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On Regulation Under Sampling

B. Castillo, S. Di Gennaro, S. Monaco, and D. Normand-Cyrot

Abstract—The paper deals with linear and nonlinear regulation under

sampling. It is shown that digital solutions exist under assumptions
which are closely related to the existence of robust solutions to the
continuous problem. Approximated solutions are computed starting from

the continuous ones.

Index Terms—Nonlinear systems, regulation problem, sampled systems.

I. INTRODUCTION

Regulation provides an elegant framework for setting asymptotic

disturbance compensation and tracking. Starting from the fundamen-

tal linear results in [6], the nonlinear problem was first studied in [9],

while the discrete-time problem was recently addressed in [2].
On the basis of the results there stated, hereinafter the authors study

the regulation problem for a discrete-time system resulting from the
sampling of a continuous-time one. Assuming the solvability of the
continuous-time regulation problem, under which extra conditions
does a solution exist to the sampled problem? It is shown that the ex-
istence of a continuous robust solution suffices to solve the problem;
robustness is preserved in the linear context, while the solution of
the nonlinear problem satisfies a property which is conjectured to be
necessary for robustness. Moreover, an approximated solution at any
prefixed order can be computed starting from the continuous solution.

The result obtained is quite intuitive and suggests that one think of
the sampled problem as an “approximation” of the given continuous
problem, so requiring robustness. As a matter of fact, the sampled
system can be considered perturbed with respect to the continuous
dynamics, since references and perturbations are approximated by
piecewise constant signals. It must be pointed out that the statement
of the problem in a digital context, where references and perturbations
are assumed piecewise constant, appears to be coherent with respect
to references which are usually generated by digital devices but may
be not satisfactory with respect to perturbations.

Some basic results on regulation and the problem statement are the

subjects of the next section. In Section III the linear sampled regu-

lation problem is studied. The result stated provides an elementary

introduction to the nonlinear problem which is developed, following

the same lines, in Section IV.

II. SOME BASIC FACTS AND PROBLEM FORMULATION

The nonlinear system usually considered for studying the regulation
problem is the following:

_x = f(x; u; w)

_w = s(w)

e = h(x;w) (1)
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x 2 IRn; u 2 IRm are the state and input variables respectively, f; s;
and h are analytic functions of their arguments. The signal w takes
into account the external disturbances and references modeled by an
exosystem defined on IRs, while e denotes the tracking error and the
effect of external disturbances. It is assumed that (x;w) = (0; 0) is
an equilibrium.

For this system, the state feedback regulator problem (SFRP)

consists of finding, if possible, a controller u = �(x; w) such that:

(SC) x = 0 is asymptotically stable for the closed-loop unper-

turbed dynamics _x = f(x; �(x; 0); 0);

(RC) for each initial condition (x(0); w(0)) in a neighborhood U

of the origin, limt!1 e(t) = 0.

The linear approximation of (1) is the system

_x = Ax +Bu+ Pw

_w = Sw

e = Cx+Qw (2)

where

A =
@f

@x
; B =

@f

@u
; P =

@f

@w

S =
@s

@w
w=0

; C =
@h

@x
; Q =

@h

@w
:

A solution to the nonlinear continuous-time SFRP, as proposed in

[9], is based on the following assumptions.

(H1) The pair (A;B) is stabilizable.

(H2) The equilibrium w = 0 of the exosystem is stable in the

sense of Lyapunov, and S has all the eigenvalues on the

imaginary axis.

Theorem 1 [9]: Under (H1) and (H2), the nonlinear SFRP is

locally solvable if and only if there exist two maps �(w) and (w)

at least C2, defined in a neighborhood of w = 0 with �(0) = 0 and

(0) = 0 which solve the regulator equations

@�

@w
s(w) = f(�(w); (w); w)

0 = h(�(w);w): (3)

The control law takes the form u = �(x; w) = (w)+K(x��(w)),

with K any matrix such that �(A + BK) 2 CI�.

In the linear context, where the controller takes the form u =

K1x + K2w, the existence of a solution is set in the more general

framework of antistable signals w. More precisely, (H2) is replaced

by the following.

(HL

2 ): The eigenvalues of S are in the closed right-side of the

complex plane.

Theorem 2 [6]: Under (H1); (H
L

2 ); the linear SFRP is solvable if

and only if there exist two matrices (�;�) solutions of

�S = A� +B� + P

0 = C�+Q: (4)

The control law takes the form u = �w+K(x��w), with K any

matrix such that �(A + BK) 2 CI�.

As far as discrete-time control systems are concerned, a nonlinear

result was stated in [2]. Given

xD(k + 1) = fD(xD(k); uD(k);wD(k))

wD(k+ 1) = sD(wD(k))

eD(k) = h(xD(k); wD(k)) (5)

0018–9286/97$10.00  1997 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUNE 1997 865

the nonlinear discrete-time SFRP consists of finding a controller

of the form uD(k) = �D(xD; wD); �D(�; �) a smooth map with

�D(0; 0) = 0, such that:

(SD) x = 0 is locally exponentially stable for the closed-loop

unperturbed dynamics

x(k + 1) = fD(xD; �D(xD; 0); 0);

(RD) for each initial condition (xD(0);wD(0)) in a neighborhood

U of the origin, limk!1 eD(k) = 0.

The linear approximation of (5) takes the form

xD(k + 1) = ADxD(k) +BDuD(k) + PDwD(k)

wD(k+ 1) = SDwD(k)

eD(k) = CDxD(k) +QDwD(k) (6)

where

AD =
@fD

@xD
; BD =

@fD

@uD

PD =
@fD

@wD
; SD =

@sD

@wD w =0

CD =
@hD

@xD
; QD =

@hD

@wD
:

Under assumptions which are the discrete-time versions of (H1)

and (H2), denoted by (HD

1 ) and (HD

2 ), the following result holds

[2].

Theorem 3 [2]: Under (HD

1 ) and (HD

2 ), the nonlinear discrete-

time SFRP is locally solvable if there exist two maps �D(wD) and

D(wD), at least C2, defined in a neighborhood of wD = 0 with

�D(0) = 0 and D(0) = 0, which solve the regulator equations

�D(sD(wD)) = fD(�D(wD);�D(�D(wD);wD); wD) (7a)

0 = h(�D(wD);wD): (7b)

The control law takes the form uD(k) = �D(xD; wD) = D(wD)+

KD(xD � �D(wD)), with KD any matrix such that AD + BDKD

has eigenvalues inside the unitary circle.

With reference to the class of antistable references wD , i.e., the

discrete-time version of (HL

2 ), say (HDL

2 ), the following well-known

linear result is obtained.

Theorem 4: Under (HD

1 ), (HDL

2 ) the linear discrete-time SFRP is

solvable if and only if there exist two matrices (�D;�D) solutions of

�DSD = AD�D +BD�D + PD

0 = CD�D +QD: (8)

The control law takes the form uD(k) = �DwD+KD(xD��DwD),

where KD is any matrix such that AD + BDKD has eigenvalues

inside the unitary circle.

The present paper is devoted to the study of the regulator problem

for sampled systems. More precisely, on the basis of the recalled

results, it will be shown that under some additional conditions,

Theorems 3 or 4 apply to the discrete-time systems resulting from

the sampling of continuous-time ones satisfying Theorems 1 or 2.

The underlying hypothesis under which we study the existence of

digital solutions is that w may be assumed constant on the sampling

time intervals.

With this in mind, the problem statement is the following: the

(robust) sampled SFRP is solvable if there exists a positive number �0
such that for almost all sampling intervals � 2 (0; �0], the (robust)

discrete-time SFRP is solvable for the discrete-time sampled system.

The robustness of the solution considered here reflects the effec-

tiveness of the controller with respect to mismatches of the parameters

of the given plant as in [6] and [3] in linear and nonlinear context,

respectively.

III. THE REGULATION PROBLEM FOR SAMPLED LINEAR SYSTEMS

Consider the sampled system associated to (2), forced by piecewise

constants u and w on time intervals of amplitude �; it takes the form

(6) with

AD = e
�A
; BD =

�

0

e
sA
Bds =

1

i=1

�i

i!
A
i�1

B; CD = C

SD = e
�S
; QD = Q; PD =

1

i=0

�i+1

(i+ 1)!
Pi (9)

where Pi can be iteratively computed according to the relationships

P0 = P; Pi = APi�1 + PS
i
; i = 1; 2; � � � : (10)

Starting from a linear continuous-time solution, we discuss the

existence of a solution to the associated sampled linear problem. To

this aim, we need the following assumptions which, as well known,

ensure the existence of a robust solution to the linear problem in the

sense of Francis [6].

(HL

3 ) For all � 2 �(S);

rank
A� �I B

C 0
= n+ p:

(HLD

3 ) For all � 2 �(SD);

rank
AD � �I BD

CD 0
= n+ p:

Next theorem states that the existence of a robust solution implies

the solvability of the robust sampled linear problem.

Theorem 5: Under (H1); (H
L

2 ); and (HL

3 ) the robust sampled

linear SFRP is solvable.

Proof: First of all we note that (H1) implies (HD

1 ) for almost all

� [12]; moreover, (HL

2 ) implies (HLD

2 ). The proof will be achieved

by proving that under (HL

3 ) there exists a solution to (8) which admits

an expansion in powers of � around the continuous-time solution

(�0;�0). With this in mind, let us consider the following equations

of the form (4):

�iS = A�i +B�i + ~Pi i = 0; 1; 2; � � �

0 = C�i + ~Qi (11)

with ~Pi and ~Qi given by

~P0 = P0 = P; ~Q0 = Q; ~Qi = 0

~Pi =
1

i+ 1
Pi +

i+1

h=2

i+ 1

h

� A
h
�i+1�h + A

h�1
B�i+1�h � �i+1�hS

h

i � 1: (12)

Because of (HL

3 ), these equations can be solved in the unknowns

�i’s and �i’s. Let us now consider the following power expansions

around (�0;�0):

�D =

1

i=0

�i

i!
�i; �D =

1

i=0

�i

i!
�i (13)

which are convergent for � small enough, and the control law

uD(k) = �DwD +KD (xD ��DwD) (14)

where KD is such that (AD + BDKD ) has eigenvalues inside

the unitary circle. Since uD(k) = �DwD when xD = �DwD , it
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is a matter of computations to verify that (13) solves (8). In fact,

substituting (13) into (8), one has

1

i=0

�i

i!
�iSD = AD

1

i=0

�i

i!
�i +BD

1

i=0

�i

i!
�i + PD

0 = CD

1

i=0

�i

i!
�i +QD:

Expanding AD; BD; PD; SD; CD; and QD in powers of � and

regrouping the coefficients in the same power of �, one recovers for

any i � 0, the previous equations (11). Since (HL
3 ) implies (HLD

3 ),

the robustness of the solution follows.

It is interesting to point out that by approximating the power

expansions (13) by means of finite ones, approximated solutions are

obtained as shown hereinafter, where signals w of bounded amplitude

are considered. Let

�
r
D =

r

i=0

�i

i!
�i; �

r
D =

r

i=0

�i

i!
�i (15)

with

�D = �
r
D +O(�

r+1
); �D = �

r
D +O(�

r+1
) (16)

where O(�r+1) contains the higher order remaining terms.

Corollary 1: Under the conditions of Theorem 5, for any integer

r, the control law

u
r
D(k) = �

r
DwD +KD xD � �

r
DwD (17)

guarantees that limk!1 keD(k)k = O(�r+1), for any wD of

bounded amplitude.

Proof: The controller (17) induces a map ~� which satisfies

~�SD = (AD +BDKD )~� +BD �
r
D �KD �

r
D + PD

while substituting (13) into the first equation of (8), and considering

(16) one obtains

�
r
DSD � (AD +BDKD )�

r
D �BD �

r
D �KD �

r
D � PD

= O(�
r+1

)

so that, by the Center Manifold Theorem [1] one gets ~� =

�r
D + O(�r+1). As far as the error is concerned, note first that

limk!1 kxD(k)��r
DwD(k)k � limk!1(kxD(k)� ~�wD(k)k+

k~� � �r
DkkwD(k)k). Since limk!1 kxD(k) � ~�wD(k)k = 0,

we have that limk!1 kxD(k) � �r
DwD(k)k � `1%�

r+1 for

a positive constant `1. Now, since 0 = CD�D + QD =

CD�
r
D + QD + O(�r+1), we have

keD(k)k= kCDxD +QDwDk

� kCDkkxD � �
r
DwD(k)k+ kCD�

r
D +QDkkwD(k)k

� `2kxD ��
r
DwD(k)k+ `1%�

r+1

where `2 = kCDk. Taking the limits, one gets limk!1 keD(k)k �

%`�r+1, with ` = `1(1 + `2) an appropriate constant.

IV. THE REGULATION PROBLEM FOR SAMPLED NONLINEAR SYSTEMS

In this section we consider the sampling of the nonlinear system

(1), forced by piecewise constant u and w on time intervals of

amplitude �. It takes the form (5) with

fD(�; xD(k); uD(k); wD(k))

= x + �(Lf + Ls)(x)

+
�2

2!
(Lf + Ls)

2
(x) + � � �

=

1

i=0

�i

i!
(Lf + Ls)

i
(x) = e

�(L +L )
(x)

sD(�; wD(k))

= w

w (k)

+ �Ls(w)

w (k)

+
�2

2!
+ L

2
s(w)

w (k)

� � �

=

1

i=0

�i

i!
L
i
s(w)

w (k)

= e
�L

(w)

w (k)

where the explicit dependence on � has been put in evidence, and

where (Lf+Ls)
i is the ith application of Lf+Ls :=

@(�)

@x
f+

@(�)

@w
s.

As in the linear case, one seeks a solution (�D(wD); D(wD))

fulfilling (7), under the hypothesis of solvability of the SFRP for

the continuous system (1). To this end, let us consider the following

extra condition [3], [4].

(H3) For every pair of analytic functions ~f(x; u; w) and ~h(x;w)

computed in the Appendix, there exist in a neighborhood

of (x;w) = 0 two mappings �(w); (w) such that the

following equations are satisfied:

@�

@w
s(w) = A�(w) +B(w) + ~f(�(w); (w); w)

0 = C�(w) + ~h(�(w);w):

(18)

Hypothesis (H3) represents the nonlinear counterpart of (HL
3 ), in

the sense that it is a necessary condition for the existence of a robust

controller [3], [4].

As a matter of fact, rewriting (1) as

_x = f(x; u; w) = Ax +Bu+ f2(x; u; w)

_w = s(w)

e = h(x; w) = Cx+ h2(x;w)

the underlying idea is to substitute a solution expressed as a power

expansion of � around the continuous-time solution (�0; 0) into (7),

to get equations of the form (18).

Theorem 6: Under (H1); (H2); and (H3); the nonlinear sampled

SFRP is locally solvable.

Proof: As in the linear case, (H1) implies (HD
1 ) for almost all

�, and (H2) implies (HD
2 ). Referring the reader to the appendix for

the expression of ~fi(�; �; �) and ~hi(�; �), by introducing the equations

@�i(w)

@w
s(w) = A�i(w) +Bi(w) + ~fi(�i(w); i(w); w) (19a)

0 = C�i(w) + ~hi(�i(w);w) (19b)

solvable with respect to �i and i because of (H3), we show that a

solution to (7) can be expressed as a power expansion in � around

the continuous-time solution (�0; 0), making use of the solutions

(�i; i) of (19). To do so, let us consider the following series:

�D(�; wD) =

1

i=0

�i

i!
�i(wD); D(�; wD) =

1

i=0

�i

i!
i(wD)

(20)

convergent for � small enough, with �i(�) and i(�) solutions of

(19). Let us define the control law

uD(k) = D(�; wD) +KD (xD � �D(�; wD))

= �D(�; xD; wD) (21)

with KD such that (AD + BDKD ) has eigenvalues inside the

unitary circle. Noting that �D(�; �D(�; wD); wD) = D(�; wD),
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substitution of (20) into (7) results in
1

i=0

�i

i!
�i e

�L
wjw =fD �;

1

i=0

�i

i!
�i(wD);

1

i=0

�i

i!
i(wD); wD

(22a)

0 = h

1

i=0

�i

i!
�i(wD);wD : (22b)

By equating the terms of the same power in �, (19) is iteratively

derived (see the appendix for computational details), thus proving

that the solution to (7) is given by (20).
Remark 1: For i = 0 from (19a), (19b) one recovers the

continuous-time solution

@�0(w)

@w
w

s(wD)

= f(�0(wD); 0(wD); wD)

= A�0(wD) +B0(wD) + ~f0(�0(w); 0(w); w)jw (23a)

0 = h(�0(wD);wD) = C�0(wD) + ~h0(�0(w);w)jw (23b)

with ~f0(�0(w); 0(w); w) = f2(�0(w); 0(w); w) and ~h0
(�0(w);w) = h2(�0(w);w). For i = 1 one gets

@�1(w)

@w
w

s(wD) = A�1(wD) +B1(wD)

+ ~f1(�1(w); 1(w); w)jw (24a)

0 =
@h

@x
�1(wD)

= C�1(wD) + ~h1(�1(w);w)jw (24b)

where ~f1 and ~h1 take the form

~f1(�1(w); 1(w); w) =
@f2(x; u; w)

@x
�1(w)

+
@f2(x; u; w)

@u
1(w)

+
1

2
Lff(x; u; w)

~h1(�1(w);w) =
@h2(x;w)

@x
�1(w):

It can be easily verified that ~fi and ~hi particularize to (12) if f and
h are linear.

Let us now consider as in the linear context the problem of com-

puting approximated solutions. It is worthy to point out the relevance

of this problem since closed forms for the sampled dynamics do not

exist in general in the nonlinear context [5]. Let

�
r
D(�; wD) =

r

i=0

�i

i!
�i(wD); 

r
D(�; wD) =

r

i=0

�i

i!
i(wD)

(25)

with

�D(�; wD) = �
r
D(�; wD) + '1(�; wD)

D(�; wD) = 
r
D(�; wD) + '2(�; wD)

where 'i(�; wD) for i = 1; 2 contain the remaining higher order

terms.

Corollary 2: Under the conditions of Theorem 6, for any integer

r the control law

u
r
D(k) = 

r
D(�; wD) +KD xD � �

r
D(�; wD)

= �
r
D(�; xD; wD) (26)

guarantees that limk!1 keD(k)k = O(�r+1).

Proof: Under the hypotheses of Theorem 6, a solution (20)

exists, and hence functions in (25) and the control (26) are com-

putable. The controller (26) induces a C2 map ~�(�; wD) such that

limk!1 kxD(k) � ~�(�; wD)k = 0 and [1]

~�(�; sD(�; wD)) = fD �; ~�(�; wD); �
r
D(�; ~�(�; wD); wD); wD :

If we now consider the exact solution �D(�; wD); D(�; wD); given

by (20), and if the control (21) is applied, for the right-hand term

of (7a) we have

�D(�; sD(wD)) = �
r
D(�; sD(wD)) + '1(�; sD(wD))

= �
r
D(�; sD(wD)) +O �

r+1
; wD

while the left-hand term of (7a) can be rewritten as

fD(�; �D(�; wD); �D(�; �D(�; wD); wD); wD)

= fD �; �
r
D(�; wD); �

r
D �; �

r
D(�; wD); wD ; wD +  (�; wD)

for an appropriate function  (�; wD) = O(�r+1; wD), since the

control (21) can be expressed as uD(k) = rD(�; wD)+'2(�; wD)+

KD (xD � �rD(�; wD) � '1(�; wD)) = urD(k) + O(�r+1; wD).

Hence, putting � explicitly in evidence, (7a) can be written as

�
r
D(�; sD(wD))� fD �; �

r
D(�; wD); �

r
D �; �

r
D(�; wD); wD ; wD

= O �
r+1

; wD : (27)

Then, from the Center Manifold Theorem [1] ~�(�; wD) = �rD
(�; wD) + �(�; wD), with �(�; wD) = O(�r+1; wD). Now, as in the

linear case, since limk!1 kxD(k)�~�(�; wD)k = 0 and wD(k) < %,

one has

lim
k!1

kxD � �
r
D(�; wD)k � lim

k!1
kxD � ~�(�; wD)k

+ lim
k!1

k~�(�; wD)� �
r
D(�; wD)k

= lim
k!1

k�(�; wD)k

� max
kw k�%

k�(�; wD)k � k1%�
r+1

for an appropriate constant k1. Therefore

lim
k!1

keD(k)k= lim
k!1

kh(xD; wD)k = kh(~�(�; wD); wD)k

� h(~�(�; wD); wD)� h �
r
D(�; wD); wD

+ h �
r
D(�; wD); wD

� k2%�
r+1

+ k3%�
r+1

= %`�
r+1

` = k2 + k3, where h(~�(�; wD); wD) = h(�rD(�; wD); wD) +
~h

(�(�; wD); wD)�(�;wD) for an appropriate function ~h, and

k~h(�(�; wD); wD)�(�; wD)k

� max
kw k�%

k~h(�(�; wD); wD)�(�; wD)k � k2%�
r+1

k�
r
D(�; wD)k

� max
kw k�%

�
r
D(�; wD) = p(�; %)

h �
r
D; wD

� max h �
r
D; wD � k3%�

r+1

with k2; k3 appropriate constants.

V. CONCLUSION

It has been shown that the existence of robust solutions to the reg-

ulator problem in the continuous-time context implies the solvability

of the problem under sampling. A robust solution is obtained in the

linear case. The nonlinear problem admits a solution which satisfies

(HD
3 ) below; such a condition is conjectured to be necessary for

robustness in discrete time.
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F
(h;r)

=

�r(wD) if h = 0; r > 0;
@

@x
(Lf + Ls)

h�1f �r(wD) +
@

@u
(Lf + Ls)

h�1f r(wD); if h � 1; r > 0;

(Lf + Ls)
hx ; if h � 0; r = 0

(HD

3 ) For the analytic functions ~fD(xD; uD; wD) and ~hD
(xD; wD), there exist in a neighborhood of (xD; wD) = 0

two mappings �D(wD); D(wD) such that the following

equations are satisfied:

�D(sD(wD)) = AD�D(wD) +BDD(wD)

+ ~fD(�D(wD); D(wD);wD)

0 = CD�D(wD)+ ~hD(�D(wD);wD):

It directly follows from the used arguments how to compute itera-

tively approximated solutions. It must be noted that only approxi-

mated solutions at the first order can be computed if robustness of

the continuous problem fails.

This work represents a first contribution for the effective computa-

tion of a nonlinear digital regulator. Work is in progress for a better

understanding of discrete-time nonlinear robustness.

APPENDIX

The expressions of ~fi(�; �; �) and ~hi(�; �) in (19) are obtained by

developing powers of � equations (22). As far as the left-hand term

of (22a) is concerned, make use of the exchange theorem of the Lie

series and compute

1

j=0

�j

j!
�j e

�L
w

w
=

1

j=0

�j

j!
e
�L

(�j(w))

w

=

1

j=0

�j

j!

j

h=0

j

h
L
h

s (�j�h(w))

w

: (28)

For the right-hand term in (22a) one obtains

fD �;

1

i=0

�i

i!
�i(wD);

1

i=0

�i

i!
i(wD); wD

=

1

j=0

�j

j!

j

h=0

j

h
F
(h;j�h)

(29)

where we have the equation shown at the top of the page, with

F (i+1;0)
= (Lf + Ls)F

(i;0); h � 0 so that fD(�; x; u; w) =
1

i=0
�

i!
F (i;0). By equating the terms in (28), (29) with the same

power in �, one obtains the following relationship:

@�j�1(w)

@w
s(w)

w

= A�j�1(wD) +Bj�1(wD)

+ ~fj�1(�j�1(w); j�1(w); w)

w

(30)

with

~fj�1(�j�1(w); j�1(w); w)

=
@f2(x; u; w)

@x
�j�1(w)

+
@f2(x; u; w)

@u
j�1(w)

+
1

j

j

h=2

j

h
F
(h;j�h)

� L
h

s�j�h(w) ;

if j � 2

and

~fj�1(�j�1(w); j�1(w); w) = f2(�0(w); 0(w); w); if j = 1:

By setting i = j � 1 into (30), (19a) is derived.

As far as (19b) is concerned, from (22b) one has

h

1

i=0

�i

i!
�i(w);w

w

=

1

i=0

�i

i!
C�i(wD) + h2

1

i=0

�i

i!
�i(w);w

w

i.e., the coefficient of the ith power in � is 0 = C�i(wD) +
~hi(�i(w);w)jw , with

~hi(�i(w);w) = �hi(�0(w); � � � ; �i�1(w); �i(w);w)

=
@i

@�i
h2

1

j=0

�j

j!
�j(w); w

�=0

where �0(w); � � � ; �i�1(w) are known since computed in the previ-

ous i � 1 steps.
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