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Abstract. We continue the earlier research of [1]. In particular, we work out a class
of regular interstices and show that selective types are realized in regular interstices. We
also show that, contrary to the situation above definable elements, the stabilizer of an
element inside M(0) whose type is selective need not be maximal.

1. Introduction. Automorphisms of a countable recursively saturated
modelM of PA (i.e., Peano Arithmetic) were studied for many years (cf. [14]
for a survey). In particular, in [10], following a remark in [8], we studied the
connection between maximality of a basic open subgroup Ga of G = Aut(M)
and the type of a. It turned out that if a is greater than all definable elements
ofM then Ga is maximal iff tp(a) is selective, i.e., the Skolem closure of a is
a minimal extension of the Skolem closure of the empty set. The goal of this
paper is to investigate the situation for a below some definable element (of
course, under the assumption that M is a model of some false completion
of PA). In fact, in the main part of this paper we work with an arithmetically
saturated model of PA with nonstandard definable elements.

We repeat some of the material from earlier papers for the sake of com-
pleteness. All proofs which are omitted may be found in [1].

In the main part of this paperM is a countable arithmetically saturated
model of PA with nonstandard definable elements. Arithmetical saturation
of M is equivalent to recursive saturation and N being strong in M (cf. [11]
for more in this direction).
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For a ∈ M we let M(a) = the smallest elementary cut of M which
contains a. We also let M [a] denote the greatest elementary cut of M which
does not contain a (see [13] or [10] for more in this direction). The set
difference of these two cuts is called the gap around a.
Let a ∈M(0) \HullM (∅). We associate with a two cuts of M ,

I+a = inf{u ∈M : u > a and u is definable}

and

I−a = sup{u ∈M : u < a and u is definable}.

The set difference of these, i.e.,

Ωa = I
+
a \ I

−
a

is called the interstice around a. This notion was already isolated in [8].
Usually we work with a fixed interstice, hence we omit the subscript a.
Obviously, if M is recursively saturated and has nonstandard definable el-
ements, then it has infinitely many interstices. In order to see this we pick
a definable nonstandard α ∈ M and for given n ∈ N realize the type Γn(x)
expressing that x is undefinable and n · α < x < (n+ 1) · α.
We let

I0(M) = inf{u ∈M : u is nonstandard and definable}.

Lemma 1.1. If M is arithmetically saturated and has nonstandard defin-
able elements then I0(M) > N.

The above lemma implies that every arithmetically saturatedM has the
smallest interstice Ωsmallest = I0(M) \ N. Also, every recursively saturated
M has the improper interstice, i.e., M \M(0).
Below we work with nondecreasing functions F (in the most usual sense

of the word, i.e., ∀x, y [x ≤ y ⇒ F (x) ≤ F (y)]). (In [1] we used, somewhat
ambiguously, the name “increasing”.)

Lemma 1.2. Let Ω = I+ \ I− be an interstice in M and let F be a non-
decreasing function definable without parameters such that I− is contained
in the domain of F . Then I− is closed under F iff I+ is.

Lemma 1.3. Let M be recursively saturated and let Ω be an interstice.
Then there exist two sequences α, β coded in M such that

(i) I− = sup{αn : n ∈ N},
(ii) I+ = inf{βn : n ∈ N},
(iii) αn is definable for every n ∈ N,
(iv) βn is definable for every n ∈ N.

Let Ω = I+ \ I− be an interstice in M . We let F (or FΩ if necessary) be
the set of all nondecreasing functions which are definable without parameters
and under which I+ is closed.
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The following lemma allows us to use F in types provided M is arith-
metically saturated; in particular, Lemma 1.5 is a consequence of it. It is
also the reason for which we sometimes work with arithmetically saturated
models rather than with arbitrary recursively saturated ones.

Lemma 1.4. If M is arithmetically saturated and Ω = I+ \ I− is an
interstice then the family F is coded in M (as the set of Gödel numbers).

P r o o f. Let α, β be as in Lemma 1.3. Let S be a (partial inductive)
satisfaction class for M . We let j(F ) = min{n : S(F (αn) ≥ βn)} and
j(F ) = 0 if F is not a Gödel number of a term which is nondecreasing in
the sense given by S. For this function j we pick a nonstandard u such
that j(F ) > N iff j(F ) > u, using arithmetical saturation. Then F ∈ F iff
j(F ) > u, so F is coded in M .

Now we are ready to define intersticial gaps in M(0). Let Ω = I+ \ I−

be an interstice in M . Let u ∈ Ω. Exactly as we have done for a > M(0),
we put Ω(u) = sup{F (u) : F ∈ F} and Ω[u] = sup{w : Ω(w) < u}. The set
difference of these, i.e.,

gapΩ(u) = Ω(u) \Ω[u]

is called the intersticial gap around u. As usual we omit the superscript Ω
unless it is really necessary. We also write “gap” rather than “intersticial
gap” because the meaning will be determined by a, i.e., if a > M(0) then
we work with the usual gaps and if a ∈M(0) then we deal with intersticial
gaps.

The following observation together with Lemma 1.4 shows that in the
case of an arithmetically saturated model M , intersticial gaps are strictly
smaller than interstices themselves.

Lemma 1.5. Let M be recursively saturated and let Ω = I+ \ I− be an
interstice in M. Then Ω itself is not an intersticial gap iff F is in SSy(M).

P r o o f. Assume that Ω 6= gapΩ(u) and let w ∈ Ω \ gapΩ(u). We may
assume that u < w. Then for nondecreasing F , we have F ∈ F iff F (u) < w,
so F is coded in M . For the converse assume that F is coded in M . Let
u ∈ Ω and let β be as in Lemma 1.3. Consider the type

Γ (x) = {x < βn : n ∈ N} ∪ {F (u) < x : F ∈ F}.

This type is obviously consistent and in SSy(M), hence, it is realized by
recursive saturation of M . Also, any of its realizations gives the second
Ω-gap.

We remark that if the interstice Ω is not an intersticial gap, then the set
of intersticial gaps it contains is a dense linear order without endpoints.
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Corollary 1.6. If M is an arithmetically saturated model of PA, then
no interstice of M is an intersticial gap.

Later we prove the converse of Corollary 1.6, i.e., if M is recursively
saturated and satisfies the condition of Corollary 1.6 then it is arithmetically
saturated (see Theorem 5.1).

2. A combinatorial result. The goal of the next two sections is to
work out a family of interstices in which selective types are realized, regular
interstices. In this section we derive a combinatorial result needed for the
construction. The idea is taken from Ketonen–Solovay [9]; indeed, from a
certain point of view we push up one of their results ([9], Theorem 4.7) from
ω2 to ωω (and, in fact, to ε0). We would like to point out that when using
the particular version of the hierarchy, the so-called Hardy hierarchy, we
are highly influenced by Zygmunt Ratajczyk’s work (see [19], [16], [17] and
[20]). Moreover, we refer to [2] for the main combinatorial lemma.

We shall work with the following version of the so-called Grzegorczyk
hierarchy of quickly growing functions (see [5]). Let G be a function which
is either defined on the whole N or on some finite subset of N. Assume
moreover that ∀x ∈ Dom(G) x < G(x). As an example, let A be a subset of
N and letGA be the successor in the sense of A, i.e., the function with domain
A \ {maxA} which associates with every a ∈ Dom(G) the next element of
A. We define a sequence Gn of functions by putting G0(x) ≃ G(x) and
Gn+1(x) ≃ Gxn(x), the xth iteration of Gn, applied to x. Here iterations
are defined in the usual manner, i.e., G0(x) = x and Gn+1(x) = Gn(G(x)).
As usual, ≃ means that both sides are defined and equal or both sides are
undefined. But we shall use directly the equality sign. Observe that Ketonen
and Solovay use a slightly different definition, i.e., Gn+1(x) = G

x+1
n (x). For

our purpose the definition as stated is more convenient.

Let A be a finite subset of N. Let GA denote the successor in the sense
of A and let (GA)n denote Grzegorczyk’s iterations of G

A. We say that A
is n-big iff (GA)n(minA) is defined. One may restate this definition in the
following manner. A set A is 0-big iff it has at least two elements; A is
(n+1)-big iff there exists an increasing sequence b0, . . . , ba of elements of A
with a = minA, b0 = a, and each interval A ∩ [bj , bj+1] n-big.

The goal of this section is the following result.

Theorem 2.1. Let A be an (n+ 1)-big set and let A =
⋃

i<minABi be a
partition of A into at most minA parts. Then at least one of these parts is
n-big.

As a matter of fact we shall work with the so-called Hardy hierarchy
of quickly growing functions. Let h be a function which satisfies the same
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condition as above, i.e., ∀x ∈ Dom(h) h(x) > x. For every α < ε0 we define a
function hα by induction on α. We put h0(x) = x and hα+1(x) = hα(h(x)).

Before defining the limit step we need to define, for each limit λ < ε0, a
sequence {λ}(n) of ordinals convergent to λ from below. We put {ω}(n) = n,
and, more generally, {ωα+1}(n) = ωα · n. For limit γ we put {ωγ}(n) =
ω{γ}(n). Finally,

{ωα0 ·m0 + . . .+ ω
αs ·ms}(n) = ω

α0 ·m0 + . . .+ω
αs · (ms − 1) + {ω

αs}(n),

where λ = ωα0 ·m0+ . . .+ω
αs ·ms is the Cantor normal form expansion of λ,

i.e., α0 > . . . > αs. It is easy to see that these conditions determine exactly
one sequence {λ}(n) : n, for each λ < ε0. Observe also that Ketonen and
Solovay [9] use a slightly different notion of {λ}(n). We shall call the sequence
{λ}(n) the fundamental sequence for λ. It is possible to extend fundamental
sequences to larger ordinals (cf. e.g. [18]). For example let ω0 = ω and
ωn+1 = ω

ωn . Then {ε0}(n) = ωn is a fundamental sequence for ε0.

Now we are ready to define hλ for λ limit. We simply put hλ(x) =
h{λ}(x)(x). This completes the definition of Hardy hierarchy based on h.
Of course, we also extend Grzegorczyk’s hierarchy to the so-called Grzegor-
czyk–Wainer hierarchy by putting G0(x) = G(x), Gα+1(x) = Gxα(x) and
Gλ(x) = G{λ}(x)(x) for λ limit.

This notion allows us to define a set A of natural numbers to be α-large
in the same manner as above. That is, A is α-large iff (hA)α(a) is defined,
where hA denotes the successor in the sense of A and a = minA. One can
restate this definition of largeness in the following manner. A set A is 0-large
iff it is nonempty. A is (α+ 1)-large iff A \ {minA} is α-large. A is λ-large,
λ limit, iff it is {λ}(minA)-large. Observe that Ketonen and Solovay [9] use
a slightly different notion of largeness. Indeed, they define their notion by
reverse induction on the natural enumeration (i.e., in the increasing order)
of A. But the difference between these two notions is only technical.

Lemma 2.2. Let h be as above. Then for every α and every β ≫ α,
hβ+α = hβ ◦ hα.

P r o o f. By induction on α.

Lemma 2.3. Let h be as above and denote by hα the αth iterate of h in
the Hardy sense and by Gα its αth iterate in the Grzegorczyk sense. Then
Gα = hωα .

P r o o f. Immediate by induction on α, using Lemma 2.2.

In other words, a set A is α-big iff it is ωα-large. Granted this connection
we see that in order to prove Theorem 2.1 it suffices to show the following
result and apply it below ωω.
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Theorem 2.4. If A is ωα+1-large and A =
⋃

i<minABi is a partition of
A into at most a = minA parts then at least one Bi is ω

α-large.

We write “into at most minA parts” because we allow some Bi to be
empty. We refer the reader to the paper [2] for a proof of Theorem 2.4.

Of course, Theorem 2.1 follows from Theorem 2.4, by Lemma 2.3.
We remark that all these results are provable in PA. More exactly, first,

they are expressible in PA. Indeed, definitions by transfinite induction (like
that of Hardy hierarchy) are expressible in PA using notation systems for
ordinals and the recursion theorem (cf. [21] for the recursion-theoretic ap-
proach and [6] or [18] for the proof-theoretic approach to this sort of prob-
lems). Moreover, if we fix n ∈ N, then all the above results are provable for
ordinals less than ωn because PA proves transfinite induction over ωn, by
the classical result due to G. Gentzen. See [6], p. 138, Theorem 5.2 in [16]
or [23] for more in this direction.

3. Regular interstices. The goal of this section is to describe a class
of interstices (regular interstices) in which selective types are realized. Let
Ω = I+\I− be an interstice in a countable arithmetically saturated model of
PA. Let F denote, as usual, the set of all nondecreasing functions, definable
without parameters, under which I− is closed.

Definition 3.1. An M -finite set A is Ω-large if it is definable without
parameters and A ∩Ω 6= ∅.

We remark that if A is definable without parameters then A is Ω-large
iff I− is closed under the successor in the sense of A, i.e., for every a ∈ A if
a < I− then the next element of A is also smaller than I−. Indeed, otherwise
for some definable α < I− we would have ∀a ∈ A a ≤ α∨ a > I−. But then
“the smallest element of A which exceeds α” is definable and in Ω, which is
impossible.

Definition 3.2. An interstice Ω = I+\I− is regular iff for every Ω-large
A ∈M and every partition A =

⋃

i<αAi definable without parameters with
α < I−, at least one part Ai is Ω-large.

It is easy to see that the smallest interstice, Ωsmallest = I0(M) \ N,
where I0(M) denotes the greatest lower bound of all nonstandard definable
elements of M , is regular. Let us recall that for many models M of PA,
I0(M) > N, so this interstice exists. By Lemma 1.1, this happens always if
M is arithmetically saturated. See [8] and [1] for more about Ωsmallest. The
construction of this section gives many more examples of regular interstices.

Theorem 3.3. Let M be a countable recursively saturated model of some
false completion of PA and let A ∈ M be a definable set which is n-big (in
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the sense introduced in §2) for some nonstandard n ∈M . Then there exists
a regular interstice Ω = I+ \ I− such that A ∩Ω 6= ∅.

P r o o f. Let A,n ∈ M satisfy the assumption. We enumerate as Pj :
j ∈ N all definable partitions of A in M in such a way that each definable
partition occurs in this enumeration infinitely often. To be more specific, we
use a (partial inductive) satisfaction class and an enumeration of formulas
to encode this enumeration inside M . Observe that max{n : A is n-big} is
definable because A is definable.
Pick the first of these partitions, say Pi0 : A → bi0 , which satisfies

bi0 ≤ minA. By Theorem 2.1 there exists A0 which is (n − 1)-big and
homogeneous for Pi0 . We continue in the same fashion, that is, we consider
the first (not used up to now) partition Pi1 which satisfies Pi1 : A0 → bi1
with bi1 ≤ minA0 and take a homogeneous set A1, and so on. Observe
that this procedure is performed in (M,S), where S is a partial inductive
satisfaction class forM (from a standard definition of the partition we obtain
a standard definition of a homogeneous set), hence, the sequence Aj is coded
in M . We put I− = sup{minAi : i ∈ N} and see that this cut determines
an interstice Ω with I+ = inf{e : e is definable and greater than I−}. We
claim that this interstice is regular.
Define dr = minAr and er = maxAr. Obviously, both sequences are

coded, the first is nondecreasing and the second is nonincreasing. Moreover,
dr < dr+1 for infinitely many r. The reason is that, given r, the partition

A = (A \Ar) ∪ {minAr} ∪ (Ar \ {minAr})

occurs in the enumeration infinitely often, so had to be considered in the
kth step for some k > r. It follows that dr < dk, hence ds < ds+1 for some
s with r ≤ s < k. The same reasoning shows that er > er+1 for infinitely
many r.
We have put I− = sup{dr : r ∈ N} above. We claim that I+ = inf{er :

r ∈ N}. To see this suppose that some definable u is between I− and inf{er :
r ∈ N}, consider the partition A = {x ∈ A : x ≤ u} ∪ {x ∈ A : u < x} and
see that either the homogeneous set is below or above u, so it is not between
the two cuts we are talking about.
Let B be anΩ-large set and let B =

⋃

i<uBi be a partition of B definable
without parameters with u < I−. First we thin down B to some smaller set
C. We write A = {w0, . . . , we−1} in increasing order. We put j0 = 0 and
c0 = min{b ∈ B : wj0 ≤ b}. We continue in the same fashion, i.e., we set
ji+1 = min{j : bji < wj} and ci+1 = min{b ∈ B : wji+1 ≤ b}. This induction
breaks off after, say, s steps (either there is no js or there is no bjs). We let
C = {ci : i < s}.
We claim that C is Ω-large. Indeed, I− < wt < I+ for some t as A is Ω-

large. Also, B, being Ω-large, is cofinal in Ω, so there exists b ∈ B∩Ω which



132 T. Bigorajska et al.

is greater than wt. The same reasoning shows that the set D = {wji : i < s}
is Ω-large.
The partition B =

⋃

i<uBi induces a partition C =
⋃

i<u(C ∩Bi). This
partition induces one more partition of D. We put wji ∈ Dm iff ci ∈ C∩Bm.
Thus, we have got a partition D =

⋃

m<uDm and by construction, one of
Dm’s is Ω-large. But then, for the same m, C ∩ Bm is Ω-large, and so Bm
is Ω-large as well.

The following is the main result about regular interstices.

Theorem 3.4. Let M be a countable recursively saturated model of PA
and let Ω = I+ \ I− be a regular interstice in M . Then the type of some
b ∈ Ω is selective.

P r o o f. First we construct a selective type q(·). We proceed by induction,
in each step we decide what to do with a formula and with a term. The
inductive condition is as follows:

ϕ ∈ q ⇒ ∃x < I− ϕ(x) & ∀x < I− [ϕ(x)⇒ ∃y > x (ϕ(y) & x < y < I−)].

In other words, I− is closed under the successor in the sense of {x : ϕ(x)},
i.e., this set is Ω-large.
It is easy to check that if ϕ has this property then for every formula ψ, at

least one of ϕ&ψ, ϕ&¬ψ has this property, so let us turn to terms. Assume
that ϕ has the above property and let a term t(·) be given. We define inside
M a sequence xi by the following induction. We put

x0 = minx : ϕ(x) and xj+1 = minx : ϕ(x) & ∀i ≤ j t(x) 6= t(xi).

We consider two cases.

Case 1: ∀i xi < I− ⇒ xi+1 < I−. Then we put into q the formula
∃i x = xi and see that this formula still has the above property.

Case 2: ∃i xi < I−&xi+1 > I−. We pick a definable α with xi < α < I−

and see that xi is definable and hence so is xi+1. It follows that xi+1 > I+.
Let B = {x ∈ [xi, xi+1] : ϕ(x)}. By this remark, B is Ω-large. Moreover,

∀x ∈ B ∃e < xi t(x) = t(e) & ϕ(e).

It follows that we have a partition

B =
⋃

e<xi

{x ∈ B : t(x) = t(e)}.

By regularity of Ω, there exists e < xi such that {x ∈ B : t(x) = t(e)} is Ω-
large. In particular, e is definable. We put into q the formula ϕ(x)&t(x) = e.
Granted these remarks there is no problem in constructing the type q.

Obviously, it is selective. Moreover, it is easy to check that it is realized by
some b ∈ Ω.
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Recall from [1] that an interstice Ω is very good if for every F ∈ F the
function x 7→ F x(x) is in F as well.

Proposition 3.5. An interstice Ω = I+ \ I− is very good iff for every
Ω-large set A, the cardinality of A is > I+.

P r o o f. Let Ω be very good and let A ∩Ω 6= ∅. Assume that card(A) <
I−. Let h = hA be the successor in the sense of A. Then h ∈ F because
A is Ω-large. Let a = minA. Iterate h card(A) times to obtain something
greater than I+, contrary to Ω being very good.
For the converse assume that A ∩ Ω 6= ∅ ⇒ card(A) > I+ but Ω is not

very good. Pick F ∈ F such that the function x 7→ F x(x) is not in F. Then
for some definable α < I−, Fα(α) = β > I+. Let A = {α, F (α), . . . , Fα(α)}.
This set has cardinality α+1 < I−, so it cannot intersect Ω. Hence for some
j, F j(α) < I− < I+ < F j+1(α), contrary to F ∈ F.

Corollary 3.6. Every regular interstice is very good.

A similar argument also establishes

Lemma 3.7. Let Ω be a regular interstice and let A be an Ω-large set.
Then the function which enumerates A in increasing order is in FΩ.

Theorem 3.4 admits the following weak converse.

Theorem 3.8. If Ω is a very good interstice which contains an element
a such that tp(a) is selective then Ω is regular.

P r o o f. Let a ∈ Ω realize a selective type. Assume that Ω is not regular.
Let B be an Ω-large set and let a definable partition B =

⋃

i<αBi be
given with α < I− and such that no Bi is Ω-large. Pick i < α such that
min{x ∈ B : x ≥ a} is in Bi. If i is definable then Bi is Ω-large as it
intersects Ω. Hence i is not definable. But i = t(a) for some term t(·) and
by selectivity of tp(a), a = s(i) for some term s(·). It follows that a is in the
set {x : ∃y y < α& x = s(y)}, so this set is Ω-large, which is impossible by
Proposition 3.5: indeed, its cardinality is at most α.

Let us remark that Theorem 3.4 does not admit a full converse. There
are many interstices in M which are not regular but realize some selective
types. We give an example below, but point out that the situation is slightly
unclear. That is, we do not know the exact description of interstices which
realize selective types.

Theorem 3.9. Every recursively saturated model of some false comple-
tion of PA has a nonregular interstice in which some selective type is real-
ized.

P r o o f. Let A ∈M be any set definable without parameters of nonstan-
dard cardinality. Let B = {a+card(A) : a ∈ A}. Then B is not 2-big, so no
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interstice Ω such that B is Ω-large is regular. But the standard construction
involving the finite version of the Ramsey theorem gives a 2-indiscernible
(hence, selective) type q(·) such that the formula v ∈ B is in q. Let b realize
such a type q. Then the interstice of b satisfies our demand.

Our final goal in this section is to show that the converse to Lemma 3.6
is false; indeed, we show below that there exist very good interstices with
no element realizing any selective type.

Lemma 3.10. Let Ω = I+ \ I− be an interstice in a countable arithmeti-
cally saturated model of some false completion of PA. Then the following
are equivalent :

(i) for every Ω-large A, card(A) > I+,
(ii) every Ω-large A is ω-large in the Hardy sense.

P r o o f. One direction is obvious: indeed, if A is Ω-large and card(A) >
I+ then minA < I− < I+ < card(A), so A is ω-large. For the converse
assume that some A is Ω-large, but card(A) < I+. Then card(A) < I−:
indeed, A is definable without parameters, hence its minimum is as well.
Let B = {x ∈ A : card(A) < x}. Then B is Ω-large: indeed, each element
of A \ B is smaller than card(A) < I−, so B ∩ Ω 6= ∅. On the other hand,
card(B) ≤ card(A) < minB, so B is not ω-large.

Theorem 3.11. Let M 6|= Th(N) be a recursively saturated model of PA.
Then there is a very good interstice Ω which does not contain any element
realizing a selective type.

Corollary 3.12. Every recursively saturated model of some false com-
pletion of PA has an interstice which is very good but not regular.

P r o o f. Immediate by Theorems 3.11 and 3.4.

Before proving Theorem 3.11 we need another combinatorial notion. We
define (in PA) the notion of an m-gentried function f : [a, b)→ D, where D
is a (finite) set. Roughly speaking, f is gentried if it has a large domain.
First, we say that f : [a, b) → D is 0-gentried if [a, b) is ω-large. In-

ductively, f : [a, b) → D is (m + 1)-gentried if, whenever X ⊆ [a, b) and
either

(i) f is constant or one-one on X, or
(ii) X is not ω-large,

then there is [c, d) ⊆ [a, b) such that [c, d)∩X = ∅ and f↾[c, d) is m-gentried.
It is obvious that, for any m, if f is m-gentried, then the domain of f is
ω-large.

Lemma 3.13 (in PA). For every z and x , there are y and a z-gentried
function f : [x, y)→ [0, z].
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P r o o f. The proof is by induction on z. If z = 0, then let y = 2x + 1,
and thus [x, y) is ω-large, and let f be the function which is constantly 0 on
[x, y).

Assume we have proved the lemma for some z; we will prove it for z+1.
We define a sequence x0 < x1 < x2 < . . . and a sequence of functions fi :
[xi, xi+1)→ [0, z+1] as follows. Let x0 = x. Having xi, we let xi+1 > xi and
fi : [xi, xi+1)→ [0, z + 1] be such that fi is z-gentried and fi“([xi, xi+1)) ⊆
[0, z + 1] \ {r}, where r is the remainder when i is divided by z + 2. Let t
be such that {x1, . . . , xt} is ω-large and t > z + 2. Then let y = xt and let
f =
⋃

i<t fi.

We claim that f : [x, y) → [0, z + 1] is (z + 1)-gentried. Let X ⊆ [x, y).
We have three cases to consider. In each of these cases, we will find an i < t.

First, suppose that f is constant on X. Let i ∈ [0, z+1] be the constant
value of f . Second, suppose that f is one-one on X. Then card(X) ≤ z + 2,
so there is some i ≤ z + 2 such that [xi, xi+1) ∩X = ∅.

Finally, suppose that X is not ω-large. Let A = {i + 1 ≤ t : X ∩
[xi, xi+1) 6= ∅}, so A is not ω-large. Thus, there is i < t such that X ∩
[xi, xi+1) 6= ∅.

In each case, let [c, d) = [xi, xi+1), so that f↾[c, d) is fi. Clearly, [c, d) ∩
X = ∅ and fi is m-gentried.

Proof of Theorem 3.11. Let D0, D1, D2, . . . be a recursive list of all 0-
definable subsets of M . Let d be a nonstandard definable element of M ,
and let f : [a0, b0)→ [0, d] be the first (in some canonical order) definable d-
gentried function. By the lemma, there is such an f ; clearly, it is 0-definable.
Using the lemma repeatedly, we find [a0, b0) ⊇ [a1, b1) ⊇ [a2, b2) ⊇ . . . such
that, for each i ∈ N, f ↾ [ai, bi) is (d− i)-gentried, and if either f is constant
or one-one on Di or Di is not ω-large, then [ai+1, bi+1)∩Di = ∅. Moreover,
by always taking the first pair [ai, bi) which works we find that each ai and
bi is definable and that the two sequences 〈ai : i ∈ N〉 and 〈bi : i ∈ N〉 are
recursive.

Let Ω = {x ∈M : ai < x < bi}. Then Ω 6= ∅ by the recursive saturation
of M . It is easy to see that Ω is an interstice. For, if any c ∈M is definable,
then for some i, Di = {c}, which is not ω-large, so that c 6∈ Ω. Clearly, Ω
is very good, by Lemma 3.10. Finally, we show that if c realizes a selective
type, then c 6∈ Ω. There is some i ∈ N such that c ∈ Di and f is either
constant or one-one on Di. But then [ai+1, bi+1) ∩Di = ∅, so that c 6∈ Ω.

4. Selective types and maximality of basic subgroups. The main
(from the point of view of automorphisms) property of selective types is
Theorem 3.4 of [10] which states that if a > M(0) then tp(a) is selective
iff the stabilizer Ga is a maximal subgroup of G = Aut(M). Unfortunately,
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the proof given in [10] does not work for a < M(0). The exact description
of those a ∈ M(0) with maximal stabilizer is not known. But observe that
there exist a ∈M(0) such that Ga is maximal. The reason is that the proof
of Theorem 2.1 of [10] (stating that Ga is strongly maximal iff tp(a) is
2-indiscernible) works without the assumption that a > M(0). Also, there
is no problem in finding a ∈ M(0) realizing 2-indiscernible types: indeed,
the standard construction involving the (finite version of) Ramsey theorem
yields such types, and hence the appropriate elements. But we point out
that it is not clear in which interstices such elements exist.

The following construction yields a selective type which does not deter-
mine a maximal subgroup.

The argument depends on the so-called canonical Ramsey theorem of
Erdős and Rado [3]. Let us state it. If S is any set, we denote by [S]r the set
of all r-element subsets of S. If S is linearly ordered then we may identify
[S]r with the set of all increasing r-tuples of elements of S. A function
(coloring) χ with domain [S]r is canonical if for some V ⊆ {1, . . . , r}, we
have χ(〈a1, . . . , ar〉) = χ(〈b1, . . . , br〉) iff ai = bi for all i ∈ V .

Theorem 4.1. For every k, r there exists n such that for every coloring
of [n]r there exists T ⊂ {0, . . . , n− 1} of cardinality at least k on which the
coloring is canonical.

We stress that this result concerns colorings into arbitrarily many colors.
The result as stated is taken from [4], p. 133. But it is proved there only for
r = 2; for the complete treatment we refer to [3].

Below we shall work with partitions of the usual Cartesian products
×i<mXi of (finite) sets, rather than sets of the form [X]

m; our first task is
to derive the appropriate partition result for this case from Theorem 4.1.

Just as with [S]r we say that a function f with domain ×i<mXi is
canonical iff there exists a subset I ⊆ (< m) such that for all a, b ∈ ×i<mXi,
f(a) = f(b) iff ai = bi for all i ∈ I. If one thinks of ×i<mXi as of a
parallelepiped then this means that for some subset I of the coordinate set,
a, b have the same color iff a, b have the same coordinates i ∈ I, i.e., they
might differ only in coordinates i 6∈ I.

Lemma 4.2. For every m, k there exists n so that for every sequence
X1, . . . , Xm of sets of cardinality ≥ n each and every function f with domain
×mi=1Xi there exist sets Z1, . . . , Zm with each Zi being a subset of Xi of
cardinality at least k such that f is canonical on Z = ×mi=1Zi.

P r o o f. Givenm, k we find n which satisfies the condition of Theorem 4.1
for k and r = mk. Let sets X1, . . . , Xm be given. We may assume that they
are all equal, say B, and card(B) = n. Thus, f , being defined on Bm, is
defined in particular on [B]m. By Theorem 4.1, there exists a set A ⊆ B such
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that card(A) ≥ mk and f is canonical on the set of all m-element subsets
of A. We take Z1 to be the set of first k elements of A, Z2 = the set of next
k elements of A, etc. Let Z be the product of the Zi. Clearly, f is canonical
on Z.

Lemma 4.3. Given m, k there exists n such that whenever Xi for i ∈
{0, . . . , 2m} are sets of cardinality at least n and f is a function with domain
X = ×i≤2mXi, there exist Yi ⊆ Xi such that m+ 1 of Yi’s have cardinality
at least k , others are singletons and f is either constant or one-one on Y =
×i≤2mYi.

P r o o f. Given m, k we pick n which satisfies the condition of Lemma 4.2
for 2m+1, k. Let sets Xi : i ≤ 2m be given, let X = ×

2m
i=0Xi and let f be a

function defined on X. By Lemma 4.2 there are Zi ⊆ Xi, each of cardinality
at least k, such that f is canonical on Z, the product of Zi’s. Let I be a
subset of {0, . . . , 2m + 1} such that for all a, b ∈ Z, f(a) = f(b) iff ai = bi
for all i ∈ I. Either I or its complement is of power > m. If card(I) > m
we let Yi = Zi for i ∈ I and let the rest of Yi be singletons. Otherwise we
let Yi = Zi for i 6∈ I and the other Yi be singletons. In the first case f is
constant on Y (the product of Yi’s) and in the second case it is one-one
on Y .

Observe that all these combinatorial results are provable in PA. Granted
them we construct a type. So let M be a countable recursively saturated
model of some false completion of PA. Pick nonstandard definablem,n ∈M .
We may assume that m is odd, otherwise we take m − 1. Let ts(·) be a
recursive enumeration of all parameter-free terms in one free variable as
shown. Begin with the product nm (we identify n with the set of elements
< n). Begin with t0. Let k be as in Lemma 4.3. Obviously, k is nonstandard.
Choose a family Yi : i < m such that each Yi is a subset of n, (m+ 1)/2 of
them are of cardinality ≥ k, others are singletons and t0 is either one-one
or constant on the product ×i≤mYi. Then this product is isomorphic to the
product of the form k(m+1)/2, so Lemma 4.3 applies. We apply it to the next
term and so on. This procedure determines the type Γ (x) expressing that x
is in all of the products obtained in this manner.

Observe that the type Γ (x) is complete. Indeed, if ϕ(·) is a formula then
the term [y = 0&ϕ(x)]∨ [y = 1&¬ϕ(x)] is one of the terms ts, so is constant
on some product belonging to our type. Clearly, it cannot be one-one on a set
of nonstandard cardinality. Also clearly Γ is selective. Finally, it is obvious
that Γ is in the standard system of M (it was constructed recursively from
the complete diagram of M and the enumeration of terms), so it is realized
in M .
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Let a ∈ M realize this type. We show that the stabilizer Ga is not
maximal. The reason is that in each step we passed to a smaller product, at
about half coordinates we had singletons and at others we still had sets of
nonstandard cardinality. It follows that there exists b 6= a realizing Γ and
such that a, b differ just in one coordinate. Also there exists c realizing Γ such
that a, c differ in a nonstandard number of coordinates. Let f, g ∈ Aut(M)
be such that g(a) = b and f(a) = c. Clearly, f cannot be in the group
generated by Ga and g. Indeed, for n ∈ Z, gn(a) differs from a in a standard
finite number of coordinates, and, hence, the same is true for each element
of the subgroup of G generated by Ga and g. Summing up, we obtain the
following result which refutes a conjecture from [10].

Theorem 4.4. If M is a countable recursively saturated model of some
false completion of PA then there exists a ∈M(0) realizing a selective type
but whose stabilizer is not maximal.

It is not clear whether there may be a ∈ Ωsmallest whose type is selective
but Ga is not maximal.

5. A remark on the non-arithmetically saturated case. In this
section we prove the converse to Corollary 1.6. That is, we prove

Theorem 5.1. If M is a recursively saturated model of some false com-
pletion of PA which is not arithmetically saturated then M has an interstice
which is equal to its unique gap.

We begin with the following (well known) lemma.

Lemma 5.2. Let M be a recursively saturated model of PA. Then M is
arithmetically saturated iff the standard system of M , SSy(M), is closed
under arithmetical definability (i.e., definability in N).

P r o o f. See, e.g., [12].

Corollary 5.3. If M is recursively saturated but not arithmetically sat-
urated then there exists a set A ⊆ N which is not in SSy(M) but there exists
an enumeration of A which is in SSy(M).

We remark that the conclusion means that A = {r0, r1, . . .} for some
coded set of pairs 〈k, rk〉. Corollary 5.3 is well known; we leave its proof to
the reader.

We begin the proof of Theorem 5.1. So let M satisfy the assumption.
Pick A 6∈ SSy(M) which has a coded enumeration, A = {r0, r1, . . .}. Let
d0, d1, . . . be a recursive list of all constant terms. Fix also a nonstandard



Regular interstices and selective types 139

definable element c ∈M . We define a recursive sequence α0, α1, . . . of defin-
able elements of M . Let α0 = 0. Let also

αk+1 =

{

αk + (2rk + 2)c
c−k if dk ≤ αk + (2rk + 2)c

c−k,
αk + (2rk + 1)c

c−k otherwise.

The sequence αk is coded and increasing. We also let βk = αk + c
c−k+1.

We put I− = sup{αk : k ∈ N} and I+ = inf{βk : k ∈ N}. These sequences
determine an interstice Ω. Indeed, by high-school algebra every definable
element of the form dk is either smaller than αk+1 or greater than βk+1, so
it is not in Ω. We assert that FΩ is not coded inM , hence Ω is an intersticial
gap by Lemma 1.5.

It will be convenient to have one more notation. Let the sequence sk be
such that

αk = s0c
c + s1c

c−1 + . . .+ skc
c−k,

each sk being either 2rk + 1 or 2rk + 2.

In order to check that Ω has the desired property we define a function f
on [0, cc+1]× [0, c]. We let f(0, i) = 0 for all i ≤ c. In order to define f(x, i)
for x > 0 pick x ∈ [1, cc+1] and express it in base c:

x = b0(x) + b1(x)c+ b2(x)c
2 + . . .+ bc(x)c

c,

where each bk(x) < c. Let k = k(x) be the least such that bk(x) 6= 0. Let
f(x, i) = x if bk(x) is neither 2i + 1 nor 2i + 2 and f(x, i) = x + cc−k+1

otherwise. Let also fr(x) = f(x, r).

We claim that I− is closed under fr iff r 6∈ A. Assume firstly that I
− is

closed under fj but j ∈ A. Then j = rk for some k. Consider fj(αk). This
cannot be βk, so we must have fj(αk) = αk, hence bk(αk) = sk is neither
2j + 1 nor 2j + 2, which contradicts the definition of αk.

For the converse let j 6∈ A. Pick x < I− and write

(∗) x = b0(x) + b1(x)c+ b2(x)c
2 + . . .+ bc(x)c

c,

as above. Pick also e with x ≤ αe. Then

(∗∗) bc(x) ≤ s0, bc−1(x) ≤ s1, . . . , bc−e(x) ≤ se.

Case 1: k < c − e. Then in the expansion (∗) there are more than e
terms. But x ≤ αe, so there exists u ≤ e such that bc−u(x) < su. Then
fj(x) ≤ x+ c

k(x) ≤ αe because the exponent k(x) is strictly smaller than
c− u.

Case 2: k > c − e. Then the expansion (∗) of x is shorter than that of
αe, which contradicts the inequality x ≤ αe, by (∗∗).

Case 3: k = c− e. If there exists u ≤ e with bc−u(x) < su then exactly
as in case 1 we have fj(x) ≤ x + c

k ≤ αe because k ≤ c − e. Otherwise we
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have x = αe. Then fj(x) = x, for otherwise bc−e = se is either 2j + 1 or
2j + 2, so j is of the form rk, so it is in A, contrary to the assumption.

Observe that the functions fj are not nondecreasing. But the functions
Fj(x) = max{fj(y) : y ≤ x} are nondecreasing and have the same property:
j 6∈ A iff I− is closed under Fj . Granted this we see that F cannot be coded
in M , for otherwise A = {j ∈ N : Fj ∈ F} would be in SSy(M) as well.

6. More on the smallest interstice. In this section we do not assume
that M is recursively saturated: it is just a model of PA. Our goal here is to
give some information about the smallest interstice, Ωsmallest = I0(M) \ N,
where, as usual, I0(M) denotes inf{b ∈M : b is definable and nonstandard}.

Let us point out first that for many models M of PA, I0(M) = N. The
quickest way to construct such a model is to use the arithmetized com-
pleteness theorem to N and any completion of PA. A slightly more involved
argument exhibits recursively saturatedM with this property. On the other
hand, for many models M , I0(M) > N. This happens always if M is arith-
metically saturated.

It is easy to check that we always have N ≺Σ2 I0(M). Moreover, in some
respects, I0(M) behaves like a model of Th(N), e.g., if M is recursively
saturated, then every nonstandard element of I0(M) may be moved by an
automorphism. In particular, if I0(M) |= PA then I0(M) ≻ N.

One of the questions here is whether we have more elementarity. The
following construction shows that this need not be the case.

Let K be a model obtained from M by applying the arithmetized com-
pleteness theorem, so that the complete diagram of K is arithmetical. To
be more specific, we pick a formula C(·) describing a complete extension of
PA in N and put K = ACT(N;C), the model constructed from N and C
by means of the arithmetized completeness theorem. We extend K cofinally
by adding an element below all of its nonstandard elements. Working still
in N we add to the language LPA in the sense of K a new constant c and
consider the theory

C ∪ {c > t : ∃n C(t = Sn0)} ∪ {c < t : ∀n C(t > Sn0)}.

This theory is defined inside N and clearly it is consistent, so it has an arith-
metical model, say R. R is arithmetical, so I0(R) does not satisfy Th(N).
Indeed, SSy(I0(R)) = SSy(R), and if I0(R) |= Th(N) then every arithmetical
(i.e., definable in N) set must be in its standard system. The R constructed
above is not recursively saturated. But it is easy to refine this construction
to obtain a recursively saturated R with the above properties. Working in
N one extends the language not only by adding the constant c as above, but
also a unary symbol D for a satisfaction class. That is, we find (inside N) a



Regular interstices and selective types 141

complete extension of the set

{c > t : ∃n C(t = Sn0)} ∪ {c < t : ∀n C(t > Sn0)}

∪ {Sat(t,D) : ∃n C(t = Sn0)} ∪ induction for formulas of LPA(c,D)

∪{∀ϕ < t [C(ϕ)→ D(ϕ)] : ∃n D(t = Sn0)},

where Sat(e,D) expresses “D is a satisfaction class for Qe formulas”. Sum-
ming up we obtained

Proposition 6.1. There exists a countable recursively saturated model
R of PA such that I0(R) does not satisfy Th(N).

Our goal is to show that models R such that I0(R) |= Th(N) exist
as well. Indeed, we show that if R codes all arithmetical sets by definable
elements then I0(R) |= Th(N). But first let us point out that every countable
Scott set is the standard system of some pointwise definable model of PA
(see Scott [22]). Kaye [7] contains a detailed exposition of Scott sets. In
particular, there exist models K of PA which have the property mentioned
above, i.e., K is arithmetically saturated and every arithmetical set is coded
by a definable element of K. Indeed, if A is any given Scott set and M
is a pointwise definable model with SSy(M) = A then we may extend it
elementarily to an arithmetically saturated one.
We begin with a construction of an indicator to be used in the se-

quel. First we write down a formula A(n, b, c, w) which expresses “b is
a complete and immediately consistent set of substitutions of the form
ϕ(Su00, . . . , Sum−10), where ϕ ≤ n and u0, . . . , um−1 ≤ c, and each sub-
stitution which is in w is in b”. In order to construct this formula, let us
say that a substitution of the form ϕ(Su00, . . . , Sum−10) is n, c-admissible if
ϕ ≤ n and u0, . . . , um−1 ≤ c. Then A(n, b, c, w) is an abbreviation for the
conjunction of:

1. For all x ∈ b, x is a sentence and there exist ϕ ≤ n and u0, . . . , um−1 ≤
c such that x = ϕ(Su00, . . . , Sum−10).
2. For any ϕ, u0, . . . , um−1, if the substitution ¬ϕ(S

u00, . . . , Sum−10) is
n, c-admissible then exactly one of ϕ(Su00, . . . , Sum−10), ¬ϕ(Su00, . . .
. . . , Sum−10) is in b.
3. For every ϕ,ψ if the conjunction ϕ&ψ is n, c-admissible, then it is in

b iff both conjuncts are in b.
4. For every sentence ϕ(Su0) ∈ b and every m, if the sentence ∃vm ϕ(vm)

is n, c-admissible then it is in b.
5. For every x, y, z, if the statement Sx0 + Sy0 = Sz0 is n, c-admissible

then it is in b iff x+ y = z.
6. The same for other atomic formulas.
7. For every sentence ϕ ∈ w, if ϕ is n, c-admissible then it is in b.
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The idea here is the following. If A(n, b, c, w) then b is a candidate for truth
in the cut (< c) and all statements in w are supposed to be true; w is just a
starting point. But the definition gives the quantifier step in one direction,
the other direction will be treated below.
Let B(n, b, c, d, e, w) be an abbreviation for the conjunction of the fol-

lowing formulas:

A(n, b, c, w) &A(n, d, e, w) & b ⊆ d

and

“for all ϕ, u0, . . . , um−1 if the statement ∃v ϕ(v, S
u00, . . . , Sum−10) is in

b then there exists u such that the statement ϕ(Su0, Su00, . . . , Sum−10)
is in d ”.

We let Ext(j, n, b, c, w) be an abbreviation for

Seq(b) & Seq(c) & lh(b) = lh(c) = j &
∧∧

i<j−1

B(j, bi, ci, bi+1, ci+1, w).

We let Y (x, y, w) = max j : ∃b, c [Ext(j, b, c, w) & x ≤ c0 & cj−1 ≤ y]. It
is easy to see that Y is an indicator for the family of cuts satisfying (the
standard part of) w. It is slightly not obvious that Y is a Σ1 formula. But
Y (x, y, w) = j iff there exist b, c with

[Ext(j, b, c, w) & x ≤ c0 & cj−1 ≤ y]

& ¬∃b′, c′ [Ext(j + 1, b′, c′, w) & x ≤ c′0 & c
′
j ≤ y].

One may bound the quantifier ¬∃ above by bounding it to the maximum
of all sequences of length ≤ y with all items ≤ y (this gives a bound for c′)
and binding b′ by the maximum of all sets of sequences (of length ≤ y) of
subsets of the interval (< y). This causes no serious difficulty, so we omit
the details here.
At the moment we do not assume that Th(N) ∈ SSy(M). But we let wn

be the family of those elements of Th(N) which are n, n-admissible. Then wn
is in M : indeed, each wn is a finite set of (standard) natural numbers. We
also let Yn(x, y) = Y (x, y, wn). Then each Yn is definable by a Σ1 formula.
Observe that for every fixed n ∈ N, there exists a nonstandard zn such

that M |= Yn(n, zn, zn). The reason is that for every standard m, M thinks
that there exist sequences b, c which satisfy Ext(m, b, c, wn); one simply takes
truth in N to see this. It follows that either M thinks that this statement
holds for each m, or the greatest such m is nonstandard.
Let M |= PA be such that I0(M) > N. For every n ∈ N we pick a

definable nonstandard zn with Yn(n, zn) ≥ zn. We choose the appropriate
sequences bn, cn. (In this section we use superscripts to distinguish them
from subscripts, i.e., indices of the appropriate sequences; we do not need
exponentiation.) It will be convenient to have these sequences definable. For
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definiteness, we let cn0 = n, bn0 the smallest possible, then c
n
1 the smallest

possible, etc. This causes no difficulty.
It is easy to see that, when n is fixed, and we are given a cut I < zn,

then the cut

Bn(I) = sup{cni : i ∈ I}

has the following property: for every ϕ ≤ n and every u0, . . . , um−1,

Bn(I) |= ϕ(u0, . . . , um−1) iff ∃i ∈ I M |= ϕ(S
u00, . . . , Sum−10) ∈ bni .

This translation of truth in Bn(I) to truth in M is proved immediately by
induction on ϕ. In fact, the definitions above were given just to ensure this
translation.
The apparatus given above (taken from the theory of nonstandard sat-

isfaction classes) will be used to prove the following result. We denote by
SSy0(M) the standard system of the minimal model of Th(M), i.e., of the
Skolem closure of the empty set in M .

Theorem 6.2. For everyM |= PA, if Def(N) ⊆ SSy0(M) then I0(M) |=
Th(N).

P r o o f. Fix n ∈ N. Pick a definable element d of M coding truth in N

for formulas ≤ n. That is, for u0, . . . , ur−1 ∈ N and ϕ ≤ n,

N |= ϕ(u0, . . . , ur−1) ≡ M |= pϕ(Su00, . . . , Sur−10)q ∈ d.

For this d we construct the sequences b, c in the “natural” manner. That is,
we put c0 = n and b0 = d ∩ (< b0). For each existential statement ∃u ψ(u)
which is in b0 we choose the smallest u such that the statement ψ(S

u0) is in
d and take the maximum of all u obtained in this manner. This maximum is
c1; we also put b1 = d∩(< c1). Continuing in the same fashion gives b and c.
Observe that N is closed under the function cj → cj+1 and these sequences
are of nonstandard length. In particular, their length is greater than I0(M).
We claim that

I0(M) =
⋃

i∈I0(M)

cni .

First, clearly i ≤ cni : indeed, the formula v2 = v1 ensures this, so the in-
clusion ⊆ is immediate. For the converse pick s > I0(M). Then for every
standard n, cn < s because N and I0(M) are closed under the successor
in the sense of c. It follows that “the greatest j with cnj smaller than s” is
definable and greater than N, so must be greater than I0(M), so it is not in
the right hand side.
By the translation above, the right hand side is the union of a chain

which is elementary with respect to formulas ≤ n, in particular, it satisfies
all sentences ϕ which are true in N and smaller than n. Moreover, this holds
for every n, so I0(M) satisfies the whole Th(N).
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Theorem 6.3. If M is a recursively saturated model of PA such that
I0(M) > N and Th(N) ∈ SSy0(M) then I0(M) is recursively saturated.

P r o o f. Let p(x, e) be a type over I0(M), in particular the parameter e
is in I0(M). Pick a definable w ∈M coding Th(N). For every n ∈ N we put
wn = {γ ∈ w : γ ≤ n}. Construct two sequences bn, cn exactly as above,
the nth pair for wn. Observe that these sequences are coded in M . Exactly
as above, N and M are closed under the successor functions in the sense
of cn. We let pn(x, e) be the subtype of p(x, e) consisting of all elements
ψ(x, e) ∈ p with ψ ≤ n.

We let jn = 1+min{i : c
n
i > e}. Pick also coded sequence βk of definable

elements of M convergent to I0(M) from above. Then we have

(i) cnjn < βk for all k and (ii) ∃x < cnjn p∧∧ pn(S
x0, Se0)q ∈ bmjm .

Consider the type

Γ (x) = {p∧∧ pn(S
x0, Se0)q ∈ bnjn : n ∈ N}

whose parameters are e and sequences coding bn : n ∈ N and cnjn : n ∈ N.
Obviously, this type is finitely realized, each of its realizations is in I0(M),
and by the translation given above, each element realizing Γ in M realizes
p in I0(M). Also, it is easy to replace infinitely many parameters b

n : n ∈ N

and jn : n ∈ N by the single parameter w.

7. A remark on pseudogaps. In all the results in [1] and above we
worked with intersticial gaps defined by means of nondecreasing definable
functions. There exists another candidate for this notion. It is as follows.
Work with a fixed interstice Ω = I+ \ I− in M. Given a ∈ Ω define two
cuts Id and Ig by Id = inf{t(a) : t is a term such that t(a) ∈ Ω} and
let Ig denote the supremum of the same set. Call the space between these
two cuts, i.e., Ig \ Id, the pseudogap of a. In several proofs, especially in
the moving gaps and covering gaps lemmas from [1], it was essential that
we worked with nondecreasing functions (i.e., with the ordinary intersticial
gaps) rather than with arbitrary definable functions. Of course, the situation
would be much clearer if we could prove that the notions of pseudogaps and
gaps are the same. Unfortunately, it is not so.

Theorem 7.1. If M is an arithmetically saturated model of some false
completion of PA then there exists a ∈ Ωsmallest such that the gap of a is
strictly included in the pseudogap of a.

In order to construct the appropriate a we need a function D for which
we have no sensible control on inequalities between values of D. There is
a “natural” candidate for such a function. It is defined as follows. Let Tr0
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denote, as usual, the universal formula for ∆0 formulas. We let

D(x) =

{

the y such that Tr0(ϕ(S
u0, Sy0))

if ∃ϕ, u [x = ϕ(Su0, v) & ϕ ∈ ∆0 & ∃!y Tr0(ϕ(S
u0, Sy0))],

0 otherwise.

Recall that by the arithmetical saturation ofM , the family F of nondecreas-
ing definable (inM) functions under which N is closed, is coded in SSy(M),
so may be used in types.

Pick e ∈ I0(M) \ N and consider the type

Γ (x) = {x > e& ∃ϕ, u [ϕ ∈ ∆0 & x = ϕ(S
u0, v) & ∃!y Tr0(ϕ(S

u0, Sy0))

&∃y [n < y < F (x) & Tr0(ϕ(S
u0, Sy0))]] : n ∈ N, F ∈ F}.

Observe that if x realizes Γ then the appropriate ϕ(Su0, v) defines (in the
sense of Tr0) an element y which is in the pseudogap around x but not in the
gap around x. Hence, it suffices to check that Γ is consistent. But this is easy.
Indeed, if Γ0 is a finite part of Γ then x of the form pv = Sr0 & ∧∧i<e ̺iq
(where each ̺i is 0 = 0) realizes Γ0 for r large enough.

Observe that the same argument works for each interstice Ω = I+ \ I−

such that I− is closed under (primitive recursive functions representing)
logical operations and at least one of the sequences αn, βn as in Lemma 1.3
contains only elements Σk-definable for some k which is independent of n.
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