so the
only remaining requirement is showing that v and our arbitrary u are distinguished. By hypothesis, v
is not a twin with any other vertex, so N(u) 6= N(v) and N [u] 6= N [v]. If uv /∈ E(G), then ((N(v) ∩
S)4(N(u) ∩ S)) − {u, v} = N(v)4N(u) 6= ∅, so u and v are distinguished. Otherwise, uv ∈ E(G), then
((N(v) ∩ S)4(N(u) ∩ S)) − {u, v} = (N(v)4(N(u) − {v})) − {u, v} = N [v]4N [u] 6= ∅, so u and v are
distinguished. Thus, S = V (G) − {v} is a RED:LD set for G, implying RED:LD(G) < n, completing the
proof.

From Theorems 3 and 5, we have the following corollary.

Corollary 1. Let G be a graph; then k
2k−1+k−2 ≤ RED:LD%(G) ≤ 1.

5
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3 NP-Completeness

The problem of finding the value of LD(G) for an arbitrary graph has been known to be NP-complete
[3, 4]—see [6] for more information on NP-completeness. We will prove that the problem of finding the value
for RED:LD(G) is also NP-complete.

3-SAT
INSTANCE: Let X be a set of N variables. Let ψ be a conjunction of M clauses, where each clause is a
disjunction of three literals from distinct variables of X.
QUESTION: Is there is an assignment of values to X such that ψ is true?

Redundant Locating-Domination (RED-LD)
INSTANCE: A graph G and integer K with 2 ≤ K ≤ |V (G)|.
QUESTION: Is there exists a RED:LD set S with |S| ≤ K? Or equivalently, is RED:LD(G) ≤ K?

x1 x1

y1 z1

c1

x2 x2

y2 z2
x3 x3

y3 z3

x4 x4

y4 z4

x5 x5

y5 z5

c2 c3 c4

G

Figure 2: Construction of G from (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x4 ∨ x5)

Theorem 6. The RED-LD problem is NP-complete.

Proof. RED-LD is NP, as every possible candidate solution can be generated non-deterministically in poly-
nomial time, and each candidate can be verified in polynomial time. We will show a reduction from 3-SAT
to RED-LD.

Fi
xi xi

yi zi

Hj

cj

Figure 3: Variable
and Clause graphs.

Let ψ be an arbitrary instance of the 3-SAT problem with M clauses on N
variables. We will construct a graph, G, as follows. For each variable xi, we create
an instance of the Fi graph, depicted in Figure 3 (a); note that there is a vertex for
the variable, xi, and its negation, xi. For each clause cj of ψ, we create an instance
of the Hj graph, depicted in Figure 3 (b). For each clause cj = α ∨ β ∨ γ, we create
an edge from the cj vertex to α, β, and γ from the variable graphs, each of which is
either some xi or xi; for an example, see Figure 2. The resulting graph has precisely
12N+3M vertices and 13N+5M edges, and can be constructed in polynomial time.

Suppose S ⊆ V (G) is an optimal (minimum) RED:LD set on G. By Theorem 2,
every vertex must be 2-dominated; thus, we require 8N + 2M detectors, as shown
by the shaded vertices in Figure 3. For this specific graph, G, it is the case that
2-domination of every vertex will be sufficient to distinguish every pair of vertices, as

6
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required by Theorem 2. For any Fi, we require {xi, xi, yi}∩S 6= ∅ to 2-dominate yi and {xi, xi, zi}∩S 6= ∅
to 2-dominate zi; because S is assumed to be a minimum set, it must be the case that |{xi, xi} ∩ S| = 1, as
taking yi or zi would require two detectors. Thus, |S| ≥ 9N + 2M ; if |S| = 9N + 2M , then cj /∈ S for any
j and we see that cj must be 2-dominated by one of the three xi or xi vertices it is adjacent to. Therefore,
each clause cj is true, and we have a satisfying truth assignment for the 3-SAT problem.

Now suppose we have a satisfying truth assignment to the 3-SAT problem. For each variable, xi, if xi is
true then we let the vertex xi ∈ S; otherwise, we let xi ∈ S. By construction, this 2-dominates every vertex
in G; thus S is an optimal RED:LD set on G.

4 Special classes of graph

v1

v2

v3v4

v5

v6

v7

v8v9

v10

Figure 4: Example
graph for share.

When establishing a lower bound for the density of any type of dominating set,
it is convenient to use a share argument [9, 8, 12], first introduced by Slater [18].
In a share argument, instead of finding a lower bound for density directly, we invert
the problem and find an upper bound for the maximum amount of sharing of the
domination of each vertex.

For example, in an LD set S ⊆ V (G), a vertex v ∈ V (G) is dominated by every
detector in its closed neighborhood; this means v is dominated |N [v] ∩ S| times.
Every dominator of v has exactly |N [v] ∩ S|−1 of the share in dominating v; this
is known as the partial share of v, denoted sh[v]. We group these partial shares in
terms of the dominator, x ∈ S. The share of x, denoted sh(x), is the sum of partial
shares of every vertex dominated by x:

∑
w∈N [x] sh[w]. By this construction, the

average share of all detector vertices is equal to the inverse of the density of S in
V (G). Thus, we can invert the upper bound of average share to obtain a lower bound
on the density. For convenience, we will often shorten share sums using a “sigma” notation, σA, which we
define as

∑
a∈A

1
a where A is a sequence of single-character symbols or numbers; thus, σ2234 = 1

2 + 1
2 + 1

3 + 1
4 .

Consider the Peterson graph G from Figure 4, where detector set S ⊆ V (G) is the set of shaded vertices.
Detector vertex v5 ∈ S dominates four vertices: v1, v4, v5, and v10. Vertex v5 is dominated only by
v5 (itself), while vertices v1, v4, and v10 are dominated twice, by v5 and some other detector. Thus,
sh(v5) = sh[v1] + sh[v4] + sh[v5] + sh[v10] = σ2212 = 1

2 + 1
2 + 1

1 + 1
2 = 5

2 . One can verify that detectors v2,
v8, and v9 also have a share of 5

2 by applying similar logic. Thus, the average share of all detectors is 5
2 , and

we confirm that the inverse, 2
5 , is indeed the density of S in V (G).

4.1 Cycles

C8 C9
C10

n ≥ 5 |S|
3k 2k

3k + 1 2k + 1
3k + 2 2k + 2

Figure 5: Construction of optimal RED:LD sets, S, on Cn.

Proposition 1. RED:LD(Cn) is d 2n3 e for n ≥ 5, or n for n ≤ 4.

Proof. Let S be a RED:LD set on Cn; by Theorem 2, we know S is 2-dominating. As there are n vertices,
we require at least 2n dominations in total. Because any detector can dominate at most three vertices, we

7
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require at least d 2n3 e detectors, so |S| ≥ d 2n3 e. Let V (Cn) = {v1, v2, . . . , vn} and (vi, v(i mod n)+1) ∈ E(Cn).
If n ≤ 4 then RED:LD(Cn) = n, as any non-detector will violate Theorem 2; otherwise, we will assume
n ≥ 5. Let S = {vi : i mod 3 6= 0}. Figure 5 shows constructions of S for C8, C9, and C10 along with a table
of |S| for each case of n mod 3; for any case, simple algebraic manipulation shows that |S| = d 2n3 e. Clearly,
by this construction, every vertex is 2-dominated, and demonstrating that each vertex pair is distinguished
follows identically to the proof of Theorem 13. Thus, |S| is an optimal RED:LD set on Cn.

4.2 Ladders

P2P2

P4P2

P6P2

PkP2

Figure 6: Optimal RED:LD sets on even ladders. For k ≤ 6, these are exhaustive.

Theorem 7. For a ladder graph G = Pk�P2, then RED:LD(G) is k + 1 if k is odd, or k + 2 otherwise.

Proof. Let V (Pk) = {u1, u2, . . . , uk}, V (P2) = {w1, w2}, and vi,j ∈ V (G) denote vertex (ui, wj). Let
A = {vi,j : i mod 2 = 1} ∪ {vk,1, vk,2}; for even k, this construction is shown in Figure 6 for Pk�P2. It can
be verified with Theorem 2 that A is a RED:LD set, and by construction we have |A| = k+ 1 for odd k and
|A| = k + 2 for even k, making these upper bounds for RED:LD(G).

Let S be a RED:LD set on G, which has n = 2k vertices. Every vertex must be 2-dominated, so there
must be at least 2n = 4k dominations in total. If both vertices on one end of the graph are non-detectors,
then they cannot be 2-dominated; thus, we can assume that at least one vertex on each end is a detector.
The two corner detectors will each contribute 3 dominations; the other 4k − 6 must come from the other
vertices. We know that ∆(G) = 3, so we require at least d 4k−64 e additional detectors, giving a total of

|S| ≥ d 4k−64 e+ 2 = k + 1. If k is odd, this matches the upper bound, so RED:LD(G) = k + 1.
For even k, we will use an inductive argument to show that RED:LD(G) = k + 2. If k = 2 or k = 4,

then clearly RED:LD(G) = k + 2, as shown in Figure 6; thus, we will assume k ≥ 6. Suppose that ∀j,
{vj,1, vj,2} ∩ S 6= ∅. Thus, there is at least one detector in every “column” of G. From the previously
established lower bound, we know |S| ≥ k + 1, meaning there is at least one column with two detectors.
If there is a second column with two detectors, we will have |S| ≥ k + 2, and we are done; otherwise, we
assume there is exactly one column with two detectors. Suppose an end column has two detectors, say
{v1,1, v1,2} ⊆ S; then without loss of generality let v2,1 /∈ S and v2,2 ∈ S. To distinguish v1,2 and v2,1, we
require v3,1 ∈ S and v3,2 /∈ S. To distinguish v2,1 and v3,2, we require v4,1 /∈ S and v4,2 ∈ S. We see that v3,1
is not 2-dominated, a contradiction. Otherwise, both end columns have exactly one detector and without
loss of generality let v1,1 ∈ S and v1,2 /∈ S. To 2-dominate v1,1 and v1,2, we require {v2,1, v2,2} ⊆ S. To
distinguish v1,2 and v2,1, we require v3,1 ∈ S, which implies v3,2 /∈ S. If v4,1 ∈ S then we require v5,2 ∈ S to
2-dominate v4,2; we see that the two non-detectors, v4,2 and v5,1 cannot be distinguished, a contradiction.
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Otherwise, we can assume v4,2 ∈ S. To distinguish v3,2 and v4,1, we require v5,1 ∈ S; we see that v4,2 is not
2-dominated, a contradiction.

Otherwise, we can assume ∃j such that {vj,1, vj,2} ∩ S = ∅. Because each end of the graph requires at
least one corner vertex, so we can assume 1 < j < k. To 2-dominate vj,i, we require {vj−1,i, vj+1,i} ⊆ S.
Consider the graph G′ = G − {vj,1, vj,2}; because of the placement of the four detectors around j, it must
be the case that RED:LD(G′) = RED:LD(G). G′ is now split into two pieces, G′1 and G′2, each of which is
a ladder graph; G′1 has length j − 1, and G′2 has length k − j. Since k is even, one of G′1 or G′2 is an even
ladder and the other is an odd ladder. Without loss of generality, we can assume that G′1 is odd and G′2 is
even by flipping the graph and adjusting the value of j. Because G′1 is an odd ladder, RED:LD(G′1) = j; by
induction, RED:LD(G′2) = k − j + 2, so RED:LD(G) = j + k − j + 2 = k + 2 and we are done.

4.3 Hypercubes

Figure 7: Optimal RED:LD sets for Qn with n ≤ 5

LetQn = Pn2 , whereGn denotes repeated application of the � operator, be the hypercube in n dimensions.
If S is a RED:LD set on Qn for n ≥ 2, then we can duplicate the vertices to produce a new RED:LD set
of size 2|S| on Qn+1 = Qn�P2; thus, RED:LD%(Qn) is a non-increasing sequence in terms of n. We have
found that RED:LD%(Q5) = 3

8 , which serves as an upper bound for the minimum density of RED:LD sets in
larger hypercubes. Figure 7 shows an optimal RED:LD set for each of the hypercubes on n ≤ 5 dimensions.

4.4 Trees

Proposition 2. If T is a tree and S ⊆ V (T ) at least 2-dominates all vertices, then S is a RED:LD set.

Proof. Suppose u /∈ S and v ∈ V (T ); then ∃w ∈ (N [u] − N [v]) ∩ S. Thus, if v /∈ S, then u and v are
2-distinguished, and if v ∈ S, then u and v are 1-distinguished. By Theorem 2, S is a RED:LD set.

Observation 4. adbe ≥ dabe for any a ∈ N and b ∈ R.

Proof. If b ∈ Z, then clearly adbe = ab = dabe. Otherwise, b = c + d where c ∈ Z and d ∈ (0, 1); then
adbe = a(c+ 1) ≥ da(c+ d)e = dabe.

Theorem 8. Let Tn be a tree on n ≥ 2 vertices; then RED:LD(Tn) ≥ d 2n+2
3 e.

Proof. The proof will follow inductively; as a base case, we use T2, for which the theorem holds, and we
assume n ≥ 3. Let S ⊆ V (Tn) be a RED:LD set. If S = V (Tn) then clearly |S| ≥ d2n+2

3 e and we
would be done; otherwise, let v /∈ S be some non-detector vertex. We will break the graph into j =

9
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|N(v)| ≥ 2 sub-trees, being the connected components of Tn − {v}; let these branches be B1, B2, . . . , Bj
and let ni = |V (Bi)|. Because v /∈ S, |S ∩ V (Bi)| ≥ RED:LD(Bi) ≥ d(2ni + 2)/3e by induction, and

|S| ≥ RED:LD(Tn) ≥
∑j
i=1 RED:LD(Bi) =

∑j
i=1 d(2ni + 2)/3e. By applying Observation 4, we see that

3|S| ≥ 3
∑j
i=1 d(2ni + 2)/3e ≥

∑j
i=1 d2ni + 2e = 2j + 2

∑j
i=1 ni = 2j + 2(n − 1). We know that j ≥ 2 by

hypothesis, so 3|S| ≥ 2n+ 2; thus, |S| ≥ 2n+2
3 ; additionally, we know that |S| ∈ N, so we can strengthen this

to |S| ≥ d2n+2
3 e, completing the proof.

By Observation 2 we have |RED:LD(Kn1,n2)| = n1 + n2, and hence a star graph is a tree which requires
RED:LD(G) = |V (G)|. By Theorem 2, we are guaranteed that a RED:LD set exists on any tree with order
n ≥ 2, and hence we have the following extremal values on RED:LD(T) for a tree T of order n.

Corollary 2. Let Tn be a tree of order n ≥ 2; then d 2n+2
3 e ≤ RED:LD(Tn) ≤ n.

4.4.1 Extremal trees with RED:LD(Tn) = n

Theorem 9. A tree, T , has RED:LD(T ) = n if and only if every vertex is a leaf or support vertex.

Proof. Because a RED:LD set, S, must at least 2-dominate all vertices, we see that any leaf vertex, v ∈ V (T )
requires N [v] ⊆ S; thus, if every vertex is a leaf or support vertex, then RED:LD(T ) = n. For the converse,
suppose ∃v ∈ V (T ) which is not a leaf or support vertex; let S = V (T )−{v}. Because v is not a leaf vertex,
deg(v) ≥ 2, meaning v is at least 2-dominated by S. Every vertex outside of N [v] will be at least 2-dominated
because T is connected and v is the only non-detector. Any vertex u ∈ N(v) is at least 1-dominated by
itself; if it is only 1-dominated, then deg(u) = 1, which contradicts that v is not a support vertex. Thus, S
causes all vertices to be at least 2-dominated, and Proposition 2 yields that S = V (T ) − {v} is a RED:LD
set. Therefore, if there is a non-leaf non-support vertex, then RED:LD(T ) < n, completing the proof.

Let Tmax denote the family of all trees of order n with RED:LD(Tn) = n. We will now show how we can
generate the entire set Tmax.

Theorem 10. Let T ∈ Tmax with u ∈ V (T ), and let v be a new vertex. Then T ′ = (V (T ) ∪ {v}, E(T ) ∪
{vu}) ∈ Tmax if and only if u is a support vertex or a leaf where its support vertex has at least two leaves.

Proof. From Theorem 9, we know that every vertex is either a support or leaf vertex. Clearly, if u is a
support vertex, then adding v ∈ N(u) will still result in every vertex being either a leaf or support, so
Theorem 9 has that T ′ ∈ Tmax. Suppose u is a leaf where its support vertex, w ∈ N(u), has at least two
leaves. By adding v ∈ N(u), w remains a support vertex due to its remaining leaf, and u switches from
being a leaf to being a support vertex; every vertex remains a leaf or support vertex, so T ′ ∈ Tmax. For
the converse, suppose that u is a leaf which is the only leaf of its adjacent support vertex, w. Then adding
v ∈ N(u) causes w to no longer be a leaf or support vertex. Theorem 9 gives that T ′ /∈ Tmax, completing
the proof.

Theorem 11. Let T ∈ Tmax with n ≥ 3, and let v ∈ V (T ). Then T ′ = T − {v} ∈ Tmax if and only if v is
a leaf with at least one other sibling leaf or v is a leaf where its support vertex has degree 2.

Proof. From Theorem 9, we know that every vertex is either a support or leaf vertex. Clearly, if v is a
leaf with at least one other sibling leaf, then removing v still results in every vertex being a leaf or support
vertex, so T ′ ∈ Tmax. Suppose v is a leaf where its support vertex, u ∈ N(v) has deg(u) = 2. By removing
v, vertex u goes from being a support vertex to a leaf vertex; every vertex remains a leaf or support, so
T ′ ∈ Tmax. For the converse, suppose that v is either a support vertex, or a leaf vertex which is the only
leaf of its support vertex u ∈ N(v) and deg(u) ≥ 3. Clearly, if v is a support vertex, then T ′ is not a tree
due to not being connected, so we assume the second possibility. We see that removing v causes u to no
longer be a support vertex, and u is not a leaf because deg(u) ≥ 3. Thus, u is neither a support nor a leaf
vertex, so T ′ /∈ Tmax, completing the proof.

10
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Figure 8: All trees in Tmax of order n ≤ 10

Theorem 12. If T ∈ Tmax has n ≥ 3, then there is a leaf vertex v ∈ V (T ) such that T − v ∈ Tmax.

Proof. By Theorem 9, we know that every vertex in T is either a leaf or support vertex, and because n ≥ 3,
we know that there is at least one support vertex. Let T ′ be the graph generated by the set of support
vertices, let u ∈ V (T ′) be a leaf vertex in T ′, and let v ∈ N(u) by one of its leaves in the original graph, T .
Then v satisfies the requirements of Theorem 11, so T − v ∈ Tmax, completing the proof.

By repeatedly applying Theorem 12 to an arbitrary tree T ∈ Tmax, we see that we will eventually hit
the P2 base case. By performing the vertex removal steps in reverse, we see that T can be constructed from
the base case tree, P2, by adding vertices one at a time, with every intermediate tree being likewise in Tmax.
Thus, the construction process given by Theorem 10 constructs the entire family Tmax. Figure 8 shows all
trees in Tmax on n ≤ 10 vertices.

4.4.2 Extremal trees with RED:LD(Tn) = d 2n+2
3 e

Theorem 13. RED:LD(Pn) = d 2n+2
3 e.

Proof. The lower bound is proven by Theorem 8. Let V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {(vi, vj) :
|i − j| = 1}. Let S = {vi : i mod 3 6= 0} ∪ {vn−1, vn}. Figure 11 includes constructions of S for P8, P9,
and P10, and Table 1 gives table of values of |S| for each case of n mod 3; for any case, simple algebraic
manipulation shows that |S| = d 2n+2

3 e. From this construction, it is clear that every vertex is 2-dominated;
thus, by Proposition 2, S is an optimal RED:LD set, completing the proof.

Proposition 3. RED:LD(P∞) = 2
3 .

11
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n |S| j = n− |S| n
3k 2k + 1 k − 1 3j + 3

3k + 1 2k + 2 k − 1 3j + 4
3k + 2 2k + 2 k 3j + 2

Table 1: Lower bound RED:LD values for Tn

Proof. Let x ∈ S ⊆ V (P∞). From construction, |N [x]| = 3, and by Theorem 2 we know every vertex must be
at least 2-dominated. Thus, sh(x) ≤ 3× 1

2 , giving a lower bound density of 2
3 . Where V (P∞) = {vk : k ∈ Z},

let S = {vk : k mod 3 6= 0}; then the density of S in V (G) is 2
3 . By this construction S is clearly 2-dominating,

so Proposition 2 has that S is an optimal RED:LD set.

Figure 9: Elements of Tmin for n ≤ 4

From Theorems 8 and 13 we see that among all trees, paths have
the lowest value of RED:LD(G). These values are broken down for
all n mod 3 in Table 1.

In what follows, we let Tmin denote the family of all trees of
order n with RED:LD(Tn) = d 2n+2

3 e and we let S be an optimal
RED:LD set of Tn. Further, we let T i

min ⊆ Tmin denote the trees of
order 3k + i. The trees on up to four vertices in Tmin are given in
Figure 9. We will now show rules that can be used to generate the
entire set Tmin.

Observation 5. Let S be a RED:LD set for a tree, T , and j = |V (T )− S|; then, |V (T )| ≥ 3j + 2.

Proof. Columns 3 and 4 of Table 1 give expressions for n in terms of j for extremal trees of any order n.
Column 4 shows the smallest value for n is 3j + 2, so if T is extremal then we are done. Otherwise T is not
extremal, in which case there must be even more (detector) vertices, completing the proof.

Observation 6. If T ∈ Tmin has an optimal RED:LD set with j non-detectors, then |V (T )| ≤ 3j + 4.

Proof. Suppose |V (T )| ≥ 3j+5; then it does not match any row of Table 1, and hence cannot be extremal.

Lemma 3. Let T1, T2 ∈ T 2
min be trees with minimum RED:LD sets S1, S2, respectively. Let T be a tree

obtained by adding a vertex, v, and edges vw1, vw2 where w1 ∈ S1 and w2 ∈ S2. Then, T ∈ T 2
min.

Proof. Because T1, T2 ∈ T 2
min, we let |V (T1)| = 3k1 + 2 and |V (T2)| = 3k2 + 2 for some k1, k2 ∈ N0, and

from Table 1 we have |S1| = 2k1 + 2 and |S2| = 2k2 + 2. In the combined tree, T , we have |V (T )| =
|V (T1)|+ |V (T2)|+1 = (3k1 +2)+(3k2 +2)+1 = 3(k1 +k2 +1)+2. Let S = S1∪S2; then |S| = |S1|+ |S2| =
(2k1 + 2) + (2k2 + 2) = 2(k1 + k2 + 1) + 2. Every vertex in T is 2-dominated in S, so Proposition 2 yields
that S is a RED:LD set on T ; thus, T ∈ T 2

min.

Lemma 4. Let S be an optimal RED:LD set for a tree T ∈ T 2
min with order at least 5. Then, every vertex

v /∈ S has degree 2 and the two connected components, T1 and T2, of T − v are in T 2
min, and Si = S ∩ V (Ti)

is optimal on Ti.

Proof. Since T is in T 2
min, let |V (T )| = 3k + 2 with |S| = 2k + 2, meaning there are j = k non-detectors.

Let v /∈ S be an arbitrary non-detector with deg(v) = p and let T1, . . . , Tp be the connected components of

12
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T − v with each Ti having ji non-detectors, where j1 + · · · + jp = j − 1. Let Si = S ∩ V (Ti) for 1 ≤ i ≤ p.
Since v /∈ S, Si must be a RED:LD set for Ti. By Observation 5, we have |V (Ti)| ≥ 3ji + 2. Then,

|V (T )| = |V (T1)|+ |V (T2)|+ · · ·+ |V (Tp)|+ 1

≥ (3j1 + 2) + (3j2 + 2) + · · ·+ (3jp + 2) + 1

= 3(j1 + j2 + · · ·+ jp) + 2p+ 1

= 3(j − 1) + 2p+ 1

Because v is a non-detector, deg(v) ≥ 2. If deg(v) ≥ 3, then |V (T )| ≥ 3(j − 1) + 2 × 3 + 1 = 3k + 4, a
contradiction. Otherwise deg(v) = 2, and because T is assumed to be in T 2

min, we know |V (T )| = 3j + 2.
Let |V (Ti)| = 3ji + αi; Observation 5 gives us that αi ≥ 2. We know that |V (T1)| + |V (T2)| + 1 = |V (T )|,
which means (3j1 +α1) + (3j2 +α2) + 1 = 3(j1 + j2) +α1 +α2 + 1 = 3(j − 1) +α1 +α2 + 1 = 3j + 2. Thus,
we see that α1 +α2 = 4, so α1 = α2 = 2; from Table 1, we see these correspond to T1, T2 ∈ T 2

min, and S1, S2

are optimal, completing the proof.

Lemma 5. Let T1 ∈ T 0
min and T2 ∈ T 2

min be trees with minimum RED:LD sets S1, S2, respectively. Let T
be a tree obtained by adding a vertex, v, and edges vw1, vw2 where w1 ∈ S1 and w2 ∈ S2. Then, T ∈ T 0

min.

Proof. Because T1 ∈ T 0
min and T2 ∈ T 2

min, we let |V (T1)| = 3k1 and |V (T2)| = 3k2 + 2 for some k1, k2 ∈ N0,
and from Table 1 we have |S1| = 2k1 + 1 and |S2| = 2k2 + 2. In the combined tree, T , we have |V (T )| =
|V (T1)| + |V (T2)| + 1 = (3k1) + (3k2 + 2) + 1 = 3(k1 + k2 + 1). Let S = S1 ∪ S2; then |S| = |S1| + |S2| =
(2k1 + 1) + (2k2 + 2) = 2(k1 + k2 + 1) + 1. Every vertex in T is 2-dominated in S, so Proposition 2 yields
that S is a RED:LD set on T ; thus, T ∈ T 0

min.

Lemma 6. Let S be an optimal RED:LD set for a tree T ∈ T 0
min with order at least 6. Then, every vertex

v /∈ S has degree 2 and the two connected components, T1 and T2 of T − v satisfy T1 ∈ T 0
min and T2 ∈ T 2

min,
and Si = S ∩ V (Ti) is optimal on Ti.

Proof. Since T is in T 0
min, let |V (T )| = 3k with |S| = 2k+ 1, meaning there are j = k−1 non-detectors. Let

v /∈ S with deg(v) = p and define T1, . . . , Tp, j1, . . . , jp, and S1, . . . , Sp similarly to Lemma 4. We again find
that |V (T )| ≥ 3(j − 1) + 2p+ 1. If deg(v) ≥ 3, then |V (T )| ≥ 3(j − 1) + 2× 3 + 1 = 3k+ 1, a contradiction.
Otherwise deg(v) = 2, and because T is assumed to be in T 0

min, we know |V (T )| = 3j+ 3 (see Table 1). Let
|V (Ti)| = 3ji +αi; Observation 5 gives us that αi ≥ 2. We know that |V (T1)|+ |V (T2)|+ 1 = |V (T )|, which
means (3j1 +α1) + (3j2 +α2) + 1 = 3(j1 + j2) +α1 +α2 + 1 = 3(j− 1) +α1 +α2 + 1 = 3j + 3. Thus, we see
that α1 + α2 = 5, so without loss of generality α1 = 2 and α2 = 3; from Table 1, we see these correspond to
T1 ∈ T 0

min and T2 ∈ T 2
min, and S1, S2 are optimal on T1, T2, completing the proof.

Lemma 7. Let β = (β1, . . . , βp) with β ∈ {(0, 0), (1, 2), (2, 2, 2)}, let T1, . . . , Tp be trees such that Ti ∈ T βi

min,
and let Si be a minimum RED:LD set on Ti. Let S = ∪iSi, and let w be a new vertex with N(w) = {x ∈
V (Ti)} such that |N(w) ∩ S| ≥ 2. Then the combined tree T with V (G) = ∪iV (Ti) ∪ {w} is in T 1

min.

Proof. Let |V (Ti)| = 3ki + βi; then the combined tree, T , has |V (T )| = |V (T1)| + · · · + |V (Tp)| + 1 =
(3k1+β1)+· · ·+(3kp+βp)+1. Suppose β = (0, 0); then |V (T )| = 3(k1+k2)+1 and |S| = (2k1+1)+(2k2+1) =
2(k1 + k2) + 2. Suppose β = (1, 2); then |V (T )| = 3(k1 + k2 + 1) + 1 and |S| = (2k1 + 2) + (2k2 + 2) =
2(k1 + k2 + 1) + 2. Lastly, suppose β = (2, 2, 2); then |V (T )| = 3(k1 + k2 + k3 + 2) + 1 and |S| =
(2k1 + 2) + (2k2 + 2) + (2k3 + 2) = 2(k1 + k2 + k3 + 2) + 2. By hypothesis, we see that S 2-dominates every
vertex in T , so Proposition 2 yields that S is a RED:LD set for T . Based on the above analysis of |V (T )|
and |S|, we see that indeed T ∈ T 1

min for any choice of β.

Lemma 8. Let S be an optimal RED:LD set for a tree T ∈ T 1
min with order at least 7. Then every v /∈ S

has p = deg(v) ≤ 3 and there exists β = (β1, . . . , βp) with β ∈ {(0, 0), (1, 2), (2, 2, 2)} such that the connected
components of T − v, T1, . . . , Tp, satisfy Ti ∈ T i

min, and Si = S ∩ V (Ti) is optimal on Ti.
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Proof. Since T is in T 1
min, let |V (T )| = 3k+ 1 with |S| = 2k+ 2, meaning there are j = k−1 non-detectors.

Let v /∈ S with deg(v) = p and define T1, . . . , Tp, j1, . . . , jp, and S1, . . . , Sp similarly to Lemma 4. We again
find that |V (T )| ≥ 3(j−1)+2p+1. If deg(v) ≥ 4, then |V (T )| ≥ 3(j−1)+2×4+1 = 3k+3, a contradiction.
If deg(v) = 3, then |V (T )| is exactly 3(j − 1) + 2× 3 + 1 = 3k + 1, so each of Ti must have precisely 3ji + 2
vertices (see Table 1), meaning Ti ∈ T 2

min; this corresponds to β = (2, 2, 2). Otherwise deg(v) = 2, and
because T is assumed to be in T 1

min, we know |V (T )| = 3j + 4. Let |V (Ti)| = 3ji + αi; Observation 5 gives
us that αi ≥ 2. We know that |V (T1)| + |V (T2)| + 1 = |V (T )|, which means (3j1 + α1) + (3j2 + α2) + 1 =
3(j1 + j2) +α1 +α2 + 1 = 3(j − 1) +α1 +α2 + 1 = 3j + 4. Thus, we see that α1 +α2 = 6, so without loss of
generality (α1, α2) ∈ {(2, 4), (3, 3)}; from Table 1, we see these correspond to the β = (1, 2) and β = (0, 0)
cases. In any case, we saw from the table that each Si must be optimal on Ti, completing the proof.

From the previous six Lemmas, we have the following theorem.

Theorem 14. Starting with the four extremal trees on n ≤ 4 vertices given in Figure 9, the construction
lemmas (3, 5, and 7) create the entire family of extremal trees, Tmin.

Proof. The aforementioned construction lemmas show that any tree they produce is extremal. Lemmas 4,
6, and 8 show that any T ∈ Tmin can be formed by using one of the construction lemmas.

T 0
min T 1

min T 2
min

T 0
min T 1

min X T 0
min

T 1
min X X T 1

min

T 2
min T 0

min T 1
min T 2

min

T 2
min,T

2
min,T

2
min → T 1

min

T 2
min T 1

min

T 0
min

T 1
min

T 2
min

T 0
min T 0

min

T 2
min

T 2
min T 2

min,T
2
min

Figure 10: Construction of extremal trees—as per Theorem 14—shown in table and state machine form.

The construction patterns for Tmin proven in Theorem 14 are summarized in Figure 10 in both table
form and as a finite state machine, where the states represent the current tree type (mod size) and the edge
labels are the types of tress being combined with it (through a new non-detector vertex). For example,
in row 2 column 3 of the table, we see that combining two trees in T 1

min and T 2
min, respectively, with a

non-detector yields a tree in T 1
min; this is shown in the finite state machine as the T 2

min transition from
T 1
min to T 1

min, or as the T 1
min transition from T 2

min to T 1
min.

Theorem 15. Let S be an arbitrary optimal RED:LD set for a tree in Tmin. Then S can be generated by
Theorem 14 using only RED:LD sets and trees found by the same Theorem for smaller trees.

Proof. The argument will proceed inductively; we will assume that the construction Theorem produces all
possible optimal RED:LD sets for all extremal trees on up to n − 1 vertices using only previously found
RED:LD sets. Clearly, if n ≤ 4 then we have all solutions, as these are the base case trees. Otherwise, let
v ∈ V (T )−S be an arbitrary non-detector; then we can split the tree into p = deg(v) subtrees, T1, . . . , Tp, of
T−v; let Si = S∩V (Ti). The inductive hypothesis guarantees that the construction Theorem can produce all
possible optimal RED:LD sets on each Ti, which means each Si can be formed by the construction Theorem
using only previously found RED:LD sets. The original tree, T , and RED:LD set, S, are simply formed by
connecting all of the Ti with a non-detector and unioning the Si, so T and S can be constructed using only
previously found trees and RED:LD sets, completing the proof.
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n = 5

n = 8

n = 11

n = 10

Trees in T 2
min for n = 5, 8, 11

n = 6

n = 9

Trees in T 0
min for n = 6, 9

n = 7

Trees in T 1
min for n = 7, 10

Figure 11: All trees in Tmin of order 5 ≤ n ≤ 11

The findings of Theorem 15 show that Theorem 14 not only produces the family of all extremal trees, but
also produces every optimal RED:LD set on each tree (without ever needing an arbitrary optimal RED:LD
set, as was used in proving the original three construction Lemmas).

Theorem 14 produces extremal trees and RED:LD sets by connecting smaller extremal trees with a new
non-detector vertex. From Theorem 15, we see that this process can be done using only previously found
RED:LD sets on the smaller trees. Thus, detectors in the graph must come from the original four base case
trees, giving us the following corollary:

Corollary 3. If S is an optimal RED:LD set for T ∈ Tmin, then each connected component of the graph
generated by S is one of the four trees given in Figure 9.

Corollary 4. If T ∈ T 2
min, then any minimum RED:LD set efficiently 2-dominates all vertices.

v

Figure 12: T7.

Figure 11 shows all trees in Tmin on 5–10 vertices (trees on 2–4 vertices are given
by the base case trees from Figure 9). Figure 12 is a particular labeled subgraph that
is only present for extremal trees constructed using the rule for combining three trees in

15
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T 2
min with a single non-detector.

Corollary 5. For any optimal RED:LD set on a tree T ∈ Tmin, if v is a degree three
non-detector then T ∈ T 1

min, v is unique, and the three subtrees of T −v can be efficiently
2-dominated.

We will now give algorithms for checking if an arbitrary tree, T , is in Tmin or not. This is given by
Algorithms 2, 3, and 4, one for each of T 2

min, T 0
min, and T 1

min, respectively. Each of these algorithms
returns a (non-empty) vertex set which is an optimal RED:LD set on the tree if T ∈ Tmin, or an empty set
if T /∈ Tmin. Algorithms 2–4 all begin with similar preprocessing logic, which is performed by Algorithm 1;
this finds and removes all exterior P2 trees that were connected by a T 2

min transition (see the finite state
machine from Figure 10), along with the non-detector connecting them.

4.4.3 Infinite k-aray trees

Figure 13: A partial view of the infinite, complete k-ary tree with k = 3.

Theorem 16. Let T be an infinite, complete k-ary tree for k ≥ 2; then RED:LD(T ) = 2
k+2 .

Proof. As any RED:LD set must be 2-dominating, for any detector vertex x, sh(x) ≤ (k+ 2)× 1
2 , so we find

that RED:LD(T ) ≥ 2
k+2 .

Let r denote the root vertex, which is the unique vertex with degree k, for an infinite complete k-ary
tree. We construct a set S ⊆ V (T ) by first deciding r /∈ S and |N(r) ∩ S| = 2; we say that all vertices in
N [r] have been “visited”. From here we apply a recursive pattern: where x is a vertex (already visited) and
C is its set of children (not yet visited), let |N [x] ∩ S| = 2, with any needed detectors coming from C; we
then mark all vertices in C as visited. This construction is demonstrated in Figure 13 for k = 3, and clearly,
every vertex is at least 2-dominated. Suppose u, v /∈ S; then by this construction ∃x ∈ (N(u) −N(v)) ∩ S
and ∃y ∈ (N(v)−N(u)) ∩ S, so u and v are 2-distinguished. Otherwise, suppose u ∈ S and v /∈ S; then it
must be the case that ∃x ∈ (N(v)−N(u)) ∩ S, so u and v are 1-distinguished. Thus, by Theorem 2, S is a
RED:LD set. Since every detector in S has share (k + 2)× 1

2 in this construction, the density of S in V (T )
clearly is 2

k+2 ; so we have RED:LD(T ) ≤ 2
k+2 .

16



Jean and Seo On Redundant Locating-Dominating Sets

Algorithm 1 Get the set of all recursive exterior P2 and non-detector components in a tree

1: function ExteriorP2PlusNondetector(T, q)
2: if |V (T )| ≥ q and ∃u, v, w, where N(v) = {u,w}, deg(u) = 1, and deg0(w) = 2
3: let T ′ = T − {u, v, w}
4: let S1, S2 = ExteriorP2PlusNondetector(T ′, q)
5: return (S1 ∪ {u, v}, S2 ∪ {w})
6: else return (∅,∅)
7: end function

Algorithm 2 Classify a tree on 3k + 2 vertices as extremal or not extremal

1: function ExtremalRedLd2(T )
2: let S1, S2 = ExteriorP2PlusNondetector(T, 0)
3: T ← T − (S1 ∪ S2)
4: if |V (T )| ≤ 1 then return ∅
5: if |V (T )| = 2 then return V (T ) ∪ S1

6: end function

Algorithm 3 Classify a tree on 3k vertices as extremal or not extremal

1: function ExtremalRedLd0(T )
2: let S1, S2 = ExteriorP2PlusNondetector(T, 0)
3: T ← T − (S1 ∪ S2)
4: if |V (T )| ≤ 2 then return ∅
5: if |V (T )| = 3 then return V (T ) ∪ S1

6: end function

Algorithm 4 Classify a tree on 3k + 1 vertices as extremal or not extremal

1: function ExtremalRedLd1(T )
2: let S1, S2 = ExteriorP2PlusNondetector(T, 5)
3: T ← T − (S1 ∪ S2)
4: if |V (T )| ≤ 3 then return ∅
5: if |V (T )| = 4 then return V (T ) ∪ S1

6: if T = T7 then return (V (T )− {v}) ∪ S1

7: if ∃B1, B2 ⊆ V (T ) be two branches each on 3 vertices with parent w having deg0(w) = 2
8: if w1 = w2 return {u1, v1, x1, u2, v2, x2} ∪ S1

9: let T ′ = T − (B1 ∪B2 ∪ {w1, w2})
10: let S′ = ExtremalRedLd2(T ′)
11: if S′ = ∅ return ∅
12: else return {u1, v1, x1, u2, v2, x2} ∪ S′ ∪ S1

13: else return ∅
14: end function

17
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Theorem 17. Let T be a complete k-ary tree for k ≥ 2 with depth d ≥ 1. Then, where m = d mod 3 and
t = (d−1) mod 3,

RED:LD(T ) =


k + 1 d = 1

k2 + k d = 2

k3 + k2 + 2 d = 3

(1−m)(2−m) + kt(k+1)k
3dd/3e−1
k3−1 d ≥ 4

Proof. Let S be an optimal RED:LD set on T . If d = 1 then the results are clear from the requirement
of 2-domination alone. If d ≥ 2 then where L = {v ∈ V (T ) : deg(v) = 1}, we require ∪v∈LN [v] ⊆ S to
2-dominate each vertex in L; this includes every vertex at depths d and d− 1, so |S| ≥ kd + kd−1. If d = 2,
it is clear that this set satisfies Proposition 2, so RED:LD(T ) = k2 + k. If d = 3, then we will still need at
least two additional detectors to 2-dominate the root vertex; this is sufficient to 2-dominate every vertex, so
RED:LD(T ) = k3 + k2 + 2. Figure 14 shows all non-isomorphic solutions for minimum RED:LD sets on a
3-ary tree with depth d ≤ 4.

Otherwise, we assume d ≥ 4. Consider a vertex x at depth d−4, with Tx being the sub-tree with x as its
root; we will show that any optimal S requires x ∈ S. As stated previously, to 2-dominate the leaf vertices
we have all vertices at depths d and d−1 being detectors. Let C denote the set of k children of x; clearly for
any v ∈ C, we require |N [v] ∩ S| ≥ 2. If x ∈ S then we need at least k + 1 additional detectors, including x
itself; the last three graphs of Figure 14 show all non-isomorphic ways to use only k+ 1 additional detectors
in Tx. By having {x}∪C ⊆ S, we see that all vertices in Tx are 2-dominated regardless of vertices outside of
Tx, if any; thus k+1 additional detectors are sufficient to be a RED:LD set. Otherwise, x /∈ S, so we require
at least 2k additional detectors. Because k ≥ 2 by hypothesis, k + 1 < 2k, and having x /∈ S potentially
means we require even more detectors outside of Tx. Thus, if x /∈ S, then S is not optimal, a contradiction.

Therefore, we assume x ∈ S and use exactly k + 1 additional detectors, including x itself. As previously
stated, taking taking {x} ∪ C ⊆ S is sufficient to 2-dominate all vertices in Tx regardless of vertices outside
of Tx; applying this across all x vertices, we see that all vertices at depths d− 4 and d− 3 can be detectors
while still having S be optimal. We see that rows d− 4 and d− 3 are similar to rows d and d− 1, so we can
repeat the logic of this proof starting at the beginning for the tree of depth d− 3, giving us the recurrence
relation RED:LD(T ) = RED:LD(T ′) + kd + kd−1 for d ≥ 4 where T ′ is the truncated tree with root r and
depth d− 3. Let f(d) = RED:LD(T ) with d denoting depth; then we can expand the recurrence relation as

f(d) = f(d− 3) + kd + kd−1

= f(d− 6) + kd−3 + kd−4 + kd + kd−1

= f(d− 3p) + kd−3p+3 + kd−3p+2 + · · ·+ kd + kd−1

We will now consider the cases of d − 3p being 1, 2, or 3 for some p ∈ N, for which we can apply the
previous expansion of f(d) using the base cases f(1), f(2), and f(3) found above.
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d− 3p = 1: f(d) = f(d− 3p) + kd−3p+3 + kd−3p+2 + · · ·+ kd + kd−1

= (k + 1) + k4 + k3 + k7 + k6 + · · ·+ k3p+1 + k3p

= (k + 1) + (k4 + k7 + k10 + · · ·+ k3p+1) + (k3 + k6 + k9 + · · ·+ k3p)

= (k + 1) + (k + 1)(k3 + k6 + · · ·+ k3p + 1− 1)

= (k + 1) + (k + 1)

(
k3p+3 − 1

k3 − 1
− 1

)
= (k + 1)

kd+2 − 1

k3 − 1

d− 3p = 2: f(d) = (k2 + k) + k5 + k4 + k8 + k7 + · · ·+ k3p+2 + k3p+1

= k(k + 1) + k(k + 1)

(
k3p+3 − 1

k3 − 1
− 1

)
= k(k + 1)

kd+1 − 1

k3 − 1

d− 3p = 3: f(d) = (k3 + k2 + 2) + k6 + k5 + k9 + k8 + · · ·+ k3p+3 + k3p+2

= 2 + k2(k + 1) + k2(k + 1)

(
k3p+3 − 1

k3 − 1
− 1

)
= 2 + k2(k + 1)

kd − 1

k3 − 1

The three closed forms found above can be combined into one expression using modulo-3 arithmetic,
giving the form of the d ≥ 4 case of the theorem statement. Table 2 gives example values for RED:LD(T )
for various choices of k and d.

d k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
1 3 (0.75) 4 (0.89) 5 (0.94) 6 (0.96) 7 (0.97) 8 (0.98)
2 6 (0.75) 12 (0.89) 20 (0.94) 30 (0.96) 42 (0.97) 56 (0.98)
3 14 (0.88) 38 (0.94) 82 (0.96) 152 (0.97) 254 (0.98) 394 (0.98)
4 27 (0.84) 112 (0.92) 325 (0.95) 756 (0.97) 1519 (0.98) 2752 (0.98)
5 54 (0.84) 336 (0.92) 1300 (0.95) 3780 (0.97) 9114 (0.98) 19264 (0.98)
6 110 (0.86) 1010 (0.92) 5202 (0.95) 18902 (0.97) 54686 (0.98) 134850 (0.98)
7 219 (0.86) 3028 (0.92) 20805 (0.95) 94506 (0.97) 328111 (0.98) 943944 (0.98)
8 438 (0.86) 9084 (0.92) 83220 (0.95) 472530 (0.97) 1968666 (0.98) 6607608 (0.98)
9 878 (0.86) 27254 (0.92) 332882 (0.95) 2362652 (0.97) 11811998 (0.98) 46253258 (0.98)

10 1755 (0.86) 81760 (0.92) 1331525 (0.95) 11813256 (0.97) 70871983 (0.98) 323772800 (0.98)

Table 2: Sample values from Theorem 17. Entries are the exact value of RED:LD(Td) and the density.
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Figure 14: Exhaustive optimal RED:LD sets on complete 3-ary trees with depths 1–4.

4.5 Infinite grids

Theorem 18. For the infinite hexagonal grid, HEX, RED:LD(HEX) = 1
2 .

Proof. From Figure 15 (a), we have that RED:LD(HEX) ≤ 1
2 ; we need only show that RED:LD(HEX) ≥ 1

2 .
Any RED:LD set must be 2-dominating, and the HEX grid is 3-regular. Thus, the share of any detector
vertex is at most 4× 1

2 = 2, giving a lower bound of 1
2 .

Theorem 19. For the infinite triangular grid, TRI, RED:LD(TRI) = 1
3 .

1

2

34

5

6

10

9

8

7

11

17

16

15

14

13 12

18

x

Figure 16: Vertex labeling.

Proof. From Figure 15 (b), we see that RED:LD(TRI) ≤ 1
3 . Thus, we need only

show that RED:LD(TRI) ≥ 1
3 ; to do this, we will demonstrate that the average

share of all detectors in a RED:LD set S on TRI is at most 3. Let x ∈ S; we
continue by considering the possible values of dom(x). Refer to Figure 16; note
that vk will refer to the vertex labeled k. First, suppose dom(x) ≥ 4; then we
have |N(x) ∩D3+| ≥ 2, so sh(x) ≤ σ4332222 < 3 and we are done.

Next, suppose dom(x) = 3; then there are three non-isomorphic cases.
Case 1: {v1, v2} ⊆ S. We see that dom(v1) ≥ 3 and dom(v2) ≥ 3, so
sh(x) ≤ σ3332222 = 3, and we are done. Case 2: {v1, v3} ⊆ S. We
see that v1 and v6 are not distinguished; by property 2 of Theorem 2, we
must have dom(v1) ≥ 3 or dom(v6) ≥ 3; by symmetry, dom(v3) ≥ 3 or
dom(v4) ≥ 3 as well. Thus, sh(x) ≤ σ3332222 = 3, and we are done. Case 3:
{v1, v4} ⊆ S. We see that v2 and v6 are not distinguished; by property 3 of
Theorem 2, we must have sh[v2v6] ≤ max{σ33, σ24} = σ24; by symmetry, sh[v3v5] ≤ σ24 as well. Therefore,
sh(x) ≤ σ322 + σ24 + σ24 = 17

16 < 3, and we are done.
Lastly, suppose dom(x) = 2; then we can assume v1 ∈ S. We see that to distinguish x and v2 we require

dom(v2) ≥ 3; by symmetry, dom(v6) ≥ 3 as well. If {v1, v3, v4, v5}∩D3+ 6= ∅ then sh(x) ≤ σ3332222 = 3, and
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(a) (b)

(c) (d)

Figure 15: Upper bounds for the RED:LD on (a) HEX, (b) TRI, (c) SQ, and (d) K.

we are done; thus, we assume {v1, v3, v4, v5} ⊆ D2. Vertex v1 is already 2-dominated, so {v7, v8, v18}∩S = ∅.
If v12 ∈ S then v3 and v4 cannot be distinguished, a contradiction; thus, we assume v12 /∈ S, and by symmetry
v14 /∈ S. We require v13 ∈ S to 2-dominate v4. If {v10, v16} ⊆ S then dom(v2) ≥ 4 to distinguish v2 and v3,
and dom(v6) ≥ 4 to distinguish v5 and v6; we see that sh(x) ≤ σ2442222 = 3 and we are done. Thus, without
loss of generality, we can assume v16 /∈ S, imposing v15 ∈ S to 2-dominate v5 and v17 ∈ S to 3-dominate
v6. We see that dom(v18) ≥ 3 to distinguish v6 and v18. Suppose v10 /∈ S; then {v9, v11} ⊆ S to dominate
v2 and v3. We see that to distinguish v2 and v8 we require dom(v8) ≥ 3. Thus, sh(x) = σ2332222 = 19

6
and sh(v1) ≤ σ2333322 = 17

6 . As v1 has only one neighboring detector, we may average their share values,
which yields 1

2

[
17
6 + 19

6

]
= 3, and we are done. Otherwise, we assume v10 ∈ S; then v11 /∈ S and v9 ∈ S to

distinguish v2 and v3. Thus, sh(x) = σ2432222 = 37
12 and sh(v1) ≤ σ2433222 = 35

12 . Again, we find that it is
safe to perform averaging, which yields 1

2

[
37
12 + 35

12

]
= 3, completing the proof.

Theorem 20. For the infinite square grid, SQ, 2
5 ≤ RED:LD(SQ) ≤ 7

16 .

Proof. From Figure 15 (c) we see a RED:LD set on SQ with density 7
16 , so RED:LD(SQ) ≤ 7

16 . For any
RED:LD set S, each vertex must be at least 2-dominated, and SQ is 4-regular; thus, ∀x ∈ S, sh(x) ≤ 5× 1

2 .
Therefore, 2

5 ≤ RED:LD(SQ), completing the proof.

Theorem 21 ([8]). For the infinite king grid, K, 3
11 ≤ RED:LD(K) ≤ 5

16 .
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