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ON REGULARITY CRITERIA IN TERMS OF PRESSURE
FOR THE NAVIER-STOKES EQUATIONS IN R3
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(Communicated by David S. Tartakoff)

Abstract. In this paper we establish a Serrin-type regularity criterion on
the gradient of pressure for the weak solutions to the Navier-Stokes equations
in R3. It is proved that if the gradient of pressure belongs to Lα,γ with
2/α + 3/γ ≤ 3, 1 ≤ γ ≤ ∞, then the weak solution is actually regular.
Moreover, we give a much simpler proof of the regularity criterion on the
pressure, which was showed recently by Berselli and Galdi (Proc. Amer. Math.
Soc. 130 (2002), no. 12, 3585–3595).

1. Introduction

We consider the following Cauchy problem for the incompressible Navier-Stokes
equations in R3 × (0, T ):⎧⎪⎨

⎪⎩
∂u

∂t
+ u · ∇u + ∇p = ∆u,

divu = 0,
u(x, 0) = u0(x),

(1.1)

where u = u(x, t) ∈ R3 is the velocity field, p(x, t) is a scalar pressure, and u0(x)
with divu0 = 0 in the sense of distribution is the initial velocity field.

The study of the incompressible Navier-Stokes equations in three space dimen-
sions has a long history (see [5, 19]). In the pioneering work [12] and [7], Leray
and Hopf proved the existence of its weak solutions u(x, t) ∈ L∞(0, T ; L2(R3)) ∩
L2(0, T ; H1(R3)) for given u0(x) ∈ L2(R3). However, we do not yet know whether
or not the solution develops singularities in finite time even if the initial datum
is C∞-smooth. In [15], Scheffer began to study the partial regularity theory of
the Navier-Stokes equations. Deeper results were obtained by Caffarelli, Kohn and
Nirenberg in [3]. Further results can be found in [20] and the references therein.

On the other hand, the regularity of a given weak solution u can be shown un-
der additional conditions. In 1962, Serrin [16] proved that if u is a Leray-Hopf
weak solution belonging to Lα,γ ≡ Lα(0, T ; Lγ(R3)) with 2/α + 3/γ < 1, 2 <
α < ∞, 3 < γ < ∞, then the solution u(x, t) belongs to C∞(R3 × (0, T ]), while
the limit case 2/α + 3/γ = 1 was covered much later by H. Sohr [17] (recently,
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Beirão da Veiga [1] added Serrin’s condition on only two components of the ve-
locity field). From then on, there are many criterion results added on u. In [21]
and [6], von Wahl and Giga showed that if u is a weak solution in C([0, T ); L3(R3)),
then u(x, t) ∈ C∞(R3 × (0, T ]). Struwe [18] proved the same regularity of u in
L∞(0, T ; L3(R3) provided sup0<t≤T ‖u(x, t)‖L3 is sufficiently small, and Kozono
and Sohr [10] obtained the regularity for the weak solution u(x, t) ∈ C∞(R3×(0, T ])
provided u(x, t) is left continuous with respect to the L3-norm for every t ∈ (0, T ).
Recently Kozono and Taniuchi [11] showed that if a Leray-Hopf weak solution
u(x, t) ∈ L2(0, T ; BMO), then u(x, t) is actually a strong solution of (1.1) on (0, T ].
Recent progress concerning another limit case u ∈ L∞(0, T ; L3) can be found in [8]

It is well known that if (u, p) solves the Navier-Stokes equations, then so does
(uλ, pλ) for all λ > 0, where uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t). The
class of Serrin’s type is important from a viewpoint of scaling invariance, which
implies that ‖uλ‖Lα,γ = ‖u‖Lα,γ holds for all λ > 0 if and only if 2/α + 3/γ = 1,
and we say that the norm ‖u‖Lα,γ has the scaling dimension zero [3].

It is easy to check that if 2/α + 3/γ = 3, ‖∇p‖Lα,γ has scaling dimension zero.
As far as we know, there are only few regularity criteria in terms of ∇p; see [2, 14].
The best result [2] for the whole space is that

∇p ∈ Lα(0, T ; Lγ(R3)) with
2
α

+
3
γ

= 3, for γ ∈ [9/7, 3].

In [2], regularity criteria were established not only for the whole space, but also for
a domain with boundary (bounded, exterior or the half-space). The purpose of this
paper is to establish a final regularity criterion in terms of the gradient of pressure.
Our main theorem reads

Theorem 1.1. Let u0(x) ∈ L2(R3) ∩ Lq(R3), for q ≥ 4, and let divu0 = 0 in the
sense of distribution. Suppose that u(x, t) is a Leray-Hopf weak solution of (1.1).
If

∇p ∈ Lα
(
0, T ; Lγ(R3)

)
with

2
α

+
3
γ
≤ 3,

2
3

< α < ∞, 1 < γ < ∞,

or ∇p ∈ L2/3,∞, or else ‖∇p‖L∞,1 is sufficiently small, then u(x, t) is a regular
solution on [0, T ].

Remark 1.1. For Navier-Stokes equations in a domain Ω � R3, it is very difficult;
cf. [2, 22].

In section 3, we will give a much simpler proof for the following known result.
Moreover, our method can treat γ uniformly instead of a different trick for different
γ as done in [2, 4].

Theorem 1.2 ([2]). Under the same assumption as Theorem 1.1, if

p ∈ Lα
(
0, T ; Lγ(R3)

)
with 2/α + 3/γ ≤ 2, 1 < α < ∞, 3/2 < γ < ∞,

then u(x, t) is a regular solution on [0, T ].

Remark 1.2. The limit cases p ∈ L1,∞ or ‖p‖L∞,3/2 being sufficiently small were
treated in [4].
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2. Proof of Theorem 1.1

First, we should establish an a priori estimate.
Taking ∇div on both sides of (1.1) for smooth (u, p), one can obtain

−∆(∇p) =
3∑

i,j=1

∂i∂j (∇(uiuj)) .

Therefore the Calderon-Zygmund inequality

‖∇p‖Lq ≤ C1 ‖|u||∇u|‖Lq(2.1)

holds for any 1 < q < ∞. This relation (2.1) between ∇p and derivatives of the
velocity plays a very important role in the following proof. As far as we know, no
one has used (2.1) before.

Multiply both sides of equation (1.1) by 4u|u|2, and integrate over R3. After
suitable integration by parts, we obtain

d

dt
‖u‖4

L4 + 4‖|∇u||u|‖2
L2 + 2‖∇|u|2‖2

L2

≤ 4
∫

R3
|∇p||u|3dx ≤ 4‖∇p‖1/2

L2 ‖∇p‖1/2
Lγ ‖u‖3

L12γ/(3γ−2)

≤ ε‖∇p‖2
L2 + C(ε)‖∇p‖2/3

Lγ ‖u‖4
L12γ/(3γ−2)

≤ εC‖|∇u||u|‖2
L2 + C(ε)‖∇p‖2/3

Lγ ‖u‖4(1−1/γ)
L4 ‖u‖4/γ

L12

≤ εC‖|∇u||u|‖2
L2 + C(ε, δ)‖∇p‖2γ/3(γ−1)

Lγ ‖u‖4
L4 + δ‖u‖4

L12 ,(2.2)

where we used (2.1) for q = 2. Since

‖u‖4
L12 =

∥∥|u|2∥∥2

L6 ≤ C‖|∇u||u|‖2
L2 ,

after choosing suitable ε and δ, it follows from (2.2) that

d

dt
‖u‖4

L4 ≤ C‖∇p‖2γ/3(γ−1)
Lγ ‖u‖4

L4 .(2.3)

Then applying Gronwall inequality on (2.3), we have

sup
0≤t≤T

‖u(., t)‖4
L4 ≤ ‖u0‖4

L4 exp

{∫ T

0

‖∇p(., τ)‖2γ/3(γ−1)
Lγ dτ

}
.

If 1 < α, γ < ∞, note that 2γ/3(γ − 1) ≤ α. Due to the integrability of ∇p, it
follows that

sup
0≤t≤T

‖u(., t)‖4
L4 ≤ C(T )‖u0‖4

L4 .(2.4)

For (α, γ) = (2/3,∞), by taking the limit case in (2.2), we obtain that

d

dt
‖u‖4

L4 + 4‖|∇u||u|‖2
L2 + 2‖∇|u|2‖2

L2

≤ εC‖|∇u||u|‖2
L2 + C(ε, δ)‖∇p‖2/3

L∞‖u‖4
L4 + δ‖u‖4

L12 .(2.5)

Then by Gronwall inequality, (2.4) follows from (3.9).
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Similarly, for (α, γ) = (∞, 1), we have
d

dt
‖u‖4

L4 + 4‖|∇u||u|‖2
L2 + 2‖∇|u|2‖2

L2

≤ εC‖|∇u||u|‖2
L2 + C(ε)‖∇p‖2/3

L1 ‖|∇u||u|‖2
L2 .(2.6)

So if sup0≤t≤T ‖∇p(., t)‖L1 is sufficiently small, say εC ≤ 2 and

C(ε) sup
0≤t≤T

‖∇p(., t)‖2/3
L1 ≤ 2,

then

sup
0≤t≤T

‖u(., t)‖4
L4 ≤ ‖u0‖4

L4 .(2.7)

In order to prove Theorem 1.1 we recall a result of Giga [6] (see also [9]).

Theorem 2.1 ([6]). Suppose u0 ∈ Ls(R3), s ≥ 3. Then there exists T0 and
a unique classical solution u ∈ BC([0, T0); Ls(R3)). Moreover, let (0, T∗) be the
maximal interval such that u solves (1.1) in C((0, T∗); Ls(R3)), s > 3. Then

‖u(., τ)‖Ls ≥ C

(T∗ − τ )(s−3)/2s
(2.8)

with constant C independent of T∗ and s.

Proof of Theorem 1.1. Since u0 ∈ L2(R3) ∩ Lq(R3) for some q ≥ 4, then u0 ∈
L4(R3). Due to Theorem 2.1, there is a maximal interval [0, T∗) such that there
exists a unique solution ũ(x, t) ∈ BC([0, T∗); L4(R3)). Since u is a Leray-Hopf weak
solution which satisfies the energy inequality, we have by the uniqueness criterion
of Serrin-Masuda [16], [13]

u ≡ ũ on [0, T∗).

By the a priori estimate, (2.4) or (2.7), and combined with the standard con-
tinuation argument, we can continue our local smooth solution corresponding to
u0 ∈ L4(R3) to obtain u ∈ BC([0, T ]; L4(R3)) ∩ C∞(R3 × (0, T ]). This completes
the proof of Theorem 1.1. �

Remark 2.1. By the same trick as that used in section 3, one can establish an a
priori estimate for ‖∇p‖Ls with 3 ≤ s < 4.

3. A new proof for Theorem 1.2

The first step is to give an interpolation inequality.

Lemma 3.1. Suppose a measurable function f ∈ L∞,s ∩ Ls,3s on (R3 × [0, T )).
Then f ∈ Lp,q with s ≤ p, s ≤ q ≤ 3s and s

p + 3s
2q ≥ 3

2 , and

‖f‖Lp,q ≤ C(p, q, T )
∥∥f

∥∥ 3s−q
2q

L∞,s

∥∥f
∥∥(3q−3s)/2q

Ls,3s ,(3.1)

where C(s, p, q, T ) depends on s, p, q, T , and C(p, q, T ) = 1 if s
p + 3s

2q = 3
2 .

Proof.

‖f‖Lp,q =
( ∫ T

0

‖f(., τ)‖p
Lqdτ

)1/p

≤
( ∫ T

0

‖f(., τ)‖θp
Ls‖f(., τ)‖(1−θ)p

L3s dτ
)1/p

≤ C(s, p, q, T )‖f‖θ
L∞,s‖f‖(1−θ)

Ls,3s ,
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where we use the interpolation theorem

1
q

=
θ

s
+

1 − θ

3s
, s ≤ q ≤ 3s,(3.2)

and Hölder’s inequality, provided (1 − θ)p ≤ s.

From (3.2), 1 − θ = 3q−3s
2q , we obtain s

p + 3s
2q ≥ 3

2 . If s
p + 3s

2q = 3
2 , which implies

1 − θ = s
p , then obviously C(s, p, q, T ) = 1. �

The idea of the proof of Theorem 1.2 is similar to that of Theorem 1.1. Now the
only thing we need is the following a priori estimate.

Theorem 3.2. Let s ≥ 3, 1 < α < ∞ and 3
2 < γ < ∞ be given. Suppose u0 ∈

Ls(R3) with divu0 = 0. Assume (u, p) is a smooth solution of (1.1) in R3 × (0, T )
with u ∈ L∞,2 and ∇u ∈ L2,2. If p ∈ Lα,γ with 2

α + 3
γ = 2, then u ∈ L∞,s ∩ Ls,3s

sup
0≤t≤T

‖u(., t)‖s
Ls ≤ 2[C‖p‖Lα,γ ]+1‖u0‖s

Ls ,(3.3)

where C = C(s, α, γ).

Proof. In order to prove (3.3) we multiply both sides of equation (1.1) by su|u|s−2,
and integrate over R3 × (0, t), 0 < t ≤ T . After suitable integration by parts, we
obtain

‖u(., t)‖s
Ls + s

∫ t

0

∫
R3

|∇u|2|u|s−2dxdτ +
4(s − 2)

s
‖∇|u|s/2‖2

L2,2

≤ 2(s − 2)
∫ t

0

∫
R3

|p||u|s/2−1|∇|u|s/2|dxdτ + ‖u0‖s
Ls ,(3.4)

where we used

−s

∫ t

0

∫
R3

∇p · u|u|s−2dxdτ = s(s − 2)
∫ t

0

3∑
i,j=1

∫
R3

p
∂uj

∂xi
uiuj |u|s−4dxdτ

≤ 2(s − 2)
∫ t

0

∫
R3

|p||u|s/2−1|∇|u|s/2|dxdτ.

If we use the fact that

|∇|u|s/2| ≤ s

2
|u|s/2−1|∇u|,

then (3.4) will be reduced as follows:

‖u(., t)‖s
Ls + 2‖∇|u|s/2‖2

L2,2 ≤ 2(s − 2)
∫ t

0

∫
R3

|p||u|s/2−1|∇|u|s/2|dxdτ + ‖u0‖s
Ls

≡ A + ‖u0‖s
Ls .(3.5)

Before going to estimate A, we recall the well-known equality given by

− ∆p =
3∑

i,j=1

∂i∂j(uiuj).(3.6)

The Calderon-Zygmund inequality implies

‖p‖Lγ ≤ C1‖u‖2
L2γ , 1 < γ < ∞.(3.7)
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Now,

A ≤ C2

∫ t

0

‖p‖La‖u‖s/2−1

Lb ‖∇|u|s/2‖L2dτ

(
Hölder’s inequality

1
a

+
s/2 − 1

b
=

1
2

)
≤ 1

2
C2

∫ t

0

‖p‖2
La‖u‖s−2

Lb dτ +
∫ t

0

‖∇|u|s/2‖2
L2dτ

(
Young’s inequality

)

≤ 1
2
C2

∫ t

0

‖p‖2(1−θ)
Lγ ‖p‖2θ

Lb/2‖u‖s−2
Lb dτ +

∫ t

0

‖∇|u|s/2‖2
L2dτ

(
interpolation inequality

1
a

=
1 − θ

γ
+

θ

b/2

)

≤ C3

∫ t

0

‖p‖2(1−θ)
Lγ ‖u‖4θ+s−2

Lb dτ +
∫ t

0

‖∇|u|s/2‖2
L2dτ

(
by (3.7)

)

≤ C3‖p‖2(1−θ)
Lα,γ ‖u‖4θ+s−2

Lq,b +
∫ t

0

‖∇|u|s/2‖2
L2dτ

(
Hölder’s inequality

2(1 − θ)
α

+
4θ + s − 2

q
= 1

)
.

We can choose the number θ = 1
2 ; then

a =
2γs

2γ + s − 2
, b =

γs

γ − 1
, q =

αs

α − 1
.(3.8)

From (3.8), by direct computation, q and b satisfy

s

q
+

3s

2b
=

5
2

(
1
α

+
3
2γ

)
≥ 3

2
, s < q, s < b < 3s,

so we can use inequality (3.1). Therefore

A ≤ C3‖p‖Lα,γ‖u‖s
Lq,b +

∫ t

0

‖∇|u|s/2‖2
L2dτ

≤ C4‖p‖Lα,γ‖u‖
2γ−3
2γ s

L∞,s ‖u‖
3
2γ s

Ls,3s +
∫ t

0

‖∇|u|s/2‖2
L2dτ

≤ C5‖p‖
2γ

2γ−3
Lα,γ ‖u‖s

L∞,s + C6‖u‖s
Ls,3s +

∫ t

0

‖∇|u|s/2‖2
L2dτ,

where C5 is constant depending only on α, γ and s, while C6 is an absolute constant
to be determined later. Substituting the above inequalities into (3.5) and using the
Sobolev inequality for suitable C6,

C6‖u‖s
L3s = C6‖|u|s/2‖2

L6 ≤ ‖∇|u|s/2‖2
L2 ,

one has

‖u(., t)‖s
Ls ≤ C5‖p‖

2γ
2γ−3
Lα,γ ‖u‖s

L∞,s + ‖u0‖s
Ls .(3.9)

Theorem 3.1 follows from (3.9) and the integrability of p. �

Remark 3.1. From the proof of Theorem 1.2, it is obvious that Theorem 1.2 holds
for arbitrary dimension N , N ≥ 3.
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