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Abstract. In recentyears,researchershave reformulatedSTRIPS plan-

ning problems as SAT problems or CSPs. In thispaper,we discussthe

Constraint-BasedIntervalPlanning(CBIP) paradigm,which can repre-

sent planning problems incorporatingintervaltime and resottrces.We
describehow to reformulatemutual exclusionconstraintsfora CBIP-

based system,the ExtendibleUniform Remote OperationsPlannerAr-

chitecture(EUROPA). We show thatreformulationsinvolvingdynamic

variabledomains restrictthe algorithmswhich can be used tosolvethe

resultingDCSP. We presentan alternativeformulationwhich does not

employ dynamic domains,and describetherelativemeritsofthedifferent
reformulations.

1 Introduction

In recent years, researchers have investigated the reformulation of planning prob-
lems as constraint satisfaction problems (CSPs) in an attempt to use powerful

algorithms for constraint satisfaction to find plans more efficiently. Typically,

each CSP represents the problem of finding a plan with a fi.'_ed number of steps.

A solution to the CSP can be mapped back to a plan; if no solution exists,

the number of steps permitted in the plan is increased and a new CSP is gen-

erated. SATPlan [SK96] mapped planning problems in the STRIPS formalism

into Boolean Satisfiability (SAT) problems. Early versions required hand-crafted

translation of each planning domain in order to achieve good problem solving

performance; later, automated translation of arbitrary STRIPS domains into

SAT problems achieved good performance as well [ME97]. Graphplan [BF97]

works on STRIPS domains by creating a plan graph which represents the set of

propositions which can be achieved after a number of steps along with mutual

exclusion relationships between propositions and actions. This structure is then

searched for a plan which achieves the goals from the initial condition. While

the original algorithm performed backward search, the plan graph can also be

transformed into a CSP which can be solved by any CSP algorithm [DK00].
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A second growing trend in planning is the extension of planning systems to

reason about both time and resources. STRIPS is simply not expressive enough

to represent more realistic planning problems. This demand for increased sophis-
tication has led to the need for more powerful techniques to reason about time

and resources during planning. The scheduling community has used constraint

satisfaction techniques to perform this sort of reasoning. Coupled with the suc-

cesses achieved by reformulating STRIPS problems, this provides incentives to

consider reformulating more complex planning domains as CSPs.

There have been several efforts to create planners which reason about time

and resources, and many such planners employ an underlying constraint reason-

ing system to manage complex constraints during planning. These planners use

interval representations of time and often use constraint systems to manage tem-

poral and resource constraints; (SFJ00] refers to systems like these as Constraint-

Based Interval Planners (CBIPs). ZENO [Pen93] and Descartes [Jos96] are im-

portant examples of such planners; unfortunately, space limitations prohibit us

from doing more than mentioning these efforts. HSTS [Mus94] employs an inter-

val representation of time and permits arbitrary constraints on the parameters of

actions. Temporal constraints and parameter constraints are reformulated as a

DCSP. At each stage in planning, the DCSP is made arc consistent, and inconsis-

tencies result in pruning. HSTS also adds the notions of attributes and timelines.

An attribute is a subsystem or component of a planning domain; timelines repre-

sent sequences of actions or states on attributes. Attributes permit more intuitive

modeling of planning domains, and enable the enforcement of mutual exclusion.

Finally, HSTS employs a unique, uniform representation of states and actions.

The Remote Agent Planner (RAP) [JMM+00] employs the above mechanisms

as part of the control system for the Deep Space One spacecraft in May of 1999.

The Extendible Uniform Remote Operations Planner Architecture (EUROPA)

is the successor of RAP. An important goal of EUROPA is to support a wide

variety of search algorithms. EUROPA maps the entire planning problem into

a DCSP, providing explicit variables for subgoal decisions as well as conditional

subgoaling. In addition, due to the size and complexity of non-binary constraints

used in space applications, EUROPA uses procedural constraints [J6n97, JF00]

to represent the underlying DCSP.

Much of the reformulation of a CBIP-based planning problem as a DCSP
is straightforward. The temporal components in the plan can often be repre-

sented as a Simple Temporal Network [DMP91], and complex constraints such
as resource constraints can be imple/nented as procedural constraints [J6n97].

Disjunctions can be modeled directly by variables whose domains represent the

possible choices, as is done in EUROPA. However, the addition of mutual exclu-

sion complicates the task of reformulating CBIP domains. The obvious way of

enforcing the mutual exclusion constraints leads to a DCSP representation using

dynamic variable domains. This representation makes reasoning about no-goods

quite difficult: since many important enhancements to search algorithms depend

on no-good reasoning, this is a serious drawback. In this paper we first describe

the CBIP paradigm and EUROPA, then describe how introducing mutual ex-



clusion leads to these complications. We then show how to represent mutual

exclusion constraints as a DCSP without dynamic domains. Finally, we discuss

the impact of this representation on algorithms to solve the resulting DCSP.

2 Constraint-Based Interval Planning

The Constralnt-Based Interval Planning (CBIP) framework is based on an in-

terval representation of time. A predicate is a uniform representation of actions

and states, and an interval is the period during which a predicate holds. A token

is used to represent a predicate which holds during an interval. Each token is

defined by the start, end and duration of the interval it occurs, as well as other

parameters which further elaborate on the predicate. For instance, a thrus_:

predicate may have a parameter describing the thrust level, which can be either

:l.ov, medium or high. The planning domain is described by planning schemata

which specie, for each token, other tokens that must exist (e.g. pre and post

conditions), and how the tokens are related to each other. Figure 1 shows an

example of a planning schema. Schemata can specify conditional effects and

disjunctions of required tokens. For instance in Figure 1, a thrust interval can

be met by a short warmup period if the engine is already warm, or a longer

one if not. "variables representing the disjunctions are parameters of tokens, and

thus are DCSP variables. This is shown in Figure i, as the value of the ?temp

variable indicates the duration of the warmup token which precedes the _:hrus_

token. Planning schemata can also include constraints on the parameters of the

token. As shown in Figure 1, the thrust interval has a constraint relating the
thrust level, available fuel, and the duration.

• i

Fig. 1. The planning schema for a thrust interval. This schema consists of four com-
ponents: the master token of the schema, constraints on the parameters of the schema,
a description of other tokens which must exist when the master token is in the plan,
and a disjunction of tokens which may exist when the master token is in the plan.

EUROPA is a CBIP planning paradigm which continuously reformulates the

planning problem as a DCSP problem. This is done by mapping each partial

plan to a CSP. The temporal constraints form a Simple Temporal Network,



which can be efficientlysolved [DMP91], while the restof the constraintsform

a general,non-binary CSP representedby proceduralconstraints[JF00].Figure

2 shows a small partialplan and itsinduced CSP. Assignments of variablesin

the CSP correspond eitherto the adding of new plan steps,or the assignment

of parameters of plan steps.As steps are added to or removed from the plan,

the CSP isupdated to reflectthe currentpartialplan.For example, in Figure

i,adding the thrust:step to the plan requiresadding severalnew variablesand

constraintsto the CSP. At any time,ifthe CSP isinconsistent,then the partial

plan itrepresentsisinvalid;ifa solutionisfound to the CSP, then that solution

can be mapped back to a plan which solvesthe problem. The advantage ofsuch

a representationisthat any algorithm which solvesDCSPs can be used to solve

the planning problem.

Fig.2. A partialplan and itsDCSP representation.The partialplan consistsof 2

tokens,shown at the top of the figure.The DCSP variablesare in rounded boxes.

Edges between DCSP variablesarelabeledwith theconstraintson thosevariables.

3 Timelines in EUROPA: Square Tokens and Round

Slots

EUROPA represents attributes of planning domains using timelines. Timelines

are ordered sequences of token equivalence classes, which represent how an at-

tribute changes during the course of a plan. This adds powerful constraints to

the planning problem, which make it possible to eliminate a large number of
candidate solutions. Also, the specification of planning domains is more natural

than in languages such as STRIPS. However, the planning domain must now

specify which tokens can appear on which timeline; this requires a more sophis-
ticated domain model. The planner framework must also contain a mechanism

for enforcing mutual exclusions.

Adding an action to a plan requires inserting a token onto a timeline. A
slotisa legalplace on a tirnelinewhere a token can be inserted.Tokens can

only be insertedinto singleslots;they can't span multiple slots.Each token

equivalenceclassdefinesa fullslot,and thereisan empty slotbetween each pair



of sequential token equivalence cla_ses. When a token is inserted into an empty

slot, new empty slots are created before and after the token. However, when

a tokm_ is inserted onto a full slot, no new slots are created. Instead, the start

timepoint and end tlmepoint of the new token are equated with the timepoints of

the tokens defining the slot, and all the parameters are equated to the parameters
of the tokens on the slot.

Timelines enforce mutual exclusion among tokens with different predicates.

This models the notion of an attribute maintaining only one state at a time,

such as a unit resource which can only be used by a single task at once in a

scheduling problem. Timelines enforce a partial order among tokens; either a

token is strictly before or strictly after another token, or it occupies exactly the

same interval (or slot) as another token, which is another way of saying that
the two tokens specify the same action or state. This ensures that incompatible

actions are not permitted to overlap on the same timeline.

4 Representing Mutual Exclusion in EUROPA

The description of timelines leads to a natural representation of mutual exclu-

sion constraints in EUROPA. Each token insertion decision is represented by a

variable. The domain of this variable is the set of slots on a fimeline. Notice,

however, that this domain is dynamic, as the set of available slots changes as

new tokens are inserted onto timeIines. If search were guaranteed to proceed

chronologically, the search algorithm could simply store the previous domains

for the slots. However, EUROPA is designed to support many search algorithms,

including non-chronological algorithms. This means that timelines can change in

arbitrarily complex ways as the search for a plan proceeds. Identifying an arbi-

trary slot as one which occurred in a previous plan state would require saving all

intermediate plan states, as well as performing expensive matching operations.

This means that new labels for slots must be generated as timelines evolve.

While tokens can nominally be inserted into any slot on a timeline, in practice

there are usually very few options which do not immediately lead to a constraint

•violation• For instance, some slots may be occupied by tokens with incompatible

predicates, while other slots may simply be too small (such as slots of zero

duration between adjacent tokens on a timeline). Lookahead mechanisms can

rapidly reduce the set of candidate slots. There are a number of possible ways

to implement this lookahead; checking predicates is inexpensive, while checking

temporal constraints and parameter constraints is more expensive.

Figure 3 shows an ex_unple of how lookahead can be done. In this example, the

thrust token has a duration of between 4 and 6. Simply by checking the predicate
nantes, a look,xhead mechanism can eliminate slots I and 5. If the mechanism

checks the legal start and end times for the token, slot 4 is eliminated, because
the token must end before slot 4 begins. If the mechanism dmcks the duration

of slot 3, it would find it was too short, having a maximum duration of 3. This
leaves slots 2 as the only candidate.
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Fig.3. Checking forsuitableslots.The freethrus_ token at the leftof the figure

has a durationofbetween4 and 6,and itsstartand end timesare alsogiven.Simple
Iookaheadcan eliminateallcandidateslotsexceptslot2.Note thatslotsofzeroduration

between adjacenttokensarenot representedinthisfigure.

This representationhas some subtlebut important ramificationsforsophis-

ticatedCSP algorithms.Consider,forexample, powerfulno-good learningtech-

niques employed by algorithms such as Dynamic Backtracking [Gin93],ReISat

[BM96], and Tabu search [Gio89].A no-good issimply a combination of vari-

able assignments which cannot be part ofa solution.No-goods containingvalues

from dynamic domains are,unfortunately,"no good" when the value changes

during search.To see why, considera no-good containinga token insertiononto

an empty slot.The value representingthe empty slotwillbe eliminatedfrom the

domain of the token insertionvariableand replacedwith new valuesrepresent-

ing the new slots.Even should the token be removed later,the domain of thi.q

variablewillbe updated with new values,because of the expense of inferring

that the labelsshould be identical.Since the domain can change many times as

a successionof differenttokens are insertedintothe empty slot,no-goods using

the empty slotvaluemay not be usable,because they willnot match the current

context ifthe valuein the no-good has been replaced.

5 The Ordering Decision Representation

In this section we propose a mutual exclusion representation which uses boolean

variables to represent decisions about the order of tokens on a timeline. Recall

that timelines are an ordered list of token equivalence classes which define the

slots. In effect, the slots are a consequence of committing to one of the possible

orderings of the tokens. As we saw above, these slots are mutable, and thus

representations which depend explicitly on the identity of the slots will suffer

from the problems with dynamic domains. A representation based on ordering
decisions among tokens on the same timeline does not have this problem. As new

tokens axe added, new variables are added, but their domains are not dynamic.
We now describe the new representation in detail. When a new token A is

introduced, we create 3 boolean variables describing the relationship between

this token and each other token B: Be/(A, B), A/t(.4, B), and Eq(A, B). We
must also create a number of conditional constraintJ which relate a boolean or-

dering variable and timepoint variables for A and B. These constraints permit
information about the boolean ordering variables to affect the possible values of

the timepoints, and vice-versa. For instance, if (Be/(A, B) = T), the conditional

constraint would enforce (eA _< sB). Similarly, if (eA > sB), the conditional con-

straint would enforce (Be/(A, B) _ T). To see how the representation using



conditionalconstraintsworks,let sA,sBbethestarttimepointsof tokensA, B

respectively, and eA, ee be the end timepoints of tokens A, B respectively. To en-

force the total ordering of A and B, we use the following conditional constraints:

(Bef(A, B) = T) ::* (eA <_sB)

(.4It(.q, B) = T) _ (ea <__sA)

The case for Eq(A,B) = T is a bit more complex. Recall that tokens have

parameter variables as well as temporal variables; let a, be the i th parameter

of A and b_ be the i _ parameter of B respectively. Then we have the following
constraints:

(Eq(_4, B) = T) =_ (SA = sO)

..... ,am...... : ........ ,,, ........................ _,EqCA-R_._ T_ _ r¢_, --_ ,,_ ,. ............................................. ,.o

(Eq(A, B) = T) =_¥i(a_ = b,)

Recall that we pose these constraints between every pair of tokens on the same
time]ine.

We can exploit the fact that 0nly one of Be](A, B), Aft(A, B) and Eq(A, B)

can be true for any pair of tokens .4 and B, and post an additional XOR con-
straint between these three Variables. Recall that some tokens have incompatible

predicates. Such tokens must be totally ordered on a timeline; for these pairs, we

post the unary constraint Eq(A, B) = F. Figure 4 shows the new representation.

Fig.4. Order variablesand constraintsfortwo tokens.Variablesare representedby
ovals,constraintsarerepresentedby labeledhyper-arcs.

If we recall the lookahead mechanism described in the previous section, we see

that most of the lookahead operations are now subsumed by arc consistency. For

example, incompatible predicates are handled by the unary constraints posted

on the Eq(A, B) variables. If a slot is too early or too late, then the conditional

constraints will propagate that information to the boolean variables. The con-

ditional constraints on the Eq(A, B) variable will also result in propagation to
eliminate full slot insertions which would cause constraint violations. The only



lookaheadcheck_vhichis not immediatelyhandledbypropagationis thecheck

on the duration of empty slots. The reason is that there are no constraints in the
new formulation which mimic the duration constraints on slots. While these con-

straints could be posted, this would require inferring the location of the empty

slots from the current order of tokens, which might be costly.

There are other ways to use variables and constraints to represent the mutual

exclusion relationship, for instance using fewer variables. However, these repre-

sentations lead to less intuitive, higher arity constraints. The representation we

have chosen to discuss here has two advantages: it is relatively simple to explain,

and the conditional constraints are general procedural constraints which fit well

with the procedural constraint framework used in EUROPA.

For timelines with N tokens, there are _ pairs of tokens, and each2

pair can be ordered 3 different ways. As such, the induced search space is

3-_'_J "_. However, most of these possibilities are invalid, and can be elimi-"':

hated after little search. For instance, if token A occurs before B and B oc-

curs before C, then attempting to order A after C will quickly result in a

temporal constraint violation. We can add optional constraints among the log-

ical variables representing the ordering decisions to enable propagation which

makes this search unnecessary. Consider the logical variables for tokens A, B

and 57. There are 13 possible arrangements of the tokens; either they are to-

tally ordered (6 possibilities), 2 are equal and one comes either before or af-

terwards (6 possibilities), or all 3 are equated. We can post constraints like

Aft(A, B) A Aft(B, C) =_ Aft(A, C) to enforce the conditions on total ordering

of the tokens, Eq(A, B)a A Aft(B,C) =v Aft(A, C) to enforce conditions on

partial ordering of the tokens, and Eq( A, B) A Eq( B, C) :¢, Eq( A, C) to enforce
the conditions on all three equal. There are 13 total constraints; each time a new

token is created for a timeline, we must add 13_¢(5-1) logical constraints on the2
new logical variables.

6 Comparing Representation

The original representation requires only a single variable to represent a token

insertion decision. However, the domain for this variable is dynamic, and as we

have seen, a special lookahead mechanism is necessary to reduce the domain. A

label maintenance mechanism is also. needed to update the names of elements

of the domain as timelines evolve. Finally, this representation makes no-good

reasoning difficult, beacuse many no-goods discovered during search may use

values which are eliminated from :he domain during search. These no-goods

may not be used to best effect during search; the effort to collect these no-goods
and match them to the current state is wasted overhead.

To assess the ordering representation, consider a timeline with N tokens

inserted on it. The ordering variable representation requires _ logical
variables, N XOR constraints, and 2N(N - 1) conditional constraints on the

timepoints and the logical variables. In addition, for each pair of tokens with



identicalpredicatesandp parameters, there are p conditional constraints be-

tween the parameter variables and the boolean variables representing the deci-

sion that two tokens have been equated. [f the optional logical constraints are

added, the contribution is t_,v(N-t)(,'¢-'.,) logical constraints. The main advan-
_J

rage of the ordering variable representation is that the mutual exclusion can

be represented without using dynamic domains, so there are no problems with

using algorithms such as Dynamic Backtracking or Tabu search. The increased

search space is offset by the observation that constraint propagation limits the

options for the ordering variables, so we expect to do roughly the same amount

of search in the new representation.

One disadvantage of the new representation is that heuristic enforcement

is more complicated. Natural heuristics-for-toker_ insertion decisions are value-

orderings, based on properties of slots such as relative order on the timeline, and

_.._ .:, .... ether.'the'_l " :o " 1_, on g.._.r-ralues-.o.ft. " ._o ..... ,_ .'.... ..

' for tokens appearing eariier in the timeline, and giving priority to these variables.

7 Discussion and Future Work

Representing mutual exclusion constraints is an important component of the

EUROPA reformulation of planning as constraint satisfaction. However, mutual

exclusion reasoning complicates the automatic reformulation of planning do-

mains into DCSPs. We have discussed two representations which manage mutual

exclusion reasoning, and discussed some of the tradeoffs between these represen-

tations. Explicitly representing slots is intuitive, but results in a DCSP represen-

tation with dynamic domains, which leads to problems in using powerful CSP

techniques such as no-good reasoning. Leveraging the power of existing CSP

algorithms is a promising approach to solving planning algorithms. Our work

is aimed at providing a representation which makes powerful no-good reason-

ing approaches feasible. We have presented an alternative representation which
avoids the pitfalls of dynamic slot domains, but is more complex both in terms

of the constraint network and in the enforcement of heuristics. It is premature

to conclude that one approach is strictly superior to another.

The slot representation is one of the only instances of DCSPs employing dy-

namic domains we axe aware of in the literature. Most such work only discusses

adding and removing constraints among the same set of variables. Our observa-

tions concerning the pitfalls of no-good reasoning with the dynamic domain rep-

resentation may be a manifestation of a deeper problem with dynamic domains,

especially when values in these domains change over time. This phenomenon

should be investigated more closely, and should it prove to be a pervasive prob-



lem, it will become important to consider ways of representing these problems

without employing dynamic domains.

We would like to thank the anonymous reviewers for their comments.
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