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On regular semigroups whose idempotents

form a semigroup: Addenda

T. E. Hall

The results in the first parts of Theorems 2 and 3 of the paper in

the title (see [2]) have been previously obtained by B.M. Schein in

Theorem 1.12, page 299 [4], and in Proposition 1.13 (combined with the last

paragraph of page 300) [4], respectively. To deduce the first part of

Theorem 2 [2] from Theorem 1.12 [4] one merely uses the fact that a binary

relation 1? on a set X satisfies RR R £ if if and only if it

satisfies: R{x) n R(y) t D implies R(x) = R(y) , for any x, y i X

(see Proposition 9, page 132 [3]).

Conversely, one can deduce the mentioned results in [4] from those in

[2] by observing that all the regular elements in any semigroup form a

subsemigroup if (and clearly only if) the product of each pair of

idempotents is a regular element, in particular when all the idempotents

form a subsemigroup (from Theorem 2.k, page k$ [/]).

The equivalence of (i) and (ii) in Result 1 [2] (cited as due to N.R.

Rei My and H.E. Scheiblich) has also been obtained by B.M. Schein in

Theorem 1.10, page 298 [4].
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