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ON REGULARITY PRESERVATION IN A SEMIGROUP

J.B.HlCKEY

We consider certain subsets of a semigroup 5, defined mainly by conditions involv-
ing regularity preservation. In particular, the regular base B(5) of 5 may be regarded
as a generalisation of the zero ideal in a semigroup with zero; if it is non-empty then
5 is S-inversive. The other subsets considered axe related in a natural way either to
B(S) or to the set RP(5) of regularity-preserving elements in S. In a regular semi-
group (equipped with the Hartwig-Nambooripad order) each of these subsets contains
either minimal elements only or maximal elements only. The relationships between
the subsets are discussed, and some characterisations of completely simple semigroups
are obtained.

1. INTRODUCTION

For a semigroup S with a regular element, the set RP(S) of regularity-preserving
elements of S was introduced in [8] and further studied in [2, 12]. If the subset RRP(S)
of regular elements in RP(5) is non-empty, then it is a completely simple subsemigroup
of S and can be regarded as a generalisation to S of the group of units in a monoid [8].
In a regular semigroup S, all the elements of RP(S)(=RRP(S)) are maximal in S under
the Hartwig-Nambooripad partial order [7, 16] and all belong to a maximum J-dass.
Thus RP(S), if non-empty, can be said to be at the 'upper end' of a regular semigroup
5.

Section 2 below is devoted to notation and preliminaries. In sections 3 and 4 we
consider certain subsets of a semigroup 5 that are similar to RP(5) or are related to it in
a natural way. These are defined mainly by conditions involving regularity preservation.
In particular, for a semigroup S with a regular element, we define a subset B(S) of S
that can be regarded as an analogue of RP(S) lying at the 'lower end' of 5: if it is
non-empty, it is a completely simple subsemigroup of 5 and forms a minimum ideal for
S (Theorem 3.7); also, it reduces to {0} in the case when 5 has a zero element. Further,
a semigroup S with the property that B(5) is non-empty must be fJ-inversive (Corollary
4.7). The remaining subsets under discussion are closely related to (and may coincide
with) either RP(5) or B(S), and we determine the relationships that exist, in general,
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between them (Lemma 3.6, Lemma 3.8, Corollary 3.12, Theorems 4.2, 4.4 and 4.8). In a
regular semigroup each of these subsets contains either maximal elements only or minimal
elements only.

Section 5 is concerned with regular semigroups. Here, elements that are weakly
cancellable on 5 are seen to be maximal in 5 (Corollary 5.4). The set of such elements is
considered in relation to the other sets of maximal elements under discussion (Theorem
5.3), and some characterisations of completely simple semigroups are obtained (Theorems
5.5 and 5.6). At the 'lower end', we have that B(5) coincides with the set of minimal
elements in S (Theorem 5.1).

Section 6 is devoted to examples.

2. PRELIMINARIES

We use the notation and terminology of [6, 10, 11] throughout. In particular,
Reg(S) will denote the set of regular elements in a semigroup S.

We begin by recalling some ideas and results from [17, 1, 8, 2, 7, 16]. Let a be
an element of a (multiplicative) semigroup 5. By a pre-inverse [post-inverse] of a we
mean an element b € S such that aba = a[bab = b] [8]. We denote the set of pre-inverses
[post-inverses] of a by Pre(a) [Post(a)]. Thus we have that V(a) = Pre(a) n Post(a),
where, as usual, V(a) denotes the set of inverses of a in 5. (It should be remarked here
that post-inverses are often called weak inverses in the literature.) Clearly we have that
Post(a) C Reg(S) for all a€ S.

By a mididentity [or middle unit or midunit] in a semigroup S we mean an element
u £ S such that xuy = xy for all x,y e S [17, 1,8].

If 5 is a semigroup and a € S, the binary operation o defined on the set 5 by
x o y = xay is associative; the resulting semigroup is denoted by (5, a) and is called a
variant of 5 . Variants have been studied in [8, 2, 9, 12] and form a special case of the
semigroups studied in [4].

For a regular semigroup 5, the Hartwig-Nambooripad partial order ^ on S [7, 16]
may be formulated in several ways (see, for example, [10, Section 1.4]). One such is the
following: for x,y € 5 ,

x < y «> (3e, / G E{S)) x = ey = yf.

We note that restricting this to E(S) xE(S) gives the natural partial order on E(S), so
that if e and / are idempotents in S, then

e ^ / o- e = ef = fe.

Further, if S is an inverse semigroup then ^ reduces to the natural order relation on S.
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The Hartwig-Nambooripad order may also be formulated in terms of variants
[8, Theorem 5.1]: for x,y € S,

x ^i y <=> (3a e S) x,y € E((S,a)) and x = xoy = yox in (S, a).

LEMMA 2 . 1 . [2, Lemma 2.1] Let x, y be elements of a, regular semigroup S and

let y' be a pre-inverse ofy. Then

x ^ y •&• x e E((S, y')) with x ~ x o y = y o x in (S, y').

Throughout the paper, when we say that an element a of a regular semigroup S is
minimal [maximal ] in S, we shall mean that a is minimal [maximal] in 5 under the
above partial order.

Returning to arbitrary semigroups 5, we see that every element that is regular in a
variant (S, a) must also be regular in S, but that the converse is not true. It is natural
then to make the following definition [8]: if o, x are elements of a semigroup 5, then we
say that a preserves the regularity of x (or simply that a preserves x) if x is regular in
(5,a). We may note that if, for a,x € S, we have that a preserves x, then x must already
be regular in 5.

Suppose that, for a semigroup 5, the set Reg(S) is not empty. If a 6 5 preserves
every element of Reg(S) then we say that a is a regularity-preserving element in 5. The
set of such elements in 5 is denoted by RP(5). The set of regular regularity-preserving
elements in 5 is denoted by RRP(S). We can regard RP(5) (when S has a mididentity)
and RRP(S) as generalisations to S of the group of units in a monoid [8, Section 4].
In particular, in an arbitrary semigroup S, the subset RRP(S), if non-empty, forms a
completely simple subsemigroup of 5 that reduces to the group of units of S when S
is a monoid [8, Theorem 4.4 and 4.7]. In a regular semigroup 5, with RP(S) ^ 0, the
elements of RP(S)[= RRP(S)] are maximal in S (under the Hartwig-Nambooripad order)
[2, Corollary 2.4]; also, as shown by Khan and Lawson [12, p. 360], all such elements
belong to a maximum J-c\ass. We may thus regard RP(5), if non-empty, as lying at the
'upper end' of a regular semigroup S.

If S is completely simple then each variant of S is regular [8, Lemma 3.4], so each
element of S preserves all the elements of 5. It follows that RP(5) = S here.

The following simple observation will be useful to us throughout the paper.

LEMMA 2 . 2 . Let S be a semigroup. If a,b e S are such that bab = b, then a

preserves b.

PROOF: If bab = b, then b is an idempotent in (S, a) and hence is regular there. 0

It follows that an element of a semigroup preserves each of its post-inverses and is

preserved by each of its pre-inverses.
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3. R E G U L A R I T Y PRESERVATION AND SOME RELATED SUBSETS O F A SEMIGROUP

We begin with an easy generalisation of [12, Section 2, Proposition 3].

LEMMA 3 . 1 . Let S be a semigroup and let x, y be elements ofS. Then

x preserves y •«• y is regular and yxlly C xy.

PROOF: Suppose x preserves y. Then y = y o z o y in (5, x) for some z e S, that is,
y = yxzxy. It follows that y is regular and that yxTZy Cxy.

Conversely, suppose y is regular and that yxTZy Cxy. Then, for some z,w € S1, we
have yxz = y — wxy. Let y' £ Pre(y). Then

y = yy'y = (yxz)y'{wxy) =yo (zy'w) o y in (5 , x).

Thus x preserves y. D

The next result is similar to [8, Lemma 4.3].

LEMMA 3 . 2 . Let S be a semigroup.

(i) Ifa€S is such that a preserves itself, then Ha is a subgroup of S.

(ii) Let b and c be elements of S such that b € cS D Sc. If b preserves an

element x € S then c must also preserve x.

(iii) Let b and c be regular elements of S such that c e bS C\ Sb. If an element

x 6 5 preserves b then x must also preserve c.

PROOF: The proofs of (i) and (ii) are easy generalisations of the proof of [8, Lemma
4.3].

We prove (iii). Let b and c be as given and let x 6 S preserve b. Then b = bxwxb for
some w € 5. Also c = bs = tb for some s,t 6 S and so c = bxwxc — cxwxb. But c = czc

for some z € S, since c is regular, and so c — (cxwxb)z(bxwxc), giving that x preserves
c, as required. D

Now let S be a semigroup and let a, 6 € S. We shall call (a, b) a mutually preserving

pair if a and b preserve each other. Clearly, if (a, b) is a mutually preserving pair then so
is (b,a).

LEMMA 3 . 3 . Let S be a semigroup and let (a, b) be a mutually preserving pair

in S. Then

(i) ballbCab and abKaCba,

(ii) aba - a <=> bab = b.

PROOF: (i) follows from Lemma 3.1. To prove (ii), suppose that aba = a. Then,

by (i) and Green's Lemma [11, Lemma 2.2.1] applied in 5 , Pb\La, pa\Lb are mutually

inverse bijections from La onto Lj and from Lj, onto La, respectively. Thus bab — b. We

have now proved that aba = a =• bab — b, and the result follows from interchanging a

and 6. D
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Let S be a semigroup and let a G S. We shall say that o is a universal pre-inverse
[universal post-inverse] (element) for 5 if a is a pre-inverse [post-inverse] of every element
of S, that is if bab = b [aba = a] for all b € 5 .

Let UPre(S), UPost(S) denote the set of universal pre-inverses, universal post-
inverses, respectively, in S. Thus, for a € 5 ,

a £ UPre(S) «• Post(a) = S, a € UPost(S) •» Pre(a) = S.

Clearly, a universal post-inverse for 5 must be a regular element of S, and a semigroup
with a universal pre-inverse is necessarily regular. Further, UPre(S) C RP(5) , since a
universal pre-inverse must preserve each of its post-inverses (by Lemma 2.2), that is,
must preserve every element of 5.

It is straightforward to show that if u is either a universal pre-inverse or a universal
post-inverse for 5 and if u belongs to a subgroup H of 5 , then H must be trivial. We
use this observation in the proof of the following result.

LEMMA 3 . 4 . Let u be either a universal pre-inverse or a universal post-inverse
for a semigroup S. Then u is idempotent and the H-class Hu is trivial.

P R O O F : In either case u is a pre-inverse of itself, so u preserves itself. By Lemma
3.2, Hu is a subgroup of 5 and so must be trivial. It follows that u2 = u, proving the
result. D

One would expect the presence of a universal pre-inverse to have a restricting effect
on a semigroup, and the next two results confirm this.

LEMMA 3 . 5 . Let S be a semigroup with a universal pre-inverse element. Then,
for all x,y e S, we have

(i) x3 = x\ . (ii) (xy)2x = (xy)x, (iii) x2 € E(S).

P R O O F : Let u be a universal pre-inverse in 5 and let x,y € S. The proofs of (i)
and (ii) follow from considering the products x2ux2 and (xyx)u(xyx), respectively, and
(iii) follows from (i). D

LEMMA 3 . 6 . Let S be a semigroup with a universal pre-inverse element. Then
UPre(S) = RP(5) and RP(S) is a rectangular band. If, in addition, S has a mididentity,
then every element of RP(S) is a mididentity for S, and S is a band.

PROOF: Let u be a universal pre-inverse for 5 ( so S is a regular semigroup). As
remarked earlier, we have UPre(S) C RP(S). Conversely, let a € RP(5). To show that
a 6 UPre(S) we must show that xax = x for all x e 5. So let x e 5. We have a = aua

and x = xayax for some y € S. But axaxa = axa by Lemma 3.5 (ii). Thus

xay(axaxa)yax = xay(axa)yax,
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that is, xax = x. Thus a G UPre(S), so RP(S) C UPre(S), and hence UPre(S) = RP(S).
Also, RP(S) is a completely simple subsemigroup of 5 by [8, Theorem 4.4]. It is a band
by Lemma 3.4, and so is a rectangular band.

Suppose further that S has a mididentity element a. If b G RP(5) [= UPre(S)]
then b is a pre-inverse of a, so b is a mididentity for 5 by [8, Corollary 3.2]. Thus every
element of RP(5) is a mididentity. Finally, let u € UPre(S), as above, and let x G S.
Then xux = x. But u is a mididentity for 5, so we have x2 = x. It follows that 5 is a
band. D

We shall later (in Lemma 3.8) have results on UPost(S) similar to those on UPre(S)
contained in Lemma 3.6. For now we note that if a semigroup 5 has a zero element 0,
then 0 is a universal post-inverse for S and UPost(S) = {0}. More generally, if S has
a right [left] zero element z, then z G UPost(S) and UPost(S) coincides with the set of
right [left] zero elements of S, as may readily be proved.

We now consider an object that may be regarded as a 'lower end' analogue of RP(5).

Let 5 be a semigroup with Reg(S) ^ 0. We define the regular base of S, denoted by
B(S), to be the set of elements of 5 that are preserved by every element of S. Thus, for
fceS,

b G B(S) «• b G Reg(5,z) for every x e S.

We note that B(5) C Reg(S). If S has a zero element 0, then 0 G B(5), and any
element b G B(S) must be preserved by 0, so b — 0. Thus B(S) = {0} in this case.

We have remarked in Section 2 that if S is completely simple then every variant of
5 is regular. So, in this case, each element of 5 is preserved by all the elements of 5. It
follows that B(5) = 5 here.

THEOREM 3 . 7 . Let S be a semigroup with B(5) ^ 0. Then

(i) B(S) is a minimum ideal for S.

(ii) B(5) is a completely simple subsemigroup of S.

P R O O F : (i) Let b G B(5) and let s G 5. We first show that sb € B(5). Let x G 5.
Then b is preserved by xs, and so 6 = b(xs)z(xs)b for some z £ S. Thus sb = sb.x(sz)x.sb.

So sb is preserved by x. It follows that sb € B(5). Similarly, using the fact that b is
preserved by sx, we find that 6s G B(5). Thus B(5) is an ideal of 5. Now let A be an
ideal of S and let a G A. If b G B(5) then a preserves b, so b = bazab for some z G 5 ,
giving that b G A. Thus B(5) C A and it follows that B(S) is a minimum ideal of 5.
This proves (i).

(ii) B(5) is a subsemigroup of S by (i). Let b G B(S). Since b preserves itself, Hb is
a subgroup of S by Lemma 3.2 (i). By part(iii) of the same lemma, Hi, is contained in
B(S). The group inverse of b in Hb is therefore an inverse of b in B(S), so B(5) is regular.

To complete the proof, we let a,b G B(S). Then (a, b) is a mutually preserving
pair in 5 , so, by Lemma 3.3, aba = a «• bab — b. By [10, Exercise 6, p. 42], B(S) is

https://doi.org/10.1017/S0004972700034274 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034274


[7] Preservation in a semigroup 75

completely simple. D

Part (i) of the above theorem tells us that if, for a semigroup S, B(5) is non-empty
then B(5) is the kernel K{S) of S (see [11, p. 68]).

If a semigroup 5 has a universal post-inverse element, then UPost(S) coincides with
B(5), as we now show.

LEMMA 3 . 8 . Let S be a semigroup with a universal post-inverse element. Then
UPost(S) = B(5) and B(5) is a rectangular band.

PROOF: Let z G UPost(S). Then z — zxz for all x € S, so z is preserved by every
element of 5, by Lemma 2.2. Thus z G B(5), and so UPost(S) C B(5).

To prove the reverse inclusion, we again take z to be an element of UPost(S) and
let b G B(5). Then, since b is preserved by z, we have 6 = bztzb for some ( s S, that
is, b = bzb. Now let x be any element of S. Then z(bxb)z — z, and so b(zbxbz)b = bzb,
that is, bxb = b. Thus b G UPost(S), giving that B(5) C UPost(S). It follows that
UPost(S) = B(5).

B(5) is a completely simple semigroup by Theorem 3.7. It is a band by Lemma 3.4
and so must be a rectangular band. D.

We note that the subsets UPost(S) and B(5) of a semigroup are, in general, distinct.
For example, a completely simple semigroup 5 with non-trivial ^-classes cannot have a
universal post-inverse, by Lemma 3.4, so UPost(S) = 0. But B(5) = S in any completely
simple semigroup.

COROLLARY 3 . 9 . Let S be a semigroup with a right [left] zero element. Then
B(S) is the set of right [left] zero elements ofS.

PROOF: We have observed earlier that here UPost(5) coincides with the set of right
[left] zero elements of S. The result follows from Lemma 3.8. 0

Our final remark in this vein makes use of results given in [6, Exercises 4-6, p. 70].
An element u of a semigroup S is called a zeroid of S if, for each element a of 5, there
exist x and y in 5 such that u = ax — ya. If a semigroup 5 contains a zeroid then the
set U(S) of zeroids of 5 is a subgroup of S and is the kernel K(S) of S [6, Exercise 6,
p. 70].

So let 5 be a semigroup containing a zeroid. We note first that U(S) C B(5). For
suppose that u G U(S). Then u is regular, since it belongs to a subgroup of 5, and so
u = utu for some t eS. Let a G S. Then u = (ua)w = z(au) for some w,z €S, so that
u = utu — (uaw)t(zau). Thus u is preserved by o, and it follows that u G B(5). This
gives that U(S) C B(5).

If then, in a semigroup 5, U(S) is non-empty, B(5) is also non-empty and so U(S)
— B(S) = K(S) by a remark above and Theorem 3.7. So, in a semigroup 5 with a zeroid,
B(5) coincides with U{S) and is a subgroup of S. We note that U(S) ^ B(5) in general,
since if S is a rectangular band with more than one element then U(S) is empty but
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B(5) = S.

The author is indebted to the referee for drawing his attention to the subset U(S)

in this context.

We now introduce two conditions involving pre- and post-inverses of elements of a
semigroup.

Let 5 be a semigroup and let a be a regular element of 5. We shall say that

(i) a satisfies the upper inverse condition in 5 if Pre(a) l~l Reg(S) C Post(o),

(ii) a satisfies the lower inverse condition in S if Post(a) C Pre(a).

We shall denote the set of regular elements of S that satisfy the upper [lower] inverse

condition by UIC(S) [ LIC(S)].

For an element a of a regular semigroup, the upper and lower inverse conditions

become Pre(a) C Post(a) and Post(a) C Pre(a) respectively.

We clearly have that, for a G Reg(S),

(i) a satisfies the upper inverse condition

<=> each regular pre-inverse of a is a post-inverse of a

•*=> each regular pre-inverse of a is an inverse of a

<=> [(V b e Reg(S)) a = aba=> b = bab),

(ii) a satisfies the lower inverse condition

<=> each post-inverse of a is a pre-inverse of a

•«• each post-inverse of a is an inverse of a

<=> [(V b 6 S) b = bab => a = aba}.

The following result is a straightforward generalisation of [2, Lemma 2.2], We include
a proof for completeness.

LEMMA 3 . 1 0 . Let S be a semigroup and let a e Reg(S). Then a satisfies the
upper inverse condition if and only if it preserves each of its regular pre-inverses.

PROOF: a satisfies the upper inverse condition

<=> every regular pre-inverse of a is an inverse of a

«=> every regular pre-inverse of a is regular in (5, a) (by [8, Corollary 3.3])

•<=> a preserves each of its regular pre-inverses. D

Lemma 3.10 tells us that in a semigroup 5 with Reg(S) / 0 we have RRP(S)

C UIC(5). However, an improved version of this result appears in Theorem 4.2 below.

LEMMA 3 . 1 1 . Let S be a semigroup and let a € Reg(S). Then a satisfies t ie

lower inverse condition if and only if it is preserved by each of its post-inverses.

PROOF: Let a satisfy the lower inverse condition and let b be a post-inverse of a,

that is, let b = bab. Then a = aba, so, by Lemma 2.2, b preserves a.

Conversely, suppose that a is preserved by each of its post-inverses. Let b be an

arbitrary post-inverse of a in 5. Then a is preserved by b, that is, o is regular in (5,6).
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But a is also a pre-inverse of b in 5 . By [8, Corollary 3.3] applied to the (regular) element
b € S, the element a is an inverse of b in 5 , so b is an inverse of a in 5 . This shows that
a has the lower inverse condition and completes the proof. D

COROLLARY 3 . 1 2 . Let S be a semigroup with Reg(S) ^ 0. Then

B(5) C LIC(S).

P R O O F : Let a G B(5). Then a is preserved by each element of 5 , so a G LIC(S) by
Lemma 3.11. D

We recall in the next result Lemma 2.3 and Corollary 2.4 of [2].

LEMMA 3 . 1 3 . [2] Let S be a regular semigroup. Then every element of UIC(S),
and hence every element of RP(S), is maximal in S.

LEMMA 3 . 1 4 . Let S be a regular semigroup. Then every element of LIC(S) is
minimal in S.

P R O O F : Let a G LIC(S) and let b G 5 be such that b ^ o. Choose a' 6 Pre(a). By
Lemma 2.1 we have b — ba'b = ba'a = aa'b. Now a'ba' is a post-inverse of o, since

{a'ba')a(a'ba') = a'(ba'a) {a'ba') = a'b(a'ba') = a'(ba'b)a' = a'ba'.

But a satisfies the lower inverse condition, so a'ba' must also be a pre-inverse of a.
Thus a(a'ba')a — a, so ba'a = a, that is, b = a. It follows that a is minimal in 5, as
required. D

COROLLARY 3 . 1 5 . In a regular semigroup S, every element ofB(S) is minimal
in S.

PROOF: This follows from the preceding lemma and Corollary 3.12. D

4. TWO REGULARITY-SWITCHING CONDITIONS

Let 5 be a semigroup with Reg(S) ^ 0. For a G 5, we define the subset P(a) of 5
by

P(o) = {x e 5 : a preserves x}.

Similarly, for a 6 Reg(S), we define the subset P(a) of 5 by

P(a) = {x G 5 : x preserves a}.

We note at the outset the following:

(i) for a E S, the subsets P(a) of the semigroup S and Reg((S,a)) of the

semigroup (5, a) coincide as subsets of the set 5;

(ii) for a G 5, each element of P(a) is regular in 5;

(iii) for a,be S with b regular, we have b G P(a) « a e P(6);
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(iv) for a € S, Post(a) C P(a), and, for o € Reg(S), Pre(a) C P(a) (by Lemma

2.2);

(v) for a € 5, a e RP(S) <=> P(o) = Reg(S), and, for a e Reg(S), a 6 B(5)

«• P(a) = 5. In particular, if S is regular and a € S, then

a e RP(5) «• P(o) = 5, a € B(5) «*• P(a) - 5.

For a semilattice E and e € £ , we find that

P(e) = {/ € E : / ^ e}, P(e) = {/ G £ : / > e}.

If 5 is a completely simple semigroup and a£ S, then P(a) = P(a) = 5.

Now let 5 be a semigroup and let a be a regular element of 5. We shall say that

(i) a satisfies the upper switching condition in 5 if P(o) n Reg(S) C P(a),

(ii) a satisfies the lower switching condition in S if P(a) C P(a).

A regular element of S that satisfies the upper [lower] switching condition will be called

an upper [lower] switching element, and we shall denote the set of upper [lower] switching

elements by US (5) [LS(5)].

For an element a of a regular semigroup 5, the upper and lower switching conditions

become P(a) C P(a) and P(a) C P(a), respectively.

Clearly then, if S is a semigroup and a € Reg(5),

(i) a satisfies the upper switching condition o [(V 6 e Reg(S)) b preserves

a =$ a preserves b],

(ii) a satisfies the lower switching condition <=> [(V b e S) a preserves b => b
preserves a].

The following is immediate from the foregoing definitions.

LEMMA 4 . 1 . Let S be a semigroup and let a € Reg(S). Tien

(i) a satisfies the upper switching condition if and only if it preserves each

regular element of P(a),

(ii) a satisfies the lower switching condition if and only if it is preserved by

each element of P(a).

THEOREM 4 . 2 . Let S be a semigroup with Reg(S) ^ 0. Then

RRP(S) C US(S) C UIC(S).

If S has a mididentity then RRP(S) = US(S').

PROOF: Let a € RRP(5). Then a is regular and preserves each regular element of

S. Thus a G US(5) by Lemma 4.1 (i), and hence RRP(S) C US(5).
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Next let a G US(5). Then a is regular. Let b be a regular pre-inverse of a. Then b

is a regular element of P(a), by Lemma 2.2, so a preserves 6, by Lemma 4.1 (i). Thus we
have a G UIC(S) by Lemma 3.10, giving that US(5) C UIC(S).

Finally, suppose that S has a mididentity u. We may assume that u is idempotent,
since the square of a mididentity is an idempotent mididentity [1]. Now let a G US(S).
Then a is regular and clearly is preserved by u. So a preserves u, since a G US(5).
Then Lemma 4.5 of [8] gives that a G RRP(S). Thus US(5) C RRP(S), and so RRP(S)
= US(5). D

Theorem 4.2 and Lemma 3.13 now give

COROLLARY 4 . 3 . In a regular semigroup S, every element of US(5) is maximal
in S.

We now consider the 'lower' results corresponding to those in Theorem 4.2.

THEOREM 4 . 4 . Let S be a semigroup with Reg(S) ^ 0. Tien LS(5) = LIC(S).

PROOF: Let a G LS(S). Let b be a post-inverse of a. Then b G P(a), so a is preserved
by b, by Lemma 4.1 (ii). Hence a G LIC(S) by Lemma 3.11, giving that LS(S) C LIC(S).

To show that LIC(S) C LS(5), we let a G LIC(S). Then a is regular and every
post-inverse of a is a pre-inverse of a. To show that a G LS(5), we must show that the
condition

(V b G 5) a preserves b => b preserves a

holds. So let b G 5 be such that a preserves b. Then b = bazab for some z G 5. This
gives that zab = zab.a.zab, that is, zab is a post-inverse of a. So zab is a pre-inverse of
a, that is, a = a(zab)a.

Similarly, b = bazab gives baz — baz.a.baz, so a — a(baz)a. But a = awa for some
w G 5, since a is regular, and so a — (abaza)w(azaba), giving that b preserves a. Thus
a G LS(5) and so LIC(5) C LS(5). This completes the proof. D

Combining this result with Corollary 3.12, we get

COROLLARY 4 . 5 . Let S be a semigroup with Reg(S) ^ 0. Then

B(5) C LS(5) = LIC(S).

We recall [5] that an .EMnversive semigroup may be characterised as a semigroup 5
such that Post(s) is non-empty for all s G 5. The class of i?-inversive semigroups includes
the class of regular semigroups and has been widely studied (see Mitsch's survey [15]).

We know that a semigroup has a regular element if and only if it has an idempotent.
So, if a is an element of a semigroup 5, then Reg((5, a)) is non-empty if and only if
E((S, a)) is non-empty, that is, P(a) is non-empty if and only if Post(a) is non-empty
(using [8, Lemma 3.1 (iii)]). We have thus proved the following result.

THEOREM 4 . 6 . Let S be a semigroup with Reg(S) ^ 0. Tien S is E-inversive

if and only if P(s) is non-empty for each s G S.
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We immediately have

COROLLARY 4 . 7 . If a semigroup S is such that B(S) is non-empty, then S is
E-inversive.

The converse of the last result is false, as may be seen by taking 5 to be the bicyclic
semigroup. Here 5 is regular and hence .E-inversive, but B(5) is empty. (See Example
6.2 below).

We next show that the inclusion B(5) C LS(5) of Corollary 4.5 becomes an equality
if 5 is Z?-inversive.

THEOREM 4 . 8 . Let S be an E-inversive semigroup. Then

B(S) = LS(5) = LIC(S).

PROOF: Clearly Reg(S) ^ 0. By Corollary 4.5 it is enough to show that LIC(S)
C B(5). So let a G LIC(S). Let x be an arbitrary element of S. We shall show that x
preserves a. Let y 6 Post(xa). Then y = y(xa)y. This gives yx = (yx)a(yx), so yx is a
post-inverse of a. Therefore yx is a pre-inverse of a, since a G LIC(5), so that a — a(yx)a.

Similarly, let z G Post(ai). Then z = z(ax)z. This gives xz — (xz)a(xz), so that

xz is a post-inverse of a. Thus xz is a pre-inverse of a, that is, a — a(xz)a.

But a = aca for some c G 5, since a is regular, so a = (axza)c(ayxa). Thus x

preserves a. It follows that a G B(5), so that LIC(S) C B(5), as required. D

COROLLARY 4 . 9 . Let S be a regular semigroup. Then

B(5) = LS(5) = LIC(S).

5. MAXIMAL AND MINIMAL ELEMENTS IN A REGULAR SEMIGROUP

In this section we restrict ourselves to regular semigroups. Here we have RP(5)

C US(5) C UIC(S) by Theorem 4.2, and the elements of these subsets are all maximal in

S by Lemma 3.13. We shall consider another kind of maximal element in S, and examine

the relationship between the set of those elements and the subsets above.

Similarly, we know that B(5) = LS(5) = LIC(S), by Corollary 4.9, and Lemma 3.14

gives that all the elements of B(5) are minimal in 5.

So let 5 be a regular semigroup and let Min(S) [Max(S')] denote the set of minimal

[maximal] elements in 5. We begin by showing that B(5) accounts for all of Min(S).

Of course, if 5 has a zero element 0, then Min(S) = {0} and B(5) = {0} (as noted in

section 3).

THEOREM 5 . 1 . Let S be a reguiar semigroup. Then Min(S) = B(5).

PROOF: By Lemma 3.14 it is enough to show that Min(S) C LIC(S). So let

a G Min(S). Let b € Post(o), that is, let bab = b. Then aba = {ab)a = a(ba), where
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ab and ba are idempotents, giving that aba ^ a. Thus aba — a, since a is minimal,
that is, b 6 Pre(a). It follows that a G LIC(S), and we have that Min(S) C LIC(S), as
required. 0

Before discussing maximal elements we need to recall the following definition [8,
Section 2]. If H is a subset of a semigroup S. we say that a € 5 is weakly cancellable on

H if the condition

(V x, y 6 H) xa = ya and ax = ay => x = y

holds. We shall denote the set of elements of S that are weakly cancellable on H by
WC(i/). (Elements of WC(5) are usually called weak cancellation elements in the liter-
ature.)

LEMMA 5 . 2 . Let S be a semigroup with Reg(S) ^ 0 and let a G S. Then a is

weakly cancellable on P(a).

P R O O F : Let x,y £ P(a). Then x and y are regular and a preserves each of them.
By Lemma 3.1, we have xaTZxLax, yaTZyCay. Suppose now that xa = ya and ax = ay.
This gives x%y. By Green's Lemma [11, Lemma 2.2.1], pa\Lx is a bijection from Lx to
Lxa. But xpa = ypa, so we must have x = y. D

THEOREM 5 . 3 . LetS be a regular semigroup. Then RP(5) C WC(5) C UIC(S).

P R O O F : Let a € RP(5). Then P(a) = S, so, by Lemma 5.2, a is weakly cancellable

on 5, that is, a G WC(5). Thus RP(5) C WC(5).

Next let a € WC(5). The element a is, of course, regular in S. So, in order to show

that a € UIC(S), we must verify that the condition

(V b € S) a = aba => b = bab

holds. So let b € 5 be such that a = aba. Then a(bab) = a(b), (bab)a = (b)a, giving that

bab = b, since a is weakly cancellable on 5. Thus a G UIC(S), and so WC(5) C UIC(S),

as required. D

Lemma 3.13 now gives

COROLLARY 5 . 4 . In a regular semigroup S, every element of WC(5) is maximal

inS.

For a regular semigroup 5, let OT(S) = {RP(5), US(5), WC(5), UIC(S), Max(S)}.
So the members of OT(5) are the subsets of maximal elements discussed above. The
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inclusions that we have established between these are given by the following diagram.

Max(S)

vUIC(S)

US(S) / \ WC(5)

RP(5)

The examples given in the next section will show that, in general, no other inclusions are

possible.

We conclude this section with some results on completely simple semigroups.

THEOREM 5 . 5 . Let S be a semigroup such that Reg(S) ^ 0. Tien

S is completely simple <=> B(S) = 5.

PROOF: If 5 is completely simple then, as remarked in Section 3, we have B(5) = S,

If B(5) = 5 then S is completely simple by Theorem 3.7. D

The results given in [10, Exercise 6, p. 42] are well-known and tell us that, for a

regular semigroup S, the following are equivalent:

(i) 5 is completely simple; (ii) WC(5) = 5; (iii) UIC(S) = 5.

Theorem 5.6 below gives some characterisations of a completely simple semigroup, and the
two noted above appear amongst them. We have, however, already used the implication
(iii)=»(i) above in the build-up to this theorem (for [8, Theorem 4.4] and for Theorem 3.7
above), so the equivalence of (i) and (iii) above is not being proved here. Nonetheless,
for the purposes of Theorem 5.6 we shall retain UIC(S) as a member of the set VJl(S)

defined earlier.

THEOREM 5 . 6 . The following are equivalent for a regular semigroup S:

(i) S is completely simple;

(ii) each member ofVJl(S) coincides with S;

(iii) some member of9Jl(S) coincides with S.

P R O O F : Let S be a regular semigroup. We prove that (i) =*• (ii) => (iii) =>• (i).

Suppose that 5 is completely simple. Then RP(5) — S, so, by the inclusions indicated
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in the diagram above, each member of 971(5) coincides with S. Thus (i) =» (ii). The
implication (ii) =» (iii) is obviously true. Suppose, finally, that (iii) holds. Then Max(S).
= S, so the partial order on S is trivial. It follows that Min(S) = 5, so that B(5) = S,
by Theorem 5.1. Thus, by Theorem 3.7, 5 is completely simple. D

6. EXAMPLES

In this final section of the paper we consider some useful examples. We shall use
C to denote strict containment between subsets.

EXAMPLE 6.1. [3, 12] Let 5 be the Rees matrix semigroup M°({1}; {1,2}, {1,2};P),
where

-CD
Here 5 is a regular semigroup with distinct elements

e = ( l , l , l ) , / = (1,1,2), s = (2,1,1), ft =(2 ,1 ,2) , 0,

where 0 is the zero element of 5. There is just one non-idempotent element in 5 , namely
h. We quickly find that the four non-zero elements are maximal in S, so that Max(S)
= {e,f,g,h},Min{S) = {0}. Clearly, we have that B(S) = {0}.

It is shown in [12] that RP(S) = {e}, and we easily find that WC(S) = {e} also.

Using Lemma 3.1, we see that

P(e) = 5, P( / ) = {e , / ,0} , P(5) = {e, 5 ,0}, P(/i) - {e,0}, P(0) = {0}.

It follows from these that

P(e) = {e,f,g,h}, P( / ) = { e , / } , P(g) = {e,g}, P > ) = {e}, P(0) = 5.

Thus P(a) C P(a) for all non-zero elements a € 5, so that e,f,g,h e US(S). Since

Max(S) = {e, / , g, h} C US(5) C UIC(5) C Max(5),

we have that US(5) = UIC(S) = Max(5) - {e, f,g, h).

We also find that e is a universal pre-inverse for 5, so UPre(S) = RP(5) = {e}, by
Lemma 3.6. Thus, to sum up, we have

UPre(S) - RP(S) = WC(5) C US(5) = UIC(S) = Max(S).

We may conclude from this that, in general, for a regular semigroup 5, RP(S) is

distinct from US (5) and WC(S) is distinct from UIC(S).

Finally, this example shows (as does Example 6.3 below) that a non-band semigroup

may have a universal pre-inverse element.

https://doi.org/10.1017/S0004972700034274 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034274


84 J.B. Hickey [16]

EXAMPLE 6.2. The bicyclic semigroup 5 is constructed as follows: let N be the set of
non-negative integers and take S = N x N, with multiplication

(m, n)(p, q) = (m - n +1, q - p + t),

where t — max(ra,p) (m, n,p,q e N). (For an account of this semigroup see [6, 11, 13]).
It is an inverse monoid with group of units G = {(0,0)}, right unit subsemigroup
P = {(0,n) : n 6 N}, and left unit subsemigroup Q = {(m,0) : m € N}.

Since 5 has an identity element, we have RP(5) = G [8, p. 380] and, the identity
element being a mididentity, we have RP(S) = US(5), by Theorem 4.2. So RP(5)
= US(S) = G.

The partial order on 5 is calculated in [13, Section 3.4], and we have that, for
(m,n),(p,q) € 5,

(m, n) ^ (p, q) o m = p + a and n = q + a for some a eN.

We easily see now that Max(S) = P U Q. Also, the elements of P[Q] are right [left]
cancellable on 5, and so are weakly cancellable on 5. Thus

Max(S) = P U Q C WC(5) C UIC(S) C Max(S),

and it follows that WC(S) = UIC(S) = Max(5) = PuQ. So we have

RP(S) = US(5) C WC(S) = UIC(5) = Max(S).

We thus see that, in general, for a regular semigroup S, RP(5) is distinct from
WC(5), and US(5) is distinct from UIC(S). Also, we note that US(5) c WC(5) for the
semigroup of the present example, and WC(5) C US(5) for the semigroup of Example
6.1, and we may conclude that, in general, for a regular semigroup 5, neither one of the
subsets WC(S), US(5) is contained in the other.

We may note that the bicyclic semigroup 5, not being a band, has no universal
pre-inverse element, by Lemma 3.6. Also, 5 has no minimal element, so B(S) is empty.
Finally, as pointed out by the referee, this is an example where B(S) is empty but the
kernel K(S) of S is non-empty (since K(S) = S here).

The following interesting example was devised by McAlister [14] and proved to be
useful in [9] and [12]. We recall that, if T is a regular semigroup and, M(T;I, A; P) is
a Rees matrix semigroup over T then the set of regular elements in M(T; I, A; P) forms
a regular semigroup [14]. This latter semigroup is denoted by HM{T; I, A; P).

EXAMPLE 6.3. [14] Let T be the chain semilattice {I,a, 6,0} with 1 > a > b > 0. Let
/ = A = {1,2} and let P be the 2 x 2 matrix

P =
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Let 5 = 1ZM{T; I, A; P). Then 5 is a regular semigroup with eleven elements, namely

(1.1.1)

(1,0,1), (2,0,1),

(1,6,1), (2,6,1), (1,6,2), (2,6,2),

(1,0,1), (2,0,1), (1,0,2), (2,0,2).

The element (2,6,2) is the only non-idempotent in 5. We easily see that 5 , under
the usual partial order, consists of four disjoint chains:

(1,6,2) > (1,0,2),

(2,6,2) > (2,0,2).

Thus we have

Max(S) - {(1,1,1), (2, a, 1), (1,6,2), (2,6,2)},

Min(S) = {(1,0,1), (2,0,1), (1,0,2), (2,0,2)}.

We find that the element (1,1,1) is a pre-inverse of every element of 5 and that it has
just one pre-inverse, namely itself. We conclude from this that UPre(S) = {(1,1,1)}
and also that Post((l, 1,1)) = S and P re ( ( l , l , l ) ) = {(1,1,1)}. Since Pre ( ( l , l , l ) )
C Pos t ( ( l , l , l ) ) , we have that (1,1,1) € UIC(S). Further, if x € S,x # (1,1,1),
then (1,1,1) is a pre-inverse but not a post-inverse of x, so x £ UIC(S). Thus UIC(S)
= {(1,1,1)}. We now have that UPre(S) = UIC(S) = {(1,1,1)} and, since UPre(S)
C RP(5), it follows that

UPre(S) = RP(S) - US(5) = WC(5) = UIC(S) = {(1,1,1)}.

In this example, therefore, we have that UIC(S) C Max(S).

Finally, we have, by Theorem 5.1, that B(S) = Min(S). Also, the element (1,0,1)

is a universal post-inverse for 5, so, by Lemma 3.8, we have UPost(S) = B(S). Thus

UPost(S) = B(S) = Min(S).

Our final example shows that, in general, for a semigroup S we have B(5) ^ LIC(S).

EXAMPLE 6.4. Let A = (a) be an infinite monogenic semigroup and let S = A1. Then

5 has just one regular element, namely 1. Also, Pre(l) = Post(l) = {1}, giving that

1 e LIC(S), so that LIC(S) = {1}. Clearly B(5) = 0, and so we have B(5) C LIC(S).
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