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Abstract
We consider the matrix model of U (N ) refined Chern–Simons theory on S3 for the
unknot.We derive a q-difference operator whose insertion in the matrix integral repro-
duces an infinite set of Ward identities which we interpret as q-Virasoro constraints.
The constraints are rewritten as difference equations for the generating function of
Wilson loop expectation values which we solve as a recursion for the correlators of
the model. The solution is repackaged in the form of superintegrability formulas for
Macdonald polynomials. Additionally, we derive an equivalent q-difference operator
for a similar refinement of ABJ theory and show that the corresponding q-Virasoro
constraints are equal to those of refined Chern–Simons for a gauge super-group
U (N |M). Our equations and solutions are manifestly symmetric under Langlands
duality q ↔ t−1 which correctly reproduces 3d Seiberg duality when q is a specific
root of unity.
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1 Introduction

In the seminal paper [1], Witten gave a gauge field theory construction of the cel-
ebrated Jones polynomials for knots and links in three dimensions using the path
integral of Chern–Simons (CS) theory. Since then many generalizations of this impor-
tant result have been worked out, both from the mathematical side, by defining knot
(co)homologies that give categorifications of the knot polynomials, and also from the
physics side where people have been able to compute exactly some BPS observables
in certain supersymmetric versions of CS theory by using localization techniques.

Aganagic andShakirov [2] used a deformation of theVerlinde ring of ŝu(N )k to give
a new physical interpretation for certain refined knot invariants that were previously
constructed using homological methods in [3]. More specifically, usingM-theory they
conjectured a new type of “refined” gauge theory in 3 dimensions whose Wilson-loop
observables can be identified with the Poincaré polynomials of Khovanov–Rozansky
HOMFLYhomology [4, 5]. Their new theory can be seen as a deformation of CS gauge
theory known as refined Chern–Simons (rCS) which depends on two parameters q and
t that appear in the definition of the modular S and T matrices. In the case of usual
CS these matrices are written in terms of characters of the gauge group, which in the
case of U (N ) are Schur symmetric polynomials. In the refined theory one substitutes
Schur polynomials with their q, t deformation known as Macdonald polynomials
which are known to play an important role in the theory of symmetric functions and
in representation theory as well.

In their paper they also gave a matrix model definition of the partition function
of rCS on S3 arguing that (unknot) Wilson-loop observables are given by averages
of Macdonald functions inside of the matrix integral. This matrix model falls into
the category of q, t-deformed matrix models for which it was shown there exists an
action of the deformed Virasoro algebra [6] in the form of Ward identities known as
q-Virasoro constraints [7].

In this paper we explicitly derive the q-Virasoro constraints for the matrix model
of rCS theory on S3 by making use of insertions of certain finite difference operators
acting on the integration variables of thematrix integral. The constraints that we derive
can be rewritten as a system of infinitely many linear relations between the correlators
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of the model which in turn can be packaged into some difference equations for the
generating function of the matrix model expectation values.

An explicit analysis of these equations reveals that they can be integrated completely
to give a full solution of the model in terms of normalized correlation functions,
which is equivalent to the statement that the relations between these correlators form
a recursion which is determined uniquely by the initial data provided by the empty
correlator, which is identified with the partition function itself. Computing the solution
up to some finite order we are able to conjecture a closed formula for the average of
Macdonald characters, and we find that it can be nicely written in terms of the same
characters evaluated at some specific locus. This shows that rCS matrix model enjoys
a property know as superintegrability similarly to what was shown to happen for other
q, t-deformed matrix models [8].

Similarly to the case of ordinary unitary gauge groups U (N ), one can also define
CS theory for unitary super-groups U (N |M) and in fact there exists a refinement
deformation of this super-group gauge theory as well. This theory coincides with the
refinement of the ABJ theory of [9, 10]. The corresponding matrix model is therefore
the supersymmetric generalization of the rCS one and we show that it also admits an
action of the q-Virasoro algebra.Moreover, we show that the constraints can bewritten
in the same way as those of rCS once we substitute the rank N with the effective rank
N − log q

log t M . By using this observation, it follows that the constraints in the two cases
have essentially the same solution up to the choice of overall normalization and rank.

Finally, we show that the refined matrix model representation of the q-Virasoro
algebra admits a non-trivial involution which exchanges q ↔ t−1 known under the
name of quantum q-geometric Langlands duality, and it acts non-trivially on the cor-
relators in such a way that the full (normalized) generating function is left invariant.
The physical interpretation of such a symmetry can be traced back to a 3d version of
Seiberg duality which for pure CS reduces to the well-known level-rank duality of the
representation ring of û(N )k .

2 Refined Chern–Simonsmatrix model

We start by recalling the definition of the refined CS matrix model as given in [2, 11].
The refinement is obtained by introducing a specific β-deformation of the standard
CS matrix model of [12, 13] on the 3-sphere.

2.1 The partition function

The theory is described by the following data: the CS level k ∈ Z, the gauge group
which in our case we take to be U (N ) so that the rank and the dual Coxeter number
are both N . Additionally one can consider introducing a Fayet–Iliopoulos (FI) term ν

for the U (1) center of the gauge group.
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The unknot partition function of unrefined CS is given by the Stieltjes–Wigert
matrix integral

ZCS
N (q) = (−1)N (N−1)/2

N !
∫

RN

∏

1≤i< j≤N

(

2 sinh
zi − z j

2

)2 N
∏

i=1

e− z2i
2 log q d zi

= 1

N !
∫

R
N+

∏

i �= j

(

1 − xi/x j
)

N
∏

i=1

e− log2 xi
2 log q

d xi
xi

(2.1)

where in the second line we adopted the change of variables zi = log xi . The matrix
integral depends explicitly on the rank N of the matrices but also on a complex
parameter q which appears in the denominator of the potential function. In order to
identify the matrix model partition function with the gauge theory partition function,
one usually assumes that q is of the form

q = e
2π i
k+N (2.2)

however, we observe that the matrix integral, when convergent, can be regarded as a
well-defined function over the complex plane and not just at roots of unity.

The refinement of CS theory corresponds to a specific type of deformation of the
matrix integral (2.1), where one substitutes the classical Vandermonde measure with
a q, t-analogue of it, i.e. the function

�q,t (x) =
∏

i �= j

(xi/x j ; q)∞
(t xi/x j ; q)∞

(2.3)

where (x; q)∞ = ∏∞
n=0(1−qnx) is the q-Pochhammer symbol. The refined partition

function can then be written as

Z rCS
N (q, t) = 1

N !
∫

R
N+

�q,t (x)
N
∏

i=1

e−V (xi ) dxi (2.4)

where the potential V (x) is given by the function

V (xi ) = log2 xi
2 log q

+ (−β(N − 1) − ν) log xi with β = log t

log q
(2.5)

which now also includes an arbitrary FI term proportional to log xi . When t = q (i.e.
β = 1) the function �q,t (x) reduces to the CS measure

∏

i �= j (1 − xi/x j ) and the
partition function in that limit can be identified with the integral in (2.1) provided we
choose the FI parameter as ν = −N . For later convenience we also introduce the
additional parameters

r = qν, p = qt−1. (2.6)
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The matrix integral (2.4) depends now on the parameters q and t (and r ) which
we regard as arbitrary complex numbers. As before, the identification with the refined
gauge theory requires that we choose specific values for these parameters compatible
with the fact that the S and T matrices provide a unitary representation of SL(2,Z)

on the Hilbert space of a 2-torus. This happens when q and t are given by

q = e
2π i

k+βN , t = e
2π i β
k+βN (2.7)

which is the refinement of the relation (2.2); however, we remark that the matrix model
itself does make sense for arbitrary q and t .

Remark The partition function Z rCS
N (q, t) is a convergent integral over the positive

real line provided |q| > 1. This can be seen most easily in the variables zi = log xi
in which case we have a convergent real Gaussian integral over the contour C = R.
For |q| ≤ 1 the integrand does not fall-off at infinity on the real line; however, one
can make the integral convergent by modifying the integration contour. For instance,
for |q| = 1 one should rotate the contour slightly off the real axis while for |q| < 1
one can take C = iR. Furthermore, one can even substitute the Riemann integral
∫

d xi with the discrete Jackson integral
∫

dq xi without affecting the derivation of the
q-Virasoro constraints as discussed in [14]; however, we do not have intuition for a
physical theory that would give rise to such a “discrete” matrix model.

The partition function of the refined matrix model computes the vacuum matrix
element of the product T ST

Z rCS
N (q, t) = 〈0|T ST |0〉 (2.8)

where S and T are Macdonald deformations of the Kac–Peterson modular matrices,
first introduced in [15, 16]. This matrix element corresponds to the path integral of
rCS theory on S3 with no Wilson loops.

As argued in [2, 11], given a representation Rλ of the gauge group U (N ) one can
compute the insertion of the corresponding unknot Wilson loop operator by inserting
the corresponding character in the matrix integral in (2.4). In the unrefined case, the
U (N ) characters are given by Schur polynomials in the integration variables {xi },
while in the refined case these are substituted by Macdonald symmetric polynomials
McdPλ(x; q, t) or McdQλ(x; q, t) (see “Appendix A). The corresponding entry of the
modular T ST -matrix then computes the Macdonald expectation value

〈Rλ|T ST |0〉 = 〈McdPλ(x; q, t)〉 (2.9)

and similarly for McdQλ using (A.15). Observe that the Wilson loop wraps around
the non-contractible cycle of one of the two solid tori that glue to give the 3-sphere.
Moreover, one can interpret the action of the T -matrix as shifting the framing of the
unknot by 1 unit.

Similarly, one can compute the rCS path integral of an Hopf link by evaluating
the expectation value of the product of two Macdonald polynomials; however, in this
paper we will mostly focus on the unknot partition function.
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2.2 Generating function of correlators

The correlation functions of the matrix model are the expectation values of products
of power-sums pn(x) = ∑N

i=1 x
n
i (see “Appendix A”),

cλ = 〈pλ(x)〉 = 1

N !
∫

R
N+

�q,t (x)
N
∑

i1,...,iN=1

xλ1
i1

. . . xλN
iN

N
∏

i=1

e−V (xi ) dxi (2.10)

where λ = [λ1, . . . , λN ] is an integer partition of length at most N . It is useful to
repackage all the correlators cλ into a generating function. A natural way to do this is
to take the expectation value of the generating function of all power-sums

�(x, t; q, t) = exp

( ∞
∑

n=1

tn
n

1 − tn

1 − qn
pn(x)

)

=
∑

λ

zλ(q, t)−1 pλ(x)tλ (2.11)

with

tλ =
N
∏

i=1

tλi (2.12)

and zλ(q, t) defined as in (A.13). The function �(x, t, q, t) is a formal power series
in the auxiliary variables t = {t1, t2, . . . } which are usually called higher times. If we
regard the higher times tn as the power-sums of a second set of independent variables,
then�(x, t, q, t) can be interpreted as the reproducing kernel for theMacdonald inner
product (·, ·)q,t on the ring of symmetric functions �q,t .

The generating function of all correlators is defined as

Z rCS
N (t; q, t) = 〈�(x, t; q, t)〉 =

∑

λ

zλ(q, t)−1cλtλ (2.13)

Observe that because �(x, t; q, t) is a reproducing kernel, then the following identity
holds

pn(x)�(x, t; q, t) = t⊥n �(x, t; q, t) (2.14)

where t⊥n is the adjoint of multiplication by tn , defined by

t⊥n = n
1 − qn

1 − tn
∂

∂tn
, n ≥ 1 (2.15)

With these definitions we can then write all correlators as

cλ = t⊥λ Z rCS
N (t; q, t)|t=0 (2.16)
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Moreover, the operators of multiplication by times tn and their adjoints t⊥n form an
Heisenberg algebra with generators

an =
⎧

⎨

⎩

t⊥n n ≥ 1
N n = 0
t−n n ≤ −1

(2.17)

and commutation relations

[am, an] = m
1 − q |m|

1 − t |m| δm+n,0 (2.18)

2.3 q-Virasoro constraints

The q-Virasoro constraints for thematrixmodel in (2.4) can be obtained by introducing
an appropriate finite difference operator in the integral of the generating function. As
in the case of the classical Virasoro constraints, the insertion of the difference operator
leads to a vanishing integral even though the integrand itself is not identically zero.
Rewriting the integral as a linear combination of correlators gives a non-trivial set of
relations between these functions.

In order to define the difference operator appropriate for the rCS matrix model we
first introduce the shift operator

Tq,xi f (x1, . . . , xi , . . . , xN ) = f (x1, . . . , qxi , . . . , xN ) (2.19)

which acts by rescaling the variable xi by the factor q. Next we define the q-derivative
by

Dq,xi f (x) = 1 − Tq,xi

(1 − q)xi
f (x) (2.20)

and finally we can define our difference operator as

Dm f (x) =
N
∑

i=1

Dq,xi

[

q−m
2 xm+1

i Ai (x; t−1) f (x)
]

(2.21)

where

Ai (x; t) :=
∏

j �=i

t xi − x j
xi − x j

, (2.22)

is an auxiliary function1 that satisfies

�q,t (x)
−1Tq,xi �q,t (x) = t−(N−1)Ai (x; t)

[

Tq,xi Ai (x; t−1)
]−1

(2.23)

1 This is the same function that appears in Chapter VI of Macdonald’s book [17].
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The q-Virasoro constraint is obtained by inserting the q-difference operatorDm inside
the integral in (2.4). A generalization of Stokes’ theorem then states that the integral
of a total q-derivative vanishes (provided there are no boundary contributions). The
resulting equation can be written as

1

N !
∫

d xNDm

{

�q,t (x) e
−∑

i V (xi ) �(x, t; q, t)
}

=
〈

D
V
m�(x, t; q, t)

〉

= 0 (2.24)

Here we define the operator DV
m by

D
V
m f (x) =

(

�q,t (x) e
−∑

i V (xi )
)−1Dm

(

�q,t (x) e
−∑

i V (xi ) f (x)
)

= 1

1 − q

[

N
∑

i=1

(q− 1
2 xi )

m Ai (x; t−1) − qt−(N−1)

N
∑

i=1

(q
1
2 xi )

m eV (xi )−V (qxi ) Ai (x; t)Tq,xi

]

f (x) (2.25)

This is a discrete family of deformations of the Macdonald operator
D1

N = ∑N
i=1 Ai (x; t)Tq,xi (also known as the Hamiltonian of the trigonometric

Ruijsenaars–Schneider system), which depends non-trivially on the choice of potential
V (x). As a special case, when V (x) is q-constant then we have

D
Vq-const
0 = t−(N−1)

1 − q

[

1 − t N

1 − t
− qD1

N

]

(2.26)

However, the physically interesting case is when the potential is of the form (2.5) so
that

eV (xi )−V (qxi ) = r t N−1q− 1
2 x−1

i (2.27)

which is equivalent to the statement that the potential function e−V (x) can be thought
of as a meromorphic section of a line bundle of degree 1 over the elliptic curveC×/qZ.

If the difference operator DV
m acts on the kernel �(x, t; q, t) as multiplication by a

symmetric function in the {xi }, then one can use the identity (2.14) to define a formal
adjoint of DV

m . This is indeed possible for m > 0, in which case we define the formal
adjoint of DV

m as the differential operator in times given by2

(DV
m)⊥ =

∮

|z|=1

d z

2π i z
z−m 1

(1 − q)(1 − t−1)

{

1 − t−N exp

( ∞
∑

n=1

(q− 1
2 z)n

n
(1 − tn)t⊥n

)

2 Form ≤ 0,DV
m�(x, t; q, t) is not polynomial in the xi but also contains negative powers. For this reason

one cannot take the adjoint of those operators.
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+prz

[

1 − t N exp

(

−
∞
∑

n=1

(q
1
2 z)−n

n
(1 − tn)tn

)

exp

(∞
∑

n=1

(q
1
2 z)n

n
(1 − t−n)t⊥n

)]}

(2.28)

The q-Virasoro constraints then can be rewritten as a set of linear differential equations
for the generating function Z rCS

N (t; q, t), namely

(DV
m)⊥Z rCS

N (t; q, t) = 0 (2.29)

for all m > 0. The integrand in (2.28) can be identified with the generating function
of all the constraints and it is closely related to the generating current T (z) of q-
Virasoro. We refer the reader to Appendix C of [8] for a detailed discussion on the
relation between the q-Virasoro constraint generators (DV

m)⊥ and the generators of the
q-Virasoro algebra.

Observe that the factor of z appearing in the beginning of the second line of (2.28)
is due to the variation of the CS potential (2.27) and it induces a shift in degree in the
power series expansion in z. More explicitly, after taking the residue in z, the operator
D
V
m becomes the sum of two pieces: the first is a differential operator of degreem while

the second is of degreem−1 in the higher times. This shift in degree is precisely what
will allow us in the next section to establish a recursion on the correlators cλ.

2.4 Recursive solution

In this section we set out to solve the constraints in (2.29). The first step is to evaluate
explicitly the contour integral in (2.28),

(DV
m)⊥ = −t−Nq− m

2 hm
({

pn = (1 − tn)t⊥n
})

+ pr
(

−pq− 1
2

)m−1

×
[

δm,1 + −
∞
∑

�=0

t N−�e�

({

pn = (1 − tn)tn
})

e�+m−1

({

pn = (1 − tn)t⊥n
})

]

(2.30)

where hm and em are the complete homogeneous and elementary symmetric functions
of degree m, respectively, which we think of as polynomials in the power-sums pn as
in (A.9).

Assuming the series expansion of Z rCS
N (t; q, t) as in (2.13), we can let all the

differential operators t⊥n act on the monomials in times and the constraint becomes
a linear system for the coefficients cλ. In particular, this system is triangular w.r.t. a
certain ordering on the partitions and the solution is unique up to overall normalization
specified by the initial data c∅ := 〈1〉 = Z rCS

N (0; q, t), i.e., the empty correlator. The
proof goes along the lines of the one described in [8].

Solving the recursion explicitly in degree 1 and 2 we get the following values for
the correlators

c[2] =
(

t N−1(qt + q + 1) − 1
)

1 + t

1 − t N

1 − t

(

rq
3
2 t N−1

)2
c∅
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c[1,1] =
(

1 − t N−1(q(t − 1) + 1)
)

1 − t

1 − t N

1 − t

(

rq
3
2 t N−1

)2
c∅

c[1] = 1 − t N

1 − t

(

rq
3
2 t N−1

)

c∅ (2.31)

Similarly one can plug (2.30) into a computer algebra system and compute all corre-
lators cλ up to arbitrarily high degree of the partition λ. While this solution is fully
explicit and straightforward to compute, it is not very illuminating. In Sect. 2.5 we
discuss a more systematic way to express the solution to the constraints.

2.5 Averages of Macdonald polynomials

By using the explicit solution derived in Sect. 2.4 we can now ask what is the expec-
tation value of a Macdonald polynomial in representation Rλ. Using the fact that
Macdonald symmetric functions admit an expansion into power-sums we can easily
rewrite any Macdonald expectation value as a linear combination of the correlators
cλ that we already computed. Computer experiments then suggest that the following
formula should hold

〈McdPλ(x)〉
〈1〉 =

McdPλ

({

pn = −(−pq
1
2 r t N )n

1−tn

})

McdPλ

({

pn = 1
1−tn

}) McdPλ

({

pn = 1 − tnN

1 − tn

})

(2.32)
which we checked for all partitions up to |λ| ≤ 6. This is a special case of a property
of certain matrix models called superintegrability first observed in [18–21]. Superin-
tegrability for q, t-deformed matrix models was later conjectured in [22] and in [8] its
was explicitly checked (up to some finite order) using the solution of the corresponding
q-Virasoro constraints.

The last factor on the right of (2.32) is the well-known Macdonald dimension of
the representation Rλ,

dimq,t (Rλ) = McdPλ

({

pn = 1 − tnN

1 − tn

})

= t
1
2 |λ|(N−1) McdPλ

(

xi = tρi
)

(2.33)

where

ρi = 1

2
(N − 2i + 1) (2.34)

is the Weyl vector of U (N ) and we can write

McdPλ

(

tρ
) = t−λ·ρ ∏

α>0

(tα·ρ+1; q)α·λ
(tα·ρ; q)α·λ

=
∏

α>0

β−1
∏

m=0

sin
(

π(m+α·(βρ+λ))
k+βN

)

sin
(

π(m+α·(βρ))
k+βN

) (2.35)
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where α > 0 are the positive roots of U (N ) and α · λ is the inner product defined in
(A.7). Observe that the second equality in (2.35) only makes sense for β ∈ N.

The fractional term on the right of (2.32) is instead a power of q which for q a
root of unity is just a complex phase. More precisely, a direct computation shows that
(2.32) becomes

〈McdPλ(x)〉
〈1〉 = McdPλ

(

tρ
)

[

q
1
2λ·λtλ·ρ(t N rp)|λ|] (2.36)

Fixing the FI parameter as r = t−N p−1 we precisely obtain that the overall phase
corresponds to a framing factor of 1 unit

Tλ

T0
= q

1
2λ·λtλ·ρ (2.37)

where Tλ is the eigenvalue of themodular T -matrix corresponding to the representation
Rλ.

Fixing instead r = t−Nq−1 we get the identity

McdPλ

(

tρ
)

[

q
1
2λ·λtλ·ρ−|λ|] = McdPλ

(

tδ
) [

q
1
2λ·λt−

|λ|
2 − 1

2λ′·λ′]
(2.38)

where the r.h.s. nowmatches with the result of [2] (δ is the staircase partition of (A.4)).
Because Macdonald polynomials are a complete basis of the ring of symmetric

functions in the {xi }, we can use formula (2.32) to compute expectation values of all
possible observables of the model. In particular, we can give a full solution for the
generating function by expanding in Macdonald polynomials (as opposed to power-
sum polynomials) as

Z rCS
N (t; q, t) = 〈�(x, t; q, t)〉 =

∑

λ

〈McdPλ(x)〉McdQλ(t) (2.39)

where we used the Cauchy–Littlewood identity (A.17). This is usually referred to as
character expansion of the generating function.

As a last application of the superintegrability formula (2.32) we compute a closed
formula for the generating function of averages of symmetricMacdonald polynomials.
If we set tn = yn for some formal variable y, we obtain that the kernel �(x, t; q, t)
reduces to the generating function of symmetric Macdonald polynomials

�(x, y; q, t) := �(x, tn = yn; q, t) =
∑

n≥0

McdP[n](x)
(t; q)n

(q; q)n
yn (2.40)

therefore

Z rCS
N (y; q, t)

Z rCS
N (0; q, t)

= 〈�(x, y; q, t)〉
〈1〉 =

∑

n≥0

(prt Nq
1
2 y)n

(t N ; q)n

(q; q)n
q(n2)
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= (t N ; q)∞
(t N Tq,y; q)∞

(−prt Nq
1
2 y; q)∞ (2.41)

which is the unique solution (up to normalization) to the q-difference equation

(1 − Tq,y)Z
rCS
N (y; q, t) = (prt Nq

1
2 y)(1 − t N Tq,y)Tq,y Z

rCS
N (y; q, t) (2.42)

Observe that the previous equation at r = p−1t−N (i.e., framing 1) matches the
quantum mirror curve equation of the resolved conifold (see [23, 24])

˜H− f (X ,Y ) = 1 + Y + XY f + QXY f +1 (2.43)

for

Q = t N , X = q
1
2 y, Y = −Tq,y, f = 1 (2.44)

which is expected by arguments of large N dualities with Gromov–Witten theory.
Because Eq. (2.42) is a corollary of the q-Virasoro constraints, this seems to suggest
an interpretation of the constraints in terms of topological recursion formulas as well.

2.6 Symmetries of the constraints

We now consider the operators (2.28) and study their symmetries which will imply
symmetries of the solution.

2.6.1 Langlands duality

It is well known that q, t-deformed models enjoy a non-perturbative symmetry asso-
ciated with the exchange of q and t−1 which is known as “quantum q-geometric”
Langlands duality [25–27]. To show that our q-Virasoro constraints satisfy this sym-
metry we define the involution Lω as

Lω(β) = 1
β

Lω(N ) = −βN Lω(ν) = − 1
β
ν (2.45)

and one can check that (Lω)2 = Id. We can extend the action of the involution to the
full generating function by imposing that the times transform as well, with the rule

Lω(tn) = − 1 − tn

1 − qn
p

n
2 tn (2.46)

so that the q-Virasoro operators become invariant under Langlands duality,

Lω
(

(DV
m)⊥

)

= (DV
m)⊥ (2.47)
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This implies that the normalized solution to the constraints must also be invariant
under the duality.3 More precisely, we can write

Z rCS
N ({tn}; q, t)

Z rCS
N ({0}; q, t)

= Z rCS−βN ({− 1−tn
1−qn p

n
2 tn}; t−1, q−1)

Z rCS−βN ({0}; t−1, q−1)
(2.48)

Observe that for arbitrary complex values of β, the dual theory has rank −βN which
generically is not a positive integer. Clearly the matrix model of this theory is not well-
defined since the rank should correspond to the number of eigenvalues xi . Nevertheless,
the q-Virasoro constraints are well-defined for any complex value of the rank; hence,
the generating function in the r.h.s. of (2.48) does make sense as a formal power
series solution to the constraints. In other words, one can compute the correlators for
integer values of the rank and then analytically continue their expression over the
whole complex plane.

Remark As a special case of the identity (2.48), we can choose the β-parameter in
such a way that the rank of the model on the right becomes 1. Namely, we can fix the
value of β as

β = − 1

N
(2.49)

so that we obtain the “universal” relation

Z rCS
N ({tn}; t−N , t)

Z rCS
N ({0}; t−N , t)

=
Z rCS
1

({

1−tn

1−tnN
t
n
2 (N−1)tn

}

; t−1, t N
)

Z rCS
1 ({0}; t−1, t N )

(2.50)

Moreover, in rank N = 1 the solution is particularly simple,

Z rCS
1 (t; q, t) =

〈

exp

( ∞
∑

n=1

xn

n

1 − tn

1 − qn
tn

)〉

=
∞
∑

m=0

〈xm〉hm
({

pn = 1 − tn

1 − qn
tn

})

(2.51)

where we can evaluate the momentum 〈xm〉 explicitly by the integral

〈xm〉 =
∫ ∞

0
dx xm+ν exp

(

− log2 x

2 log q

)

= q
1
2 (m+ν+1)2

√

2π log q (2.52)

3 Observe that this is not true for the partition function, in fact

Lω(Z rCS
N (0; q, t)) �= Z rCS

N (0; q, t).
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2.6.2 Duality at root of unity

Another interpretation of the symmetry of the operators (DV
m)⊥ comes from restricting

to the physical region of parameters where q, t are roots of unity as defined in (2.7). It
is known that the q-Virasoro algebra at root of unity degenerates to a simpler algebra
related to parafermions [28–31]. We do not pursue this avenue here; however, we
remark that in this region of parameters the Langlands duality reduces to 3d Seiberg
duality for pure CS theories, which also coincides with level-rank duality (see [32]
for a discussion of dualities in unrefined CS). The identification holds provided we
assume the identity4

qkt N = 1 (2.53)

which follows from (2.7). For this choice of parameters we have

qk = q−βN (2.54)

so that formally we can modify the involution to act as

Lω(N ) = k (2.55)

therefore, Langlands duality maps refined CS theories as

U (N )k ↔ U (k)N

Z rCS
N (q, t) 
 Z rCS

k (t−1, q−1) (2.56)

From (2.53) it also follows that rCS theory has an additional discrete Z-symmetry
corresponding to shifts of the rank N of the form

N �→ N + δN (2.57)

with

δN ∈ 1
β

(k + βN )Z (2.58)

It would be interesting to find a physical motivation that might explain this discrete
symmetry, perhaps via some string/M-theory construction.

2.7 Harer–Zagier formulas

Matrix models that possess the superintegrability property described in Sect. 2.5 often
have simple formulas that express the expectation value of single trace operators. In
our language, these are the correlators whose partition is of length one, i.e., those of

4 This constraint on q and t is reminiscent of the so-called wheel condition of [33]; however, it is not clear
to us how exactly the two concepts are related.
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the form c[n] = 〈pn〉. Knowledge of a closed formula for such correlators can be
very important because they are the coefficients of the series expansion of the 1-point
resolvent of the model. It is believed that in models that exhibit superintegrability the
(Laplace transforms of) single-trace correlators c[n] are rational functions with zeroes
and poles at powers of q [34, 35], and these formulas are usually called Harer–Zagier
(HZ) formulas [36].

While giving an analytic derivation of such HZ formulas can be quite complicated,
guessing the actual form of the result can be done more easily. In this section we con-
jecture a formula of HZ-type for the CS matrix model when the refinement parameter
β is set to 1 (i.e. t = q). First, we conjecture the following closed formula for 1-point
correlators (see also Proposition 1.1 of [37])

c[n] = −
(

−qN+ 1
2 r
)n 1 − qN

1 − qn
P(0,1)
n−1 (qN−1; q) c∅ (2.59)

where P(α,β)
n (z; q) is a little q-Jacobi polynomial defined as

P(α,β)
n (z; q) = 2φ1(q

−n, qα+β+n+1; qα+1; q, qz)

=
n
∑

m=0

(q−n; q)m(qα+β+n+1; q)m

(qα+1; q)m(q; q)m
(qz)m (2.60)

The appearance of basic hypergeometric series is not surprising as we already noticed
that symmetric correlators do re-sum into a generalized basic hypergeometric series
as in (2.41).

It is then useful to consider the discrete Laplace transform of this formula w.r.t. the
rank N . The transform takes the form of a generating function5

∞
∑

N=0

λNc[n] = rnq
n(n+2)

2
λ

1 − λ

(λ; q)2n

(λ; q)2n+1
c∅ (2.61)

where now we can observe that the r.h.s. is indeed a rational function of λ with zeroes
and poles at integer powers of q. It would be interesting to derive a similar formula
for the refined correlators at t �= q.

3 Refined ABJmatrix model

The ABJ matrix model of [10, 38, 39] admits a similar refinement deformation as that
of the CS matrix model. The partition function of ABJ theory can be expressed as a
matrix integral over two sets of independent variables {xi }Ni=1 and {ya}Ma=1 which can
be interpreted as the eigenvalues of anHermitean super-matrix in the Lie super-algebra
of U (N |M). The usual Vandermonde determinant in the measure is first substituted

5 One should regard this formula as a special case of the HZ formula for torus knots in Section 6 of [35].
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by the Cauchy determinant and then q, t-deformed to the function (see [40–42])

�q,t (x, y) = �q,t (x)�t−1,q−1(y)
∏N

i=1
∏M

a=1(1 − √
t/qxi/ya)(1 − √

t/qya/xi )
(3.1)

The potential of the model is also modified in order to account for the second set of
{ya} variables and we write it as

V (x, y) =
N
∑

i=1

log2 xi
2 log q

+ (

M − β(N − 1) − ν
)

N
∑

i=1

log xi

+
M
∑

a=1

log2 ya
2 log t−1 + (

N − 1
β
(M − 1) + 1

β
ν
)

M
∑

a=1

log ya (3.2)

so that the first set of eigenvalues xi has coupling log q while the eigenvalues ya have
coupling log t−1. (The FI parameters are also related in such a way as to preserve
symmetry under Langlands duality.) Observe that this is the refinement deformation
of the usual statement that, if we regard ABJ theory as a quiver gauge theory with two
nodes U (N ) and U (M), then the two CS levels must be opposite to each other.6

Expectation values of gauge invariant operators are given by averages of symmetric
functions in the eigenvalues {xi } and {ya}. In the followingwe restrict ourselves to those
symmetric functionswhich can bewritten as polynomials in the deformed power-sums
of [41] (see also [44]), defined as

pn(x, y) := pn(x) − 1 − qn

1 − tn
p− n

2 pn(y) (3.3)

The reproducing kernel which gives the generating function of such deformed power-
sums is the function

�(x, y, t; q, t) = exp

( ∞
∑

n=1

tn
n

1 − tn

1 − qn
pn(x, y)

)

(3.4)

which can be obtained from (2.11) by substituting pn(x)with pn(x, y). It follows that

pn(x, y)�(x, y, t; q, t) = t⊥n �(x, y, t; q, t) (3.5)

Finally, we can write down the generating function of the rABJ matrix model as

Z rABJ
N ,M (t; q, t) = 1

N !M !
∫

R
N+M+

�q,t (x, y)�(x, y, t; q, t) e−V (x,y)
N
∏

i=1

dxi

M
∏

a=1

dya

(3.6)

6 In the case of the ABJ theory, supersymmetry prevents the CS level to receive quantum corrections from
the dual Coxeter number. Therefore, one has q = e2π i/k instead of (2.7). A similar conclusion was reached
in [43] in the case of super-group CS theory.
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As already mentioned, in the unrefined limit t = q the measure �q,t (x, y) reduces
to a Cauchy determinant and one ends up with the usual matrix model for the ABJ
theory which is the super-group version of (2.1) (see [39] for details). Moreover, it is
evident from the definitions that the rABJ matrix model contains rCS as the special
case M = 0, i.e.

Z rCS
N (t; q, t) = Z rABJ

N ,0 (t; q, t) (3.7)

Remark Convergence of the matrix integral for the rABJ partition function requires a
careful choice of contour of integration depending on the values of the parameters q
and t . In the followingwe assume that such a choice of contour always exists; however,
we do not write down the definition of the contour explicitly as it is known that q-
Virasoro constraints are independent of such choice. Moreover, as for the case of rCS,
one could even define a discrete version of the rABJ model using the substitutions
∫

d xi �→ ∫

dq xi and
∫

d ya �→ ∫

dt−1 ya , which would satisfy the same set of q-
Virasoro constraints.

3.1 q-Virasoro constraints

In order to derive the appropriate q-Virasoro constraints for the rABJ model we need
to find a generalization of the difference operator Dm in (2.21) which acts both on
the xi variables and on the ya variables. The fact that these two sets of variables have
different couplings q and t−1, respectively, suggests that their shifts should also be
different. By using the symmetry under the exchange of xi ↔ ya and q ↔ t−1 we
are lead to define the operators

Dm f (x, y) =
N
∑

i=1

Dq,xi

[

q−m
2 xm+1

i Ai (x, y; q−1, t−1) f (x, y)
]

+
M
∑

a=1

Dt−1,ya

[

t
m
2 ym+1

a Ba(x, y; q−1, t−1) f (x, y)
]

(3.8)

where

Ai (x, y; q, t) =
∏

j �=i

t xi − x j
xi − x j

M
∏

a=1

ya − √
t/qxi

ya − q
√
t/qxi

(3.9)

Ba(x, y; q, t) =
∏

b �=a

q−1ya − yb
ya − yb

N
∏

i=1

xi − √
t/qya

xi − t−1
√
t/qya

(3.10)

We now show that this are the correct difference operators to derive the rABJ general-
ization of the q-Virasoro constraints. First, we observe that the functions Ai (x, y; q, t)
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and Ba(x, y; q, t) satisfy

�q,t (x, y)
−1Tq,xi�q,t (x, y) = qMt−(N−1)Ai (x, y; q, t)

[

Tq,xi Ai (x, y; q−1, t−1)
]−1

(3.11)

and

�q,t (x, y)
−1Tt−1,ya�q,t (x, y) = t−NqM−1Ba(x, y; q, t)

[

Tt−1,ya Ba(x, y; q−1, t−1)
]−1

(3.12)

With some straightforward algebraic manipulations we can rewrite the constraints as

〈

D
V
m�(x, y, t; q, t)

〉

= 0 (3.13)

where

D
V
m = 1

1 − q

[

N
∑

i=1

(q− 1
2 xi )

m Ai (x, y; q−1, t−1)

− qM+1t−(N−1)
N
∑

i=1

(

q
1
2 xi
)m

eV (x,y)−Tq,xi V (x,y) Ai (x, y; q, t)Tq,xi

]

+ 1

1 − t−1

[

M
∑

a=1

(t
1
2 ya)

mBa(x, y; q−1, t−1)

− t−(N+1)qM−1
M
∑

a=1

(t−
1
2 ya)

m eV (x,y)−Tt−1,ya
V (x,y) Ba(x, y; q, t)Tt−1,ya

]

(3.14)

which reduces to (2.25) when M = 0. One should also notice that for m = 0 and
V (x, y) constant under xi → qxi and ya → t−1ya , the operator DV

0 can be written in
terms of the deformed Macdonald–Ruijsenaars operator of [45].

The last step of the derivation consists in computing the formal adjoint of the
operators DV

m using (3.5), and we find

(DV
m )⊥ =

∮

|z|=1

d z

2π i z
z−m 1

(1 − q)(1 − t−1)

⎧

⎨

⎩

1 − qM t−N exp

⎛

⎝

∞
∑

n=1

(zq− 1
2 )n

n
(1 − tn )t⊥n

⎞

⎠

+ prz

⎡

⎣1 − q−MtN exp

⎛

⎝−
∞
∑

n=1

(q
1
2 z)−n

n
(1 − tn )tn

⎞

⎠ exp

⎛

⎝

∞
∑

n=1

(q
1
2 z)n

n
(1 − t−n )t⊥n

⎞

⎠

⎤

⎦

⎫

⎬

⎭

(3.15)

so that the constraints become

(DV
m)⊥Z rABJ

N ,M (t; q, t) = 0, m ≥ 1 (3.16)
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A couple of observations are in order. First, we remark that the operator in (3.15)
can formally be obtained from (2.28) via the substitution

N �→ Neff := N − 1
β
M (3.17)

so that we can use the q-Virasoro constraints to argue that there exists an equivalence
between rABJ theory for the super-group U (N |M) and rCS for U (N − 1

β
M). The

precise statement of this equivalence is given by the identity

Z rABJ
N ,M (t; q, t)

Z rABJ
N ,M (0; q, t)

=
Z rCS
N− 1

β
M

(t; q, t)

Z rCS
N− 1

β
M

(0; q, t)
(3.18)

between normalized rCS and rABJ generating functions. Because the q-Virasoro con-
straints in rCS are completely solvable (up to overall normalization), it follows that the
rABJ generating function is also uniquely defined by q-Virasoro. Moreover, because
the operators (3.15) and (2.28) coincide up to redefinition of the rank, it follows that
they satisfy the same algebraic relations, i.e. those given by the q-Virasoro algebra.

As a second observation we can ask the following question: given some specific
values of β and Neff , are there two integers N , M such that Neff = N − 1

β
M? If

this is the case, then we can use the correspondence in (3.18) to define rCS theory
for non-integer rank Neff (which does not make sense as an honest matrix model) by
instead computing the generating function of rABJ theory with integer ranks N , M as
in the r.h.s. of (3.17).

We will now provide a full answer to this question in the case that β ∈ Q. Let β
= − ε2

ε1
where ε1, ε2 ∈ Z and we can assume without loss of generality that

gcd(ε1, ε2) = 1. We want to find N , M ∈ Z such that

Neff = N + ε1

ε2
M (3.19)

If Neff ∈ Z we can just take N = Neff and M = 0. If Neff is not integer then the
previous equation implies that it must be a rational number. We can then assume that
Neff = a

b for some coprime integers a, b. With these assumptions the equation we
need to solve becomes

bε2N + bε1M = aε2 (3.20)

This linear Diophantine equation admits an integer solution iff there exists an integer
e such that

eb = aε2 ⇔ Neff = a

b
= e

ε2
(3.21)
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If Neff has this specific form, then we can use Bézout’s lemma to find two integers
n,m that solve the equation

ε2n + ε1m = 1 (3.22)

It then follows that

Neff = e

ε2
= e

ε2n + ε1m

ε2
= (en) − 1

β
(em) (3.23)

therefore we can take N = en and M = em as integer solutions to the problem.
As a final remark, we observe that the choice of rational β has a physical inter-

pretation in terms of Virasoro minimal models. More precisely, the Virasoro central
charge of a minimal model is parametrized by two integers ε1, ε2 as

cε1,ε2 = 1 + 6
(ε1 + ε2)

2

ε1ε2
= 1 − 6

(

√

β − 1√
β

)2

(3.24)

This suggests that there might be a connection between rABJ theories at rational β and
Virasoro minimal models, or rather their q-deformations, which could be explained
by the BPS/CFT correspondence.

3.2 Langlands duality

The “quantum q-geometric” Langlands duality observed for the rCS matrix model
generalizes7 to the case of refined ABJ, where the action of the involution Lω is much
more obvious in that it now exchanges the degrees of freedom {xi }with the {ya}while
also exchanging q ↔ t−1 as well as N ↔ M . More specifically, by using

Lω(tn) = − 1 − tn

1 − qn
p

n
2 tn

Lω(pn(x, y)) = − 1 − tn

1 − qn
p

n
2 pn(x, y)

(3.25)

we observe that not just the operatorsDV
m and its adjoint are manifestly invariant under

Lω but also the actual generating function in (3.6),

Lω
(

Z rABJ
N ,M (t; q, t)

)

= Z rABJ
M,N (Lω(t); t−1, q−1) = Z rABJ

N ,M (t; q, t) (3.26)

where the first equality follows from the definition of the involution Lω while the
second equality follows from the definition of the generating function Z rABJ

N ,M (t; q, t).
Notice that this is not the case for the generating function of rCS, where the symmetry

7 To the best of our knowledge there is no interpretation of Langlands duality for super-CS theories in
terms of level-rank duality.
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is not manifest at the level of the integral but it becomes so only when the q-Virasoro
solution is normalized by the partition function.

Moreover, we can use this improved understanding of Langlands duality in rABJ
theory to explain the action of Lω in rCS. To do so, we use the identification (3.7) to
which we apply Lω to obtain

Lω

(

Z rCS
N (t; q, t)

Z rCS
N (0; q, t)

)

= Lω

(

Z rABJ
N ,0 (t; q, t)

Z rABJ
N ,0 (0; q, t)

)

= Z rABJ
0,N (Lω(t); t−1, q−1)

Z rABJ
0,N (0; t−1, q−1)

= Z rCS−βN (Lω(t); t−1, q−1)

Z rCS−βN (0; t−1, q−1)
(3.27)

where in the last equality we used (3.18). This provides a better explanation for the
transformation rule of the rCS matrix model.

3.3 Averages of super-Macdonald polynomials

Similarly to the case of rCS, we can study superintegrability of characters for rABJ
theory. If we regard rABJ as the super-group version of rCS we can in principle
consider expectation values of any irreducible character ofU (N |M). These correspond
to insertions of unknot Wilson loop in irreducible representations of the super-group,
and these were already considered in [43, 46] for the unrefined case. There it was
argued that on S3 theU (N |M) theory can be Higgsed down toU (N − M) so that the
expectation value of a Wilson loop labeled by a maximally atypical representation of
the super-group is equal to the expectation value of the correspondingWilson loop for
the bosonic theory at the effective rank N −M . We argue that this symmetry breaking
phenomenon should admit a refinement which is the physical manifestation of the
correspondence in (3.18).

In this paper we do not consider arbitrary irreducible representations of U (N |M),
but we restrict to those whose characters can be written as polynomial combinations of
the deformed power-sums in (3.3). These characters belong to the ring of symmetric
function in the variables {xi } and {ya}, which is known to be generated by a basis of
super-Macdonald polynomials SMcdPλ(x, y) defined in [41, 44]. These polynomials
are obtained from the usual Macdonald functions by specializing the power-sums pn
to the deformed power-sums pn(x, y), i.e.,

SMcdPλ(x, y) = McdPλ ({pn = pn(x, y)}) (3.28)

Now, using that

〈pn(x, y)〉 = t⊥n Z rABJ
N ,M (t, q, t)|t=0 (3.29)
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we can immediately generalize the superintegrability formula (2.32) by substituting
the rank N with the effective rank N − 1

β
M to give

〈SMcdPλ(x, y)〉
〈1〉 =

McdPλ

({

pn = −(−pq
1
2 r t N q−M )n

1−tn

})

McdPλ

({

pn = 1
1−tn

})

× McdPλ

({

pn = 1 − tnNq−nM

1 − tn

})

(3.30)

The rABJ generating function admits a similar character expansion to that in (2.39);
therefore, knowledge of the expectation value of Super-Macdonald polynomials
implies full knowledge of the function Z rABJ

N ,M (t; q, t).

4 Conclusions and discussion

In this paper we considered matrix models for a refinement of CS theory and ABJ
theory and we showed that there is an action of the q-Virasoro algebra on their gen-
erating functions of observables. Moreover, we argued that the condition that such
generating functions are annihilated by all positive q-Virasoro generators provides an
infinite set of homogeneous constraints which admit a unique solution in the space of
formal power series in higher times. We derived such solutions both by recursion on
the correlation functions and also as character expansion formulas in terms of Mac-
donald averages. Our methods provide an alternative point of view on the results of [2,
11] for rCS while they give new interesting predictions for the less-studied refinement
of ABJ theory (and ABJM when N = M).

Here we list some related questions and future research directions.

• The first and perhaps most obvious question one can ask is whether the results of
this paper can be extended to the case of CS theory in the presence of matter fields.
In the series of papers [8, 14, 47] the case of 3dN = 2 Yang-Mills with an adjoint
matter field and N f fundamental (anti-)chirals was considered and q-Virasoro
constraints were derived and solved. However, a strong technical requirement for
the complete solvability of the equations was that the effective CS level be set to
zero. In the present paper the situation is somewhat reversed in the sense that the
level can be chosen arbitrarily but there are no matter fields. It is not clear to us
if these are just some technical difficulties or whether there is a deeper relation
between uniqueness of the solution of the constraints and the specific choice of
parameters and field content of the 3d gauge theory.

• Another natural extension of our results would be that of considering q-Virasoro
constraints in matrix models for more general knots, such as the torus knot matrix
models. Even though the approach of [2, 11] using the explicit form of the
Kac–Peterson modular matrices has been successful in computing refined knot
invariants for torus knots, it is still not clear how to write down a refined matrix
model in that case. We leave the investigation of q-Virasoro for torus knots matrix
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models for future projects, however we do make some remarks of the relation
between torus knot invariants and unknot invariants in “Appendix B”, alas, for the
unrefined case.

• In [48] an elliptic deformation of the fusion ring of ŝu(N )k was introduced and
the corresponding elliptic deformations of the modular S and T matrices were
also computed. This deformation is known to reproduce trigonometric/Macdonald
deformation when the elliptic parameter is set to zero. It would be interesting to
investigate whether there exists an elliptic Virasoro [49] version of the constraints
for the corresponding elliptic deformation of CS matrix model and whether those
constraints are uniquely solvable as in the case of the present paper.

• Finally, a central question raised by our results is whether there exists a wider
class of potentials V (x) such that the q-Virasoro constraints can be solved fully
and uniquely in terms of correlators or averages of characters. Namely, in [8, 14]

it was shown that potentials of the form V (x) = ∑N f
k=1 Li2(ukx; q) satisfying

eV (x)−V (qx) =
N f
∏

k=1

(1 − ukx)
−1

lead to a full solution of the constraints for N f = 1, 2, where N f is the step of the
recursion. For higher N f it was shown that the constraints cannot fix all correlators
but only a subset and that the remaining correlators do depend on additional non-
canonical choices of initial data for the recursion. In this paper we instead argue
that there is another potential which also leads to constraints that have a unique
solution only depending on a choice of normalization. The q-shift transformation

of the rCS potential V (x) = log2 x
2 log q is

eV (x)−V (qx) = q− 1
2 x−1

and it induces a recursion of step 1. It appears from this discussion that whenever

eV (x)−V (qx) = (polynomial in x of degree d)−1

then the q-Virasoro constraints can be written as recursion relations between cor-
relators of order m and correlators of order m − d, which appear to be uniquely
solvable only for d = 1 and d = 2. It is not clear to us whether these are the only
cases for which the solution of the constraints is unique.
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Appendix A: Symmetric functions

For completeness we collect some basic notions on the theory of symmetric functions.
See [17] for more details and proofs of the statements in this section.

We start by recalling some definitions about partitions. An integer partition λ is a
sequence of non-increasing integer numbers

λ = [λ1, λ2, . . . ] (A.1)

with a finite number of nonzero terms. We denote by �(λ) the length of the partition,
defined as

�(λ) = Card{ j : λ j �= 0} (A.2)

and we denote |λ| the weight or size or degree of the partition,

|λ| =
∑

i≥1

λi (A.3)

and we say that λ � n if |λ| = n. The conjugate partition to λ is denoted by λ′. For
later convenience we also introduce the staircase partition δ defined as

δ = [N − 1, N − 2, . . . , 1, 0] (A.4)

WedefineAut(λ) as the group of automorphisms of a given partition, and its cardinality
can be computed as

|Aut(λ)| =
∏

i≥1

Card{ j : λ j = i}! (A.5)

It is also useful to define the function

zλ = |Aut(λ)|
∏

i≥1

λi (A.6)

Additionally we define a scalar product on partitions as

λ · μ =
∑

i≥1

λi μi (A.7)
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Symmetric functions are elements of the ring � defined as the inverse limit of the
graded ring �N = Q[x1, . . . , xN ]SN of symmetric polynomials in N variables with
respect to the projections�M → �N for M ≥ N . The ring� has many bases, among
which the elementary symmetric functions en , the complete homogeneous symmet-
ric functions hn , the power-sums symmetric functions pn and the Schur symmetric
functions Schurλ. Upon defining the power-sums as

pn =
∑

i≥1

xni , pλ =
∏

i≥1

pλi (A.8)

we can obtain all other basis via polynomial combinations, e.g.,

hm =
∑

λ�m
z−1
λ pλ, em =

∑

λ�m
(−1)�(λ)z−1

λ pλ (A.9)

Schurλ = det
1≤i, j≤�(λ)

[

hλi−i+ j
]

(A.10)

Moreover, there exists an inner product on symmetric functions definedby the relations

(pλ, pμ) = zλδλμ (A.11)

or equivalently

(Schurλ,Schurμ) = δλμ (A.12)

Let �q,t = � ⊗ Fq,t with Fq,t the field of rational functions in q and t . Then there
exists a deformed inner product defined by

(pλ, pμ)q,t = zλ(q, t)δλμ, zλ(q, t) = zλ
∏

i≥1

1 − qλi

1 − tλi
(A.13)

Macdonald functions are defined as the q, t-deformation of Schur symmetric functions
which are orthogonal w.r.t. the inner product (·, ·)q,t . More precisely, there are two
dual basis of Macdonald functions, McdPλ and McdQμ with

(McdPλ,McdQμ)q,t = δλμ (A.14)

where McdPλ and McdQλ are related by

McdPλ

∏

(i, j)∈λ

(1 − qλi− j tλ
′
j−i+1

) = McdQμ

∏

(i, j)∈λ

(1 − qλi− j+1tλ
′
j−i

) (A.15)

so that they are essentially the same symmetric function up to an overall combinatorial
factor of q and t .

For f ∈ �q,t weuse the plethystic notation f ({pn}) to indicate that it is a symmetric
function written as a polynomial in the power-sums, while we use the notation f (x) ≡
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f (x1, x2, . . . ) to indicate that it is an actual symmetric polynomial in the variables
{xi }.

Given two sets of independent variables {xi } and {y j }, one defines the Macdonald
reproducing kernel

�(x, y; q, t) =
∏

i, j

(t xi y j ; q)∞
(xi y j ; q)∞

(A.16)

then one can rewrite the kernel in the following equivalent ways

�(x, y; q, t) = exp

( ∞
∑

n=1

pn(x)pn(y)

n

1 − tn

1 − qn

)

=
∑

λ

zλ(q, t)−1 pλ(x)pλ(y)

=
∑

λ

McdPλ(x)McdQλ(y)

(A.17)

which is the celebrated Cauchy–Littlewood identity for Macdonald functions.

Appendix B: Remarks on torus knots

In the main part of the paper we considered matrix models for unknot Wilson loops.
In this section we provide some remarks for the case of torus knots. This is the only
other class of knots for which a matrix model description has been derived [50–53],
unfortunately no refinement of this matrix model has been worked out yet. The general
expectation is that there should be a matrix model computing knot polynomials for
any kind of knot, and perhaps each of such matrix model should admit a refinement.

It would be interesting to ask whether there exists a q-Virasoro action on the gen-
erating function of Wilson loop expectation values in all of these matrix models.8 For
the case of torus knots matrix models the q-difference operator in (2.21) at t = q does
not seem to give rise to recursion equations that can be solved uniquely. A more subtle
modification of that operator is needed andwe leave that for future investigations. Here
we make some observations on how to employ the solution to q-Virasoro constraints
derived in sect. 2.3 to make predictions about torus knots expectation values.

The (P, Q)-torus knot generating function is

Z (P,Q)
N (t; q) = (PQ)N

N !
∫

R
N+

�(x P )�(xQ)

N
∏

i=1

exp

[

−PQ
log2 xi
2 log q

+ ν log xi +
∞
∑

n=1

xnPQ
i tn
n

]

dxi (B.1)

8 See [54] for earlier attempts of using classical Virasoro constraints to compute correlators in unrefined
torus knot matrix models.
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where P, Q are positive integers defining the knot and

�(x) =
∏

i< j

(xi − x j ) = det
1≤i, j≤N

[xδ j
i ] (B.2)

is the Vandermonde determinant (with δ as in (A.4)). Using the identity

�(xY )

�(x)
= det1≤i, j≤N [xδ j+(Y−1)δ j

i ]
det1≤i, j≤N [xδ j

i ]
= Schur(Y−1)δ(x), Y = P, Q (B.3)

which follows from Weyl’s character formula for Schur polynomials, we can write

Z (P,Q)
N (t; q) = (PQ)N

N !
∫

R
N+

N
∏

i=1

dxi |�(x)|2 Schur(P−1)δ(x)Schur(Q−1)δ(x)

×
N
∏

i=1

exp

[

−PQ
log2 xi
2 log q

+ ν log xi +
∞
∑

n=1

xnPQ
i tn
n

]

= (PQ)N Schur(P−1)δ({u⊥
n })Schur(Q−1)δ({u⊥

n }) ZCS
N (u; q 1

PQ )

∣

∣

∣

un=PQδn|PQtn/PQ

(B.4)

where in the last line we rewrote the torus knot generating function as the action of
two adjoint Schur polynomials on the generating function of (unrefined) CS matrix

model at the coupling q
1
PQ . The times of the two generating functions are identified

using the fact that

∞
∑

n=1

xnPQ
i tn
n

=
∞
∑

n=1

xni
n

(PQδn|PQtn/PQ) (B.5)

where δn|PQ is 1 if n is a multiple of PQ and 0 otherwise.

Since q-Virasoro constraints give a full solution for ZCS
N (u; q 1

PQ ), then we also

have a combinatorially explicit way to compute Z (P,Q)
N (t; q) just by acting with an

appropriate differential operator of finite degree in times.
While it is tempting to conjecture the form of refined CS matrix model for torus

knots by deforming Schur polynomials in (B.4) to Macdonald polynomials, we must
observe that the identity (B.3) does not generalize to theMacdonald level and therefore
some other techniques are required in order to treat the refined model.
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Appendix C: Convergence issues in ABJ theories and validity of for-
mula (3.30)

The rABJ generating function is defined by the matrix integral

Z rABJ
N ,M (q, t) = 1

N !M !
∫

R
N+M+

�q,t (x, y) e
−V (x,y)

N
∏

i=1

d xi

M
∏

a=1

d ya (C.1)

As it stands the integral is not convergent over the domain of integration R
N+M+

because of vanishing terms (xi − √
t/q ya) and (ya − √

t/q xi ) in the denominator
of the function �q,t (x, y). A prescription therefore needs to be given to specify how
to avoid such divergencies and make the integral well-defined. Analytical issues in
q, t-deformed matrix integrals are usually hard to study, for this reason we restrict
ourselves to the unrefined case t = q. This simplified version of the theory is already
complex enough that we can use it as a toy model to explain the role of analytics in
the definitions of the theory. The matrix integral then simplifies to

ZABJ
N ,M = (−1)(

N+M
2 )

N !M !
∮

C

∏

i< j (xi − x j )2
∏

a<b(ya − yb)2
∏

i,a(xi − ya)2

e−∑

i V (xi )+∑a V (ya)
N
∏

i=1

d xi

M
∏

a=1

d ya (C.2)

where C is a contour to be determined and

V (z) = log2 z

2 log q
− ν log z (C.3)

Clearly, the choice of contour C depends on the behavior of the potential V (z) but
also on the poles in the denominator of the Cauchy determinant. Finding a contour
compatible with a given choice of potential is not too hard however dealing with the
poles can be subtle. For this reason we will assume that V (z) is a generic potential for
which a prescription for a contour C exists and we study how to modify such contour
in such a way to avoid the poles while keeping the integral convergent.

In order to avoid divergencies along the contour C there are a couple of possibilities.
One possibility is to regularize the divergent integral by cutting out a small region of
the integration domain around the singularity. This type of regularization introduces
boundaries in the integration domain which in turn are known to give rise to boundary
terms in the (q-)Virasoro constraints [55]. Since, the constraint equations are no longer
homogeneous one cannot expect the solution found in Sect. 3 to apply to this case.
For this reason this type if regularization is not well-suited to our discussion.

Another possibility is to deform the original contour to some middle dimensional
locus in C

N+M which picks up some of the poles in the integrand according to some
prescription.
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Example C.1 Consider U (N + 1|1) ABJ-like partition function

ZABJ
N+1,1 = (−1)(

N+2
2 )

(N + 1)!
∮

C

∏

i< j (xi − x j )2
∏

i (xi − y)2
e−∑N+1

i=1 V (xi )+V (y)
N+1
∏

i=1

d xi d y (C.4)

with C defined in the following way: The integrals are ordered in such a way that we
first take the residue at y = xN+1, then the residue at xN+1 = x1 and then all the
other integrations in the variables x1, . . . , xN along some contour C′ which is middle-
dimensional in C

N . The y and xN+1 integrations can be carried out independently
from all the others by using the identity

∮

xN+1=x1

d xN+1

2π i

∮

y=xN+1

d y

2π i

∏

1≤i< j≤N+1(xi − x j )2
∏N+1

i=1 (xi − y)2
e−∑N+1

i=1 V (xi )+V (y)

=
∮

xN+1=x1

d xN+1

2π i

(

V ′(xN+1) − 2
N
∑

i=1

1

(xN+1 − xi )

)

∏

1≤i< j≤N

(xi − x j )
2 e−∑N

i=1 V (xi )

= −2
∏

1≤i< j≤N

(xi − x j )
2 e−∑N

i=1 V (xi ) (C.5)

hence

ZABJ
N+1,1 = −2(2π i)2

(−1)(
N+2
2 )

(N + 1)!
∮

C′

∏

1≤i< j≤N

(xi − x j )
2 e−∑N

i=1 V (xi )
N
∏

i=1

d xi

= 2
(2π i)2

N + 1
ZABJ
N ,0 (C.6)

which we recognize as the Hermitian matrix model partition function in rank N . Here
C′ can be chosen as usual by analyzing the potential V (x), e.g., for V (x) = x2/2 we
can just take C′ = R

N .

The argument in the previous example can be generalized to any U (N |M) and it
provides evidence that indeed there is an equivalence with the bosonic matrix model
forU (N−M) as argued in Sect. 3 via q-Virasoro constraints. This correspondencewas
already noticed in [55, 56] where classical Virasoro constraints were used to provide a
proof of the equivalence of the supersymmetric and bosonic Gaussian matrix models.

In [57] it was argued that this correspondence holds true at the “perturbative”
level in the large Neff limit however it should break down at finite Neff due to “non-
perturbative” corrections. More explicitly, it was argued that the correlation functions
of certain operators that vanish identically in the U (N − M) model, do not vanish in
the U (N |M) dual, but rather they are of order O(e−aNeff ). In the following we will
show that the argument of [57] does not apply to the integrals of the type (C.2) when
the contour C is appropriately defined.
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For concreteness we consider the case of the duality between U (N + 1|1) and
U (N ). The operators considered in [57] are multiples of the function

eN+1(x1, . . . , xN ) (C.7)

which is identically zero in the U (N ) theory by the definition of the elementary
symmetric functions (ek(x1, . . . , xN ) = 0 for k > N ). Clearly, its matrix model
expectation value will also be zero. The duality then implies that

〈

seN+1(x1, . . . , xN+1, y)
〉

U (N+1|1) = (const.) × 〈

eN+1(x1, . . . , xN )
〉

U (N )
= 0 (C.8)

where, similarly to (3.28), seN+1 is the supersymmetric version of eN+1,

seN+1(x1, . . . , xN+1, y) ≡ eN+1 ({pn = pn(x, y)}) =
N+1
∏

i=1

(xi − y) (C.9)

Therefore, we need to show that even though eN+1(x1, . . . , xN+1, y) is generically
not zero, its expectation value is indeed zero. By definition, we can compute the
expectation value as

〈

N+1
∏

i=1

(xi − y)

〉

U (N+1|1)

= (−1)(
N+2
2 )

(N + 1)!
∮

C

∏

i< j (xi − x j )2
∏

i (xi − y)
e−∑N+1

i=1 V (xi )+V (y)
N+1
∏

i=1

d xi d y (C.10)

where we notice that the insertion reduces the degree of all the poles. Then, because
of our choice of contour C as in Example C.1 the integral vanishes. Observe that any
other contour prescription will pick up some of the poles in the denominator of the
measure, so that the argument still applies.

Similarly, we argue that insertions of seN+1(x1, . . . , xN+1, y)2 also must vanish.
The expectation value is given by

〈

N+1
∏

i=1

(xi − y)2
〉

U (N+1|1)
= (−1)(

N+2
2 )

(N + 1)!
∮

C′∪{xN+1=x1}

N+1
∏

i=1

d xi
∏

i< j

(xi − x j )
2

× e−∑N+1
i=1 V (xi )

∮

y=xN+1

eV (y) d y (C.11)

so that the integral factorizes into two Hermitian integrals of rank N + 1 and 1,
respectively, and naively onewould say that the expectation value is nonzero; however,
upon closer inspection one realizes that the residues in y and in xN+1 both give
zero because the poles that they were previously picking up have been canceled by
the insertion of the operator se2N+1. This concludes our proof and shows that the
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correspondence between U (N |M) and U (N − M) matrix models holds exactly and
not just “perturbatively” once a prescription for the choice of contour is given.

A thorough analysis of the refined case is beyond the scope of this paper; how-
ever, we expect that the general ideas outlined in this section will still hold. It then
follows that the formula in (3.30) is to be regarded as exact and does not receive
non-perturbative corrections provided that the integral is appropriately regularized.
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