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Abstract

In a recent issue of this journal, Holgersson et al. [11] compared the use of
dummy coding in regression analysis to the use of category-wise models
(i.e., estimating separate regression models for each group) with respect
to estimating and testing group differences in intercept and in slope. They
presented three objections against the use of dummy variables in a single
regression equation, which could be overcome by the category-wise ap-
proach. In this note, I first comment on each of these three objections
and next draw attention to some other issues in comparing these two
approaches. This commentary further clarifies the differences and simi-
larities between dummy variable and category-wise approaches.
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1 Comments on objections raised by Holgersson

et al.

1.1 Non-invariance to coding scheme

One of the objections raised by Holgersson et al. [11] states that the dummy

variable approach is not invariant with respect to the coding of zeros and ones

and therefore inferences are not invariant with respect to the choice of baseline.

Consider the following regression model:

E(Yi|Xi, Di) = β0 + β1Xi + β2Di + β3XiDi, (1.1)

where Yi (i = 1, ..., n) is a quantitative response variable, Xi is a quantitative

covariate, and Di ∈ {0, 1} is a dummy variable indicating group membership

for observation i. Furthermore, assume that Yi = E(Yi|Xi, Di) + ϵi, where the

error terms ϵi are iid N (0, σ2) variables. Model (1.1) allows for interaction (i.e.,

the slope of X may differ across the two groups) and exemplifies the so-called

dummy variable approach [11]. Labeling of the groups is essentially arbitrary,

and therefore the regression model

E(Yi|Xi, Ḋi) = β∗

0 + β∗

1Xi + β∗

2Ḋi + β∗

3XiḊi, (1.2)

where Ḋi = 1 − Di, describes the data equally well as model (1.1), that is,

E(Yi|Xi, Di) = E(Yi|Xi, Ḋi). In [11], models (1.1) and (1.2) were both esti-

mated for a data set by Gujarati [6, 7] and it was found that the parameter

estimates and their standard errors differ between the two models. The authors

therefore concluded that inferences about the parameters are not invariant with

respect to the coding scheme (i.e., the choice of baseline). Indeed, some of the

individual estimates of β parameters and their standard errors depend on the
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coding scheme of the dummy variables. However, I wish to point out that the

parameters themselves change as a function of this coding scheme. In my opin-

ion, Holgersson et al. [11] did not discuss this issue thoroughly enough, although

they do mention that ”... the model itself is invariant to the coding of zeros

and ones ...”. In particular, β0 in model (1.1) is the mean of Y in group 0 for

X fixed at 0, whereas β∗

0 in (1.2) is the mean of Y in group 1 for X fixed at 0.

Likewise, β1 in (1.1) is the slope of X for group 0, whereas β∗

1 in (1.2) is the

slope of X for group 1. The relation between the parameters of models (1.1)

and (1.2) is clarified by writing model (1.2) in terms of the variable D:

E(Yi|Xi, Di) = β∗

0 + β∗

1Xi + β∗

2(1−Di) + β∗

3Xi(1−Di)

= (β∗

0 + β∗

2) + (β∗

1 + β∗

3)Xi + (−β∗

2)Di + (−β∗

3)XiDi.

It can be seen that β0 in model (1.1) is equal to β∗

0 + β∗

2 in model (1.2), and

so on. The same identities hold for the ordinary least squares (OLS) parameter

estimates (i.e., β̂0 = β̂∗

0 + β̂∗

2 , etc.). Furthermore, one can derive the standard

errors for any of the parameter estimates of model (1.1) from the covariance

matrix of the parameter estimates of model (1.2), and vice versa. For instance,

it holds that σ̂
β̂0

= σ̂
β̂∗

0
+β̂∗

2

=
√

σ̂2
β̂∗

0

+ σ̂2
β̂∗

2

+ 2σ̂
β̂∗

0
β̂∗

2

.

Hence, although the interpretation of the individual parameter estimates

and corresponding hypothesis tests are not invariant with respect to the coding

scheme, inferences about population characteristics of interest are.

1.2 Precision of point estimates

A second objection raised in [11] against the dummy variable approach states

that because multicollinearity is introduced into the regression model (i.e., the

dummy by covariate interaction term is correlated with the other predictor vari-
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ables) the precision of the point estimates is decreased, that is, the parameter

mean square error (MSE) is increased, as compared to the so-called category-

wise approach. This approach implies that a separate regression model is for-

mulated for each of the two groups:

E(Yi|Xi, Di = 0) = γ0 + γ1Xi, (1.3)

E(Yi|Xi, Di = 1) = δ0 + δ1Xi, (1.4)

where it is further assumed that if Di = 0 then Yi = γ0 + γ1Xi + τi, where

the error terms τi are iid N (0, σ2
0) variables, whereas if Di = 1 then Yi =

δ0 + δ1Xi + υi, where the error terms υi are iid N (0, σ2
1) variables.

Holgersson et al. [11] ran a simulation study to compare the two approaches

in terms of Type I error rate and power for testing hypotheses on the following

two quantities of interest : δ0 − γ0 (i.e., difference between the means of the two

groups at X = 0) and δ1 − γ1 (i.e., difference between the two groups in terms

of the slope of X). The corresponding parameters in model (1.1) are β2 and β3,

respectively [2]. Interestingly, it can be shown (see Appendix A.1 and [15] for an

earlier and alternative derivation) that OLS point estimates of group differences

in intercept and slope are identitical between the two approaches, that is:

β̂2 = δ̂0 − γ̂0, (1.5)

β̂3 = δ̂1 − γ̂1. (1.6)

Hence, in terms of these quantities of interest, the second objection cannot be

correct. Then why do the simulations reported in [11] show a difference between

the dummy variable approach and the category-wise one in terms of parame-

ter MSE? Let us have a look at how MSE was defined for each of the two

approaches. For the dummy variable approach, Holgersson et al. [11] defined
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MSE as the Monte Carlo average (over all simulated data sets) of the squared

distances ((β̂0−β0)
2+(β̂1−β1)

2+(β̂2−β2)
2+(β̂3−β3)

2). For the category-wise

approach, they defined MSE as the Monte Carlo average (over all simulated data

sets) of the squared distances
(

[(δ̂0− γ̂0)− (δ0− γ0)]
2+ [(δ̂1− γ̂1)− (δ1− γ1)]

2
)

.

In the latter definition, MSE is based on squared deviations between point es-

timates and population values of group differences in intercept and slope (i.e.,

δ0 − γ0 = β2 and δ1 − γ1 = β3). For the dummy variable approach, however,

MSE is based on squared deviations between point estimates and population

values of these same two quantitities of interest as well as squared deviations

between point estimates and population values of the quantities β0 (i.e., the

mean of Y in group 0 for X fixed at 0) and β1 (i.e., the slope of X for group 0).

As their study is about comparing groups (either by a dummy variable approach

or by a category-wise one), I do not understand why Holgersson et al. [11] chose

to include quantitities not concerned with group comparisons in their definition

of MSE for one of the two approaches. Had they compared MSE values defined

only on group differences in intercept and slope, the authors would not have

found any difference between the two approaches.

1.3 Homogeneity of error variance across groups

A third and final objection raised in [11] against the dummy variable approach

states that it implies the assumption of homogeneous error variances across

groups and therefore may lead to incorrect Type I error rates for testing hy-

potheses on group differences if this assumption is violated. Indeed, the simula-

tion results reported in [11] show that for moderate violations of homogeneity,

given a nominal significance level α = 0.05, the empirical Type I error rate for

the dummy variable approach can be up to 0.25 or down to 0.01. That is, if
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homogeneity is violated, the standard errors obtained by means of the dummy

variable approach are either too small or too large, depending on the relative

sizes of the groups. In contrast, the results in [11] show that the empirical Type

I error rate for the category-wise approach is in all situations close to the nom-

inal level. Hence, whether error variances can be assumed homogeneous across

groups is definitely an important aspect to consider when faced with choosing

between an OLS dummy variable approach or an OLS category-wise one for a

data set at hand. Moreover, it can be shown (see Appendix A.2) that, if one

were to assume homogeneity of error variances in the category-wise approach,

the standard errors of δ̂0 − γ̂0 and δ̂1 − γ̂1, respectively, are identical to those of

β̂2 and β̂2 as obtained by means of an OLS dummy variable approach based on

model (1.1).

The impact of heterogeneity of error variance on conclusions drawn by means

of OLS regression is an important issue that has been studied by several authors

[1, 3, 4]. Furthermore, a number of solutions which account for variance het-

erogeneity in testing for equality of regression slopes, including weighted least

squares and Welch [17] procedures, have been studied (see e.g., [8, 10, 14, 15]).

2 Other considerations

In this section I discuss some additional matters that in some cases should be

considered when comparing dummy variable approaches to category-wise ones.

2.1 Misspecification of dummy regression model

It is common in applications of regression analysis to exclude product interac-

tion terms, even when dummy variables are involved. If population slopes are

5



unequal across groups, the dummy regression model is in that case misspecified.

It is interesting to study how the common slope parameter in the misspecified

regression model is related to the population slopes of each group. Here I shall

do this for the case of one dummy variable and one covariate X. Specifically,

consider models (1.1) and (1.3) and (1.4), and assume β3 ̸= 0, which implies

γ1 ̸= δ1. Now consider the following (dummy) regression model, in which the

interaction term is ignored:

E(Yi|Xi, Di) = η0 + η1Xi + η2Di, (2.1)

where η1 is the common slope parameter of X. From (2.1) it follows that

η1 =
E[σ(X,Y )|D]

E[σ2(X)|D]

=
P (D = 0)σ(X0, Y0) + P (D = 1)σ(X1, Y1)

P (D = 0)σ2(X0) + P (D = 1)σ2(X1)

=
P (D = 0)σ(X0, Y0)

σ2(X0)
σ2(X0)

+ P (D = 1)σ(X1, Y1)
σ2(X1)
σ2(X1)

P (D = 0)σ2(X0) + P (D = 1)σ2(X1)

=
P (D = 0)σ2(X0)γ1 + P (D = 1)σ2(X1)δ1
P (D = 0)σ2(X0) + P (D = 1)σ2(X1)

. (2.2)

Hence, η1 is a weighted average of γ1 and δ1, where the weights are products of

relative group size and group-specific variance of the covariate. It is interesting

to see that η1 may be biased toward the slope of the smaller group if the variance

of the covariate in this group is much larger than that in the larger group.

Note that the point estimate η̂1, as yielded by a dummy regression analysis

based on model (2.1), can alternatively be obtained by means of expression

(2.2) by substituting the category-wise point estimates γ̂1 and δ̂1 for γ1 and

δ1, respectively, and nj/n for P (D = j) (j = 0, 1). Furthermore, since X

is considered fixed, the variances σ2(Xj) (j = 0, 1) are to be calculated by

normalizing by nj instead of nj − 1.
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As a category-wise approach implies estimation of the parameters in each

group separately, one may argue that incorrectly assuming equality of popula-

tion slopes across groups is an issue that is not applicable to this approach.

2.2 More than two groups

By estimating a regression model in each group k (k = 1, ...,K) separately, as

implied by a category-wise approach, each of the k regressions yield hypothesis

tests that tell whether the intercept/slope of X for group k differs from 0.

What is not tested is whether the intercept/slope of X differs between any pair

of groups. Researchers sometimes incorrectly conclude that groups differ in the

effect of X based on the slope of X being significantly different from 0 in one

group but not in another. However, any conclusion about group differences

requires additional tests. For example, Holgersson et al. [11] discuss a t test for

comparing coefficients between groups k and j (k ̸= j).

For K groups, a dummy variable approach requires a total of K − 1 dummy

variables. For instance, for three groups, labeled 0, 1, and 2, respectively, and

a single covariate X, a full model (i.e., which allows all slopes to differ) reads

as follows:

E(Yi|Xi, Di1, Di2) = β0 + β1Xi + β2Di1 + β3Di2 + β4XiDi1 + β5XiDi2, (2.3)

where Di1 ∈ {0, 1} is a first dummy variable indicating whether observation i

is a member of group 1 and Di2 ∈ {0, 1} is a second dummy variable indicating

whether observation i is a member of group 2. This then implies that group 0

is the reference group. For instance, the parameter β3 represents the difference

in intercept between group 2 and group 0 (for X = 0), and β5 represents the

difference in slope of X between group 2 and group 0. In general, a dummy
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regression analysis yields hypothesis tests for all coefficients of terms involving

dummy variable k (k = 1, ...,K − 1), which tell whether the intercept/slope of

X for group k differs from that of the reference group. What is not tested is

whether the intercept/slope of X differs between group k and any of the other

groups k′ (k′ ̸= k and k′ ̸= 0), nor whether the intercept/slope of X for group k

differs from 0. To draw those conclusions, one should test either the difference

in two coefficients (e.g., H0 : β4 − β5 = 0) or the sum of two coefficients (e.g.,

H0 : β1 + β4 = 0). Any of these inferences can be made by making use of the

estimated coefficients of the dummy regression in question and the covariance

matrix of these estimates, which are easily obtained by means of statistical

software packages. It is also important to note that dummy variables do not

have to be binary coded. Alternative ways of coding are contrast and effect

coding [9], which alter the interpretation of the coefficients. For instance, effect

coding may be used to express each group’s coefficients as deviations from an

overall ”average”, which is often of interest from a substantive point of view

[16]. As this type of comparison inherently implies that at some stage of the

analysis all groups are considered simultaneously, a category-wise approach is

not suited to this purpose.

Finally, I wish to note that if there are three or more groups, the t test

proposed by Holgersson et al. [11] cannot be applied to perform a single omnibus

test of the null hypothesis that all slopes of X are equal. However, Welch-

type tests for comparing slopes by means of a category-wise approach have

been proposed by others [1, 3, 4]. More generally, Wald type, likelihood ratio

type or Langrangian multiplier tests may be defined of any linear combination

of parameters [12] and can therefore be applied to compare the slopes across

groups. Within the dummy regression framework, an omnibus test for equality

of all slopes can easily be performed by comparing full model (2.3) to a restricted
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model (in which all dummy by covariate product terms are omitted)

E(Yi|Xi, Di1, Di2) = β0 + β1Xi + β2Di1 + β3Di2,

by means of an F -statistic (see e.g., [13]). Many statistical software packages

include built-in routines for performing this type of model comparison test.

3 Final Remarks

Categorical variables can be included in a regression approach by means of

dummy variables. How one chooses to code these dummy variables is arbitrary,

but by convention we use 0 and 1. Regardless of the coding used, the model

fit and our understanding of group differences remains the same. The coding

is, however, a necessary consideration in one’s interpretation of the parameter

estimates. While the dummy variable approach (partly) depends on the coding,

the category-wise approach does not involve any binary variables and is therefore

free from such concerns.

Contrary to the claim by Holgersson et al. [11], OLS point estimates of

group comparisons as yielded by estimating model (1.1) are equivalent to dif-

ferences between OLS point estimates of coefficients of models (1.3) and (1.4).

Hence, precision of these point estimates cannot be an argument for choosing

one approach over the other.

By using a category-wise approach, an error variance estimate is obtained in

each group separately. Variances of the coefficients in group k - which are in a

next step used to obtain standard errors for differences in coefficients between

two independent groups - are therefore based on an estimate of the error variance

in group k only. Hence, variance heterogeneity across groups is naturally dealt

9



with by using a category-wise approach. A standard OLS dummy regression

approach implies that homogeneity of error variance across groups is assumed.

However, it is possible to apply the dummy regression approach within other

frameworks (e.g., [8, 10, 14]) such that heterogeneity of error variance can be

taken into account. One may finally note that if homogeneity of variances

across groups is a valid assumption, the dummy variable approach yields a more

precise estimate of the common variance than any of the separate regressions in

a category-wise approach since the former is based on more degrees of freedom.

In conclusion, choosing between the two approaches considered here ulti-

mately appears to depend on the ease with which one’s research questions can

be dealt with. In this regard, neither a dummy variable approach nor a category-

wise one automatically yield inference tests that match every potential research

question of interest. For either of the two approaches, it may therefore be nec-

essary to do some additional calculations.
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A Appendices

A.1 Proof of identities (1.5) and (1.6)

Proof. Assume, without loss of generality, that the first n0 observations belong

to group 0, and the next n1 observations belong to group 1, so that the total

number of observations is n = n0+n1. Let W0 = [1n0
,X0] and W1 = [1n1

,X1],

where X0 = [X1, ..., Xn0
]′ and X1 = [Xn0+1, ..., Xn]

′, and 1k and 0k are k-

dimensional column vectors of 1’s and 0’s, respectively. Similarly, let Y0 =

[Y1, ..., Yn0
]′ and Y1 = [Yn0+1, ..., Yn]

′. Given this notation, it follows that the

design matrix for the dummy variable approach in (1.1) is (in block matrix

notation)

R =







W0 0n0
0n0

W1 1n1
X1






.

12



Finally, let R̃ = [1n,X] = [W′

0,W
′

1]
′, U0 = W

′

0W0, U1 = W
′

1W1 and S̃ =

R̃
′

R̃. We further assume that U0, U1 and S̃ are invertible, which is the case

if W0, W1 and R̃, respectively, are of full column rank. These conditions are

necessarily fulfilled if the OLS point estimates of the parameters in models (1.1),

(1.3) and (1.4) are to be uniquely defined.

It then holds that

(R′
R)−1 =







S̃ U1

U1 U1







−1

=







(S̃−U1U
−1
1 U1)

−1 −S̃
−1

−U1(U1 −U1S̃
−1

U1)
−1

−U
−1
1 U1(S̃−U1U

−1
1 U1)

−1 (U1 −U1S̃
−1

U1)
−1







=







(S̃−U1)
−1 −S̃

−1
−U1(U1 −U1S̃

−1
U1)

−1

−(S̃−U1)
−1 (U1 −U1S̃

−1
U1)

−1






, (A.1)

where the inverse has been solved by making use of block matrix inversion. Only

the lower two 2× 2 submatrices in (A.1) are of relevance for this proof. Firstly,

one may observe that

−(S̃−U1)
−1 = −













n 1
′

nX

1
′

nX X
′
X






−







n1 1
′

n1
X1

1
′

n1
X1 X

′

1X1













−1

= −







n0 1
′

n0
X0

1
′

n0
X0 X

′

0X0







−1

= −U
−1
0

= − (W′

0W0)
−1. (A.2)

13



Secondly, by making use of the matrix inversion lemma [5], we have

(U1 −U1S̃
−1

U1)
−1 = U

−1
1 + (I−U

−1
1 U1S̃

−1
U1)

−1
U

−1
1 U1S̃

−1
U1U

−1
1

= U
−1
1 + (I− S̃

−1
U1)

−1
S̃
−1

= U
−1
1 + (S̃−U1)

−1

= U
−1
1 +U

−1
0

= (W′

1W1)
−1 + (W′

0W0)
−1. (A.3)

The OLS point estimates γ̂ = (γ̂0, γ̂1)
′ and δ̂ = (δ̂0, δ̂1)

′ for models (1.3) and

(1.4), respectively, are (W′

0W0)
−1

W
′

0Y0 and (W′

1W1)
−1

W
′

1Y1. For the OLS

point estimate β̂ = (R′
R)−1

R
′
Y of the parameters in model (1.1), making use

of (A.1)-(A.3), we now have (focussing only on the relevant submatrices):



















β̂0

β̂1

β̂2

β̂3



















=







... ...

−(W′

0W0)
−1 (W′

0W0)
−1 + (W′

1W1)
−1













W
′

0Y0 +W
′

1Y1

W
′

1Y1







=







...

−(W′

0W0)
−1

W
′

0Y0 + (W′

1W1)
−1

W
′

1Y1







=



















...

...

δ̂0 − γ̂0

δ̂1 − γ̂1



















.
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A.2 Equivalence of standard errors of point estimates of

group differences if homogeneity of error variance is

assumed in both approaches

Consider the variance of the category-wise point estimate δ̂− γ̂ = (δ̂0− γ̂0, δ̂1−

γ̂1)
′, as proposed by Holgersson et al. [11]. It is the diagonal of

V = σ̂2
0(W

′

0W0)
−1 + σ̂2

1(W
′

1W1)
−1, (A.4)

where σ̂2
0 = (n0 − 2)−1(Y0 − W0γ̂)

′(Y0 − W0γ̂) and σ̂2
1 = (n1 − 2)−1(Y1 −

W1δ̂)
′(Y1−W1δ̂). Thus, the variance of δ̂−γ̂ equals the sum of the variances of

the point estimates δ̂ and γ̂, which are obtained in each group separately (note

that the groups are independent). They are therefore based on group-specific

estimates of the error variance (i.e., σ̂2
0 and σ̂2

1 , respectively). On the other

hand, the variance of β̂ as obtained by means of the dummy variable approach

is the diagonal of Ṽ = σ̂2(R′
R)−1, where σ̂2 = (n−4)−1(Y−Rβ̂)′(Y−Rβ̂) =

[(n0 − 2)σ̂2
0 + (n1 − 2)σ̂2

1 ]/(n− 4) is a pooled estimate of the error variance. Let

Ṽ
∗

be the lower right 2× 2 submatrix of Ṽ. Making use of (A.3) it follows that

Ṽ
∗

, which contains the variances of β̂2 and β̂3 on its diagonal, can be written

as follows:

Ṽ
∗

= σ̂2(W′

0W0)
−1 + σ̂2(W′

1W1)
−1. (A.5)

Hence, if in the OLS category-wise approach based on models (1.3) and (1.4)

one were to assume homogeneity of error variances across groups, (A.4) would

simplify to (A.5).
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