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ON RELATION BETWEEN PSEUDO-HERMITIAN SYMMETRIC PAIRS
AND PARA-HERMITIAN SYMMETRIC PAIRS
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Abstract. In this paper, we investigate relation between pseudo-Hermitian symmetric
pairs and para-Hermitian symmetric ones.

1. Introduction and our result. For a Hermitian symmetric pair (g, r) = (sl(2,R),
so(2)) with complex structure J , there exists an elliptic element S ∈ g which satisfies two
conditions

(i) r is the centralizer cg(S) of S in g,
(ii) J is induced by adg S.

For example, S =
(

0 1/2
−1/2 0

)
∈ g is such an element. Define two automorphisms θ and η of

g = sl(2,R) by 

θ(A) := −tA for A ∈ g ;

η(A) :=
(

1 0

0 −1

)
·A ·

(
1 0

0 −1

)−1

for A ∈ g .

Then, θ is a Cartan involution of g such that θ(S) = S, and η is an involutive automorphism
of g such that η(S) = −S and η ◦ θ = θ ◦ η. Now, let us explain that g, S, θ and η bring about
a para-Hermitian symmetric pair (su(1, 1), so(1, 1)). Let gd be a real form of gC = sl(2,C)
such that (gd, θ) is the Berger dual symmetric pair of (g, η) (cf. Berger [1, p. 111]), i.e.,

gd = (k ∩ h)⊕ i(k ∩ m)⊕ i(p ∩ h)⊕ (p ∩ m) ,

where k and p (resp. h and m) denote the +1 and −1-eigenspaces of θ (resp. η) in g, respec-
tively. Here, it follows that gd = su(1, 1). An element iS belongs to gd , and (gd, cgd (iS)) is
a para-Hermitian symmetric pair (su(1, 1), so(1, 1)), where adgd iS induces a para-complex
structure of (su(1, 1), so(1, 1)) = (gd, cgd (iS)). Therefore, a (pseudo-)Hermitian symmet-
ric pair (sl(2,R), so(2)) brings about a para-Hermitian symmetric pair (su(1, 1), so(1, 1)).
This poses us the following problem: “Does there exist relation between pseudo-Hermitian
symmetric pairs and para-Hermitian symmetric ones?”
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The main purpose of this paper is to demonstrate the following Theorem 1.1 which par-
tially clarifies relation between simple pseudo-Hermitian symmetric pairs and simple para-
Hermitian symmetric ones:

THEOREM 1.1. Let gC be a complex simple Lie algebra. Then, the following two items
(I) and (II) hold:

(I) For any real form g of gC and pseudo-Hermitian symmetric pair (g, r) with complex
structure J , there exist an elliptic element S ∈ g, a Cartan involution θ of g, and an involutive
automorphism η of g such that

(1) (g, r) = (g, cg(S)), and J is induced by adg S;
(2) θ(S) = S, η(S) = −S, and η ◦ θ = θ ◦ η;
(3) (gd, cgd (iS)) is a para-Hermitian symmetric pair with para-complex structure in-

duced by adgd iS.
Here, (gd, θ) is the Berger dual symmetric pair of (g, η).

(II) For any real form ḡ of gC and para-Hermitian symmetric pair (ḡ, b̄) with para-
complex structure Ī , there exist a real form g of gC , an elliptic element S ∈ g, a Cartan
involution θ of g, and an involutive automorphism η of g such that

(1) (g, cg(S)) is a pseudo-Hermitian symmetric pair with complex structure induced by
adg S;

(2) θ(S) = S, η(S) = −S, and η ◦ θ = θ ◦ η;
(3) (ḡ, b̄) = (gd , cgd (iS)), and Ī is induced by adgd iS.

Here, (gd, θ) is the Berger dual symmetric pair of (g, η).

As an application, we actually determine the para-Hermitian symmetric pair (ḡ, b̄)which
a (pseudo-)Hermitian symmetric pair (g, r) brings about by means of Theorem 1.1-(I), by
using the result in Leung [10, p. 182] which determines Lagrangian reflective submanifolds
of irreducible Hermitian symmetric spaces (see Theorem 4.6, also see Remark 4.4).

The authors wish to thank Professor Yoshihiro Ohnita for his encouragement. Many
thanks are also due to Professor Soji Kaneyuki and Professor Hiroshi Tamaru for their valuable
suggestions and advice. The authors would like to express their sincere gratitude to the referee
for many suggestions and comments.

2. Preliminaries. This section consists of four subsections. In Subsection 2.1, we
recall the notion of para-Hermitian symmetric pair, hyperbolic element and so forth. In Sub-
section 2.2, we introduce Murakami’s setting utilized in [11], and we confirm two Lemmas
2.7 and 2.8. Subsection 2.3 studies relation among pseudo-Hermitian symmetric pairs, el-
liptic elements and involutions (cf. Proposition 2.10). Finally in Subsection 2.4, we refer to
a result of Kaneyuki [3] which investigates relation among para-Hermitian symmetric pairs,
hyperbolic elements and involutions (cf. Proposition 2.12).

2.1. Definitions and notation. We will first recall the notion of para-Hermitian sym-
metric pair and pseudo-Hermitian symmetric pair, and we will next recall the notion of hy-
perbolic element and elliptic element.
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DEFINITION 2.1 (Kaneyuki-Kozai [4, p. 88]). Let (l, b) be the semisimple symmetric
pair by involution σ , and let n denote the −1-eigenspace of σ in l. Then, (l, b) is called
para-Hermitian, if there exist an adl b-invariant para-complex structure I of n and an adl b-
invariant para-Hermitian form 〈 · , · 〉 with respect to I on n, i.e., I is a linear endomorphism
of n and 〈 · , · 〉 is a non-degenerate symmetric bilinear form on n such that

(1) I 2 = id and I �= id,
(2) [X, I (Y )] = I ([X,Y ]) for any X ∈ b and Y ∈ n,
(3) 〈I (Y1), Y2〉 + 〈Y1, I (Y2)〉 = 0 for any Y1, Y2 ∈ n,
(4) 〈[X,Y1], Y2〉 + 〈Y1, [X,Y2]〉 = 0 for any X ∈ b and Y1, Y2 ∈ n.

DEFINITION 2.2 (Berger [1, p. 94]). Let (l, r) be the semisimple symmetric pair by
involution ρ, and let q denote the −1-eigenspace of ρ in l. Then, (l, r) is called pseudo-
Hermitian, if there exist an adl r-invariant complex structure J of q and an adl r-invariant
pseudo-Hermitian form 〈 · , · 〉 with respect to J on q.

DEFINITION 2.3 (Kobayashi [6, p. 5–6]). Let l be a real semisimple Lie algebra. An
elementX ∈ l is called semisimple, if the endomorphism adlX of l is semisimple. A semisim-
ple element Z ∈ l (resp. S ∈ l) is said to be hyperbolic (resp. elliptic), if all the eigenvalues
of adlZ (resp. adl S) are real (resp. purely imaginary).

NOTATION. Throughout this paper, we use the following notation:
(n1) ada: the adjoint representation of a Lie algebra a.
(n2) Ba: the Killing form of a Lie algebra a.
(n3) ca(X): the centralizer of X in a Lie algebra a, for an element X ∈ a.
(n4) m ⊕ n: the direct sum of vector spaces m and n.
(n5) f |A: the restriction of a mapping f to a set A.
(n6) dss: the semisimple part of a reductive Lie algebra d, namely dss = [d, d].
2.2. Root-space decomposition and Cartan decomposition. From the results of Mu-

rakami [11], we will afterward deduce Lemma 2.7, Lemma 2.9, etc. So, we want to introduce
Murakami’s setting utilized in [11].

Let lC be a complex semisimple Lie algebra, let hC be a Cartan subalgebra of lC , and let
∆(lC, hC) denote the set of non-zero roots of lC with respect to hC . Then, there exists a Weyl
basis {Xα ; α ∈ ∆(lC, hC)} of lC such that, for all α, β ∈ ∆(lC, hC),

[Xα,X−α] = Hα , [H,Xα] = α(H) ·Xα for H ∈ hC ;
[Xα,Xβ ] = 0 if α + β �= 0 and α + β /∈ ∆(lC, hC) ;
[Xα,Xβ ] = Nα,β ·Xα+β if α + β ∈ ∆(lC, hC) ,

where the real constants Nα,β satisfy Nα,β = −N−α,−β (cf. Helgason [2, Theorem 5.5,
p. 176]). Here for α ∈ ∆(lC, hC), one defines the element Hα ∈ hC by BlC (H,Hα) = α(H)

for all H ∈ hC , where BlC denotes the Killing form of lC . By using this Weyl basis, we give
a compact real form lu of lC as follows:

(2.2.1) lu = ihR ⊕
⊕

α∈∆(lC,hC)

spanR{Xα − X−α} ⊕ spanR{i(Xα + X−α)}
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(see the proof of Theorem 6.3 in Helgason [2, p. 181]), where hR is a real vector subspace of
hC determined by

hR := spanR{Hα; α ∈ ∆(lC, hC)}
(= {H ∈ hC; α(H) ∈ R for all α ∈ ∆(lC, hC)}) .

Now, let Π∆(lC ,hC) denote the set of simple roots in ∆(lC, hC), and let θ be an involutive
automorphism of lC satisfying three conditions

(c1) θ(lu) ⊂ lu , (c2) θ(hC) ⊂ hC , (c3) t θ(Π∆(lC,hC )) = Π∆(lC ,hC) .

Denote by k and p the +1 and −1-eigenspaces of θ in lu, respectively. One has the following
decomposition:

lu = k ⊕ p .

Then, we define a real form l of lC by setting

l := k ⊕ ip .

REMARK 2.4. (1) θ is a Cartan involution of l, and l = k ⊕ ip is its Cartan de-
composition. (2) k ∩ ihR is a maximal abelian subalgebra of k, because it follows from
t θ(Π∆(lC ,hC)) = Π∆(lC ,hC) that θ leaves fixed a regular element of lC contained in hC (see
Murakami [12, Proposition 1, p. 106]). (3) Every real semisimple Lie algebra can be, up to
isomorphism, given by the above fashion (cf. Murakami [13]). Henceforth in Section 2, we as-
sume that a real semisimple Lie algebra l is given by the above fashion, and we identify Aut(l)
and Aut(lu) with {φ ∈ Aut(lC) ;φ(l) ⊂ l} and {ψ ∈ Aut(lC) ;ψ(lu) ⊂ lu}, respectively.

In the above setting, Murakami [11, Theorem 3] and its proof allow us to assert the
following:

PROPOSITION 2.5 (Murakami [11, p. 118–121]). Let ψ be an automorphism of lu =
k ⊕ p. Suppose that it satisfies two conditions

(a) ψ(ihR) ⊂ ihR , and ψ ◦ θ = θ ◦ ψ on ihR;
(b) tψ(∆1(lC, hC : θ)) = ∆1(lC, hC : θ),

where ∆1(lC, hC : θ) := {β ∈ ∆(lC, hC) ; t θ(β) = β and θ(Xβ) = Xβ}. Then, there exists
an element H ∈ hR such that ψ ◦ exp adlC iH ∈ Aut(l) ∩ Aut(lu).

In the same setting, Murakami [11] has proved

PROPOSITION 2.6 (Murakami [11, p. 106]). For an automorphism ψ of lu = k ⊕ p,
the following three conditions (i), (ii) and (iii) are mutually equivalent:

(i) ψ ◦ θ = θ ◦ ψ , (ii) ψ ∈ Aut(l) ∩ Aut(lu) , (iii) ψ(k) ⊂ k .

Here, θ is the Cartan involution of l = k ⊕ ip.

We confirm two Lemmas 2.7 and 2.8, and finish this subsection. Here, we are pointed
out by the referee that Lemma 2.7 is a special case of a more general statement in Helgason
[2, p. 277], and that Nagano-Sekiguchi [14, p. 320] has already asserted Lemma 2.7.
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LEMMA 2.7. Let σ1 and σ2 be two involutive automorphisms of a real semisimple Lie
algebra l such that σ1 is commutative with σ2. Then, there exists a Cartan involution τ of l

such that both σ1 and σ2 are commutative with τ .

PROOF. We will devote ourselves to verifying that there exists an inner automorphism
φ of l = k ⊕ ip such that both φ ◦ σ1 ◦ φ−1 and φ ◦ σ2 ◦ φ−1 are commutative with Cartan
involution θ (recall Remark 2.4 for θ and for later). In this case, τ := φ−1 ◦ θ ◦ φ is a Cartan
involution of l which is commutative with σ1 and σ2.

By Theorem 1 in Murakami [11, p. 108], there exist a unique element η1 ∈ Aut(l) ∩
Aut(lu) and a unique elementX1 ∈ p which satisfy

σ1 = η1 ◦ exp adl iX1 .

Since σ1 is involutive, one obtains η1(X1) = −X1 (see the proof of Lemma 10.2 in Berger [1,
p. 100]). Define an inner automorphism φ1 of l = k ⊕ ip by

φ1 := exp adl(i/2)X1 .

Then, it is clear that φ1 ◦ σ1 ◦ φ−1
1 = η1 ∈ Aut(l) ∩ Aut(lu), and this shows (η1)

2 = id. By
use of φ1 and σ2, let us define an involutive automorphism σ ′

2 of l as follows:

σ ′
2 := φ1 ◦ σ2 ◦ φ−1

1 .

The hypothesis “σ1 ◦ σ2 = σ2 ◦ σ1” enables us to see that σ ′
2 is commutative with η1 (=

φ1 ◦σ1 ◦φ−1
1 ). By arguments similar to those mentioned above, we can deduce that there exist

a unique element η′
2 ∈ Aut(l) ∩ Aut(lu) and a unique element X′

2 ∈ p which satisfy

σ ′
2 = η′

2 ◦ exp adl iX
′
2 ,

and that η′
2(X

′
2) = −X′

2. Define an inner automorphism φ′
2 of l by

φ′
2 := exp adl(i/2)X

′
2 .

Then, it follows that (φ′
2 ◦ φ1) ◦ σ2 ◦ (φ′

2 ◦ φ1)
−1 = φ′

2 ◦ σ ′
2 ◦ φ′

2
−1 = η′

2 ∈ Aut(l) ∩ Aut(lu).
Consequently, φ := φ′

2 ◦ φ1 is an inner automorphism of l such that φ ◦ σ2 ◦ φ−1 (= η′
2) is

commutative with θ (cf. Proposition 2.6). So, the rest of proof is to verify that φ ◦ σ1 ◦ φ−1 is
also commutative with θ . In order to do so, we want to show

(2.2.2) η1(X
′
2) = X′

2 .

Since σ ′
2 is commutative with η1 (= φ1 ◦ σ1 ◦ φ−1

1 ), and since (η1)
2 = id, one perceives that

η1 ◦ η′
2 ◦ exp adl iX

′
2 = η1 ◦ σ ′

2 = σ ′
2 ◦ η1

= η′
2 ◦ exp adl iX

′
2 ◦ η1

= η′
2 ◦ η1 ◦ η1 ◦ exp adl iX

′
2 ◦ η1

= η′
2 ◦ η1 ◦ exp adl iη1(X

′
2) .

(2.2.3)

Proposition 2.6, together with η1 ∈ Aut(l) ∩ Aut(lu), means that η1 ◦ θ = θ ◦ η1; so that one
has η1(X

′
2) ∈ p, since X′

2 ∈ p. Therefore, we conclude that η1 ◦η′
2, η

′
2 ◦η1 ∈ Aut(l)∩Aut(lu)
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and exp adl iX
′
2, exp adl iη1(X

′
2) ∈ exp adl ip. Accordingly, it follows from (2.2.3) that

η1 ◦ η′
2 = η′

2 ◦ η1 and exp adl iX
′
2 = exp adl iη1(X

′
2) ,

because Aut(l) = (Aut(l)∩Aut(lu)) ·exp adl ip is the direct sum (cf. Theorem 1 in Murakami
[11, p. 108]). A mapping adl iX 
→ exp adl iX, for X ∈ p, is injective, and l = k ⊕ ip is
semisimple; and hence X′

2 = η1(X
′
2). Thus we get (2.2.2). Direct computation and (2.2.2)

give us

φ ◦ σ1 ◦ φ−1 = (φ′
2 ◦ φ1) ◦ σ1 ◦ (φ′

2 ◦ φ1)
−1

= φ′
2 ◦ η1 ◦ φ′

2
−1

= exp adl(i/2)X
′
2 ◦ η1 ◦ exp adl(−i/2)X′

2

= exp adl(i/2)X
′
2 ◦ exp adl η1((−i/2)X′

2) ◦ η1

= η1 ∈ Aut(l) ∩ Aut(lu) .

This implies that φ ◦ σ1 ◦ φ−1 (= η1) is commutative with θ (cf. Proposition 2.6). �

The following lemma will be helpful to complete the proof of Theorem 1.1:

LEMMA 2.8. Let l be a real semisimple Lie algebra. Then, the following two items (a)
and (b) hold:

(a) If S is a non-zero semisimple element of l and the eigenvalue of adl S is ±i or zero,
then (l, cl(S)) is a pseudo-Hermitian symmetric pair with complex structure induced by adl S.

(b) If Z is a non-zero semisimple element of l and the eigenvalue of adlZ is ±1 or zero,
then (l, cl(Z)) is a para-Hermitian symmetric pair with para-complex structure induced by
adl Z.

PROOF. (a): Since S is semisimple, l is decomposed as

l = cl(S)⊕ [S, l] .
One has (adl S)

2(Y ) = −Y for any Y ∈ [S, l], because the eigenvalue of adl S is ±i or zero.
Now, let us verify that there exists an involutive automorphism ρ of l whose +1-eigenspace
(resp. −1-eigenspace) coincides with cl(S) (resp. [S, l]). Define an inner automorphism ρ of
l by

ρ := expπ adl S .

Then, since (adl S)
2(Y ) = −Y for any Y ∈ [S, l], we obtain

ρ(Y ) = expπ adl S(Y ) =
∑
l≥0

1

l ! (π adl S)
l(Y )

=
∑
m≥0

1

2m! (π adl S)
2m(Y )+

∑
n≥0

1

(2n+ 1)! (π adl S)
2n+1(Y )

=
∑
m≥0

(−1)m · π2m

2m! · Y +
∑
n≥0

(−1)n · π2n+1

(2n+ 1)! · [S, Y ]

= cosπ · Y + sinπ · [S, Y ] = −Y .
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On the other hand; it follows that ρ(X) = expπ adl S(X) = X for every X ∈ cl(S). There-
fore, ρ is an involutive automorphism of l such that the +1-eigenspace (resp. −1-eigenspace)
of ρ in l coincides with cl(S) (resp. [S, l]). Hence, (l, cl(S)) is the symmetric pair by in-
volution ρ, and l = cl(S) ⊕ [S, l] is the canonical decomposition of l with respect to ρ.
Furthermore, J := adl S is a complex structure of the vector space [S, l], and Bl is a pseudo-
Hermitian form with respect to J on [S, l], where we denote by Bl the Killing form of l.
Hence, (l, cl(S)) is a pseudo-Hermitian symmetric pair with complex structure induced by
adl S.

(b): Since Z ∈ l is non-zero semisimple and the eigenvalue of adl Z is ±1 or zero, l is
decomposed as follows:

l = l−1 ⊕ l0 ⊕ l+1 ,

where l0 := cl(Z) and l±1 denote the ±1-eigenspaces of adl Z in l. Define an inner automor-
phism σ of lC by

σ := expπ adlC iZ ,

where lC denotes the complexification of l. It is obvious that σ = id on cl(X) = l0, σ = − id
on l−1 ⊕ l+1, and σ(l) ⊂ l. Accordingly, σ is an involutive automorphism of l such that its
+1 and −1-eigenspaces are cl(X) and l−1 ⊕ l+1, respectively. So, (l, cl(Z)) is the symmetric
pair by involution σ , and l = cl(Z) ⊕ (l−1 ⊕ l+1) is the canonical decomposition of l with
respect to σ . Since (adl Z)

2(Y ) = Y for any Y ∈ l−1 ⊕ l+1, one sees that I := adl Z is a
para-complex structure of the vector space l−1 ⊕ l+1. In addition, Bl is a para-Hermitian form
(with respect to I ) on l−1 ⊕ l+1. Thus, (l, cl(Z)) is a para-Hermitian symmetric pair with
para-complex structure induced by adl Z. �

2.3. Pseudo-Hermitian symmetric pairs, elliptic elements and involutions. Our aim in
this subsection is to prove Proposition 2.10. For the aim, we first prove the following:

LEMMA 2.9. Let l be a real semisimple Lie algebra. Then, for any elliptic element
S ∈ l, there exists an involutive automorphism η of l satisfying η(S) = −S.

PROOF. Since S is elliptic, there exists a maximal compact subalgebra k′ of l = k ⊕ ip

such that S ∈ k′. Theorem 7.2 in Helgason [2, p. 183] assures that there exists an inner
automorphism φ′ of l satisfying φ′(k′) = k; and thus φ′(S) ∈ k. Moreover, there exists an
element K ∈ k such that exp adlK(φ

′(S)) ∈ k ∩ ihR , because k is a compact Lie algebra and
k ∩ ihR is a maximal abelian subalgebra of k (cf. Remark 2.4). Hence, there exists an inner
automorphism φ of l = k ⊕ ip such that φ(S) ∈ k ∩ ihR . We denote φ(S) by S′. Needless to
say, S′ ∈ k ∩ ihR .

First, let us construct an involutive automorphism η′ of lC such that η′(S′) = −S′. Let
ln denote a normal real form of lC given by

ln = hR ⊕
⊕

α∈∆(lC,hC)

spanR{Xα}
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(see the proof of Theorem 5.10 in Helgason [2, p. 426]), and let ν̃ denote the conjugation of
lC with respect to ln;

ν̃ : X + iY 
→ X − iY for X + iY ∈ lC (= ln ⊕ iln) .

Then, it is natural that ν̃(Xα) = Xα for each α ∈ ∆(lC, hC), and ν̃ = − id on ihR . Hence,
ν̃(lu) ⊂ lu comes from (2.2.1), and therefore

τ̃ ◦ ν̃ = ν̃ ◦ τ̃ ,
where τ̃ denotes the conjugation of lC with respect to lu = k ⊕ p;

τ̃ : Z + iW 
→ Z − iW for Z + iW ∈ lC (= lu ⊕ ilu) .

Consequently, η′ := τ̃ ◦ ν̃ is an involutive automorphism of lC , and it satisfies η′(S′) = −S′
because S′ ∈ ihR , ν̃ = − id on ihR and τ̃ = id on ihR .

Next, we want to deduce that the involution η′ satisfies the two conditions (a) and (b) in
Proposition 2.5. From ν̃(lu) ⊂ lu and τ̃ = id on lu, it is obvious that η′(lu) ⊂ lu, i.e., η′ is an
automorphism of lu = k⊕ p. By virtue of θ(ihR) ⊂ ihR and η′ = − id on ihR, the involution
η′ satisfies the condition (a);

(2.3.1) η′(ihR) ⊂ ihR, and η′ ◦ θ = θ ◦ η′ on ihR .

Now, we verify that η′ satisfies also the condition (b). For every root α ∈ ∆(lC, hC), one
obtains t η′(α) = −α because η′ = − id on hC = hR ⊕ ihR . Therefore, it follows that
t η′(∆(lC, hC)) = ∆(lC, hC). Take any root β ∈ ∆(lC, hC) such that t θ(β) = β and θ(Xβ) =
Xβ . Since θ(X−β) = X−β (cf. Murakami [11, p. 113]), we have


t θ(tη′(β)) = −t θ(β) = −β = t η′(β) ,
θ(Xtη′(β)) = θ(X−β) = X−β = Xtη′(β) .

So, the involution η′ also satisfies the condition (b);

(2.3.2) t η′(∆1(lC, hC : θ)) = ∆1(lC, hC : θ) .
Accordingly, by (2.3.1), (2.3.2) and Proposition 2.5, there exists an elementH ∈ hR such that
η′ ◦ exp adlC iH is an automorphism of l = k⊕ ip. Since iH, S′ ∈ ihR , one has [iH, S′] = 0.
This, together with η′(S′) = −S′, shows that

(η′ ◦ exp adlC iH )(S
′) = −S′ .

Moreover, η′ ◦ exp adlC iH is involutive. Indeed, it follows from iH ∈ ihR that η′(iH) =
−iH . Therefore, we confirm that

(η′ ◦ exp adlC iH ) ◦ (η′ ◦ exp adlC iH ) = exp adlC η
′(iH) ◦ η′ ◦ η′ ◦ exp adlC iH

= exp adlC η
′(iH) ◦ exp adlC iH

= id

since (η′)2 = id. Hence, η′ ◦ exp adlC iH is an involutive automorphism of l such that (η′ ◦
exp adlC iH )(S

′) = −S′. Consequently, η := φ−1 ◦ (η′ ◦ exp adlC iH ) ◦ φ is an involutive
automorphism of l which satisfies η(S) = −S. �
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Now, we are in a position to prove Proposition 2.10.

PROPOSITION 2.10. Let gC be a complex simple Lie algebra. Then, for any real form
g of gC and pseudo-Hermitian symmetric pair (g, r) with complex structure J , there exist an
elliptic element S ∈ g, a Cartan involution θ of g and an involutive automorphism η of g such
that

(i) r = cg(S),
(ii) J is induced by adg S,

(iii) θ(S) = S, η(S) = −S and η ◦ θ = θ ◦ η.

PROOF. By the results of Shapiro [16, p. 533–534], one knows that there exists an
elliptic element S ∈ g such that (i) r = cg(S) and (ii) J is induced by adg S; in addition,
one also knows that ρ := expπ adg S is an involutive automorphism of g, and r = cg(S) is
the +1-eigenspace of ρ in g. There exists an involutive automorphism η of g which satisfies
η(S) = −S by Lemma 2.9. Since ρ = expπ adg S is involutive and η(S) = −S, we perceive
that ρ is commutative with η. So, Lemma 2.7 allows us to get a Cartan involution θ of g

satisfying θ ◦ ρ = ρ ◦ θ and η ◦ θ = θ ◦ η.
The rest of proof is to show that θ(S) = S. Henceforth, we will devote ourselves to

showing that θ(S) = S. From θ ◦ ρ = ρ ◦ θ and cg(S) being the +1-eigenspace of ρ, it
follows that θ(cg(S)) = cg(S), and hence

θ(cg(S)z) = cg(S)z .

Here, cg(S)z denotes the center of cg(S). Accordingly, there exists a non-zero number λ ∈ R

satisfying

θ(S) = λ · S
because dimR cg(S)z = 1 (cf. Corollary 2.3 in Shapiro [16, p. 532]). Since θ2 = id and
S �= 0, one has λ = 1 or −1. This yields θ(S) = S or −S. Hence, we deduce that θ(S) = S,
because θ is a Cartan involution of g and S is a non-zero elliptic element of g. �

REMARK 2.11. The element S in Proposition 2.10 is a non-zero, semisimple element
of g such that the eigenvalue of adg S is ±i or zero.

2.4. Para-Hermitian symmetric pairs, hyperbolic elements and involutions. Lemma
2.1 in Kaneyuki [3] and its proof enable us to get the following proposition which we need
later.

PROPOSITION 2.12 (Kaneyuki [3, p. 477–478]). Let gC be a complex simple Lie al-
gebra. Then, for any real form g of gC and para-Hermitian symmetric pair (g, b) with para-
complex structure I , there exist a hyperbolic element Z ∈ g, a Cartan involution τ of g and
an involutive automorphism σ of g such that

(i) b = cg(Z),
(ii) I is induced by adg Z,

(iii) τ (Z) = −Z, σ(Z) = Z and σ ◦ τ = τ ◦ σ .
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REMARK 2.13. The element Z in Proposition 2.12 is a non-zero semisimple element
of g such that the eigenvalue of adg Z is ±1 or zero.

3. Proof of Theorem 1.1. In this section, we will demonstrate Theorem 1.1 in Section
1. In order to do so, we show the following:

PROPOSITION 3.1. Let gC be a complex simple Lie algebra, let EgC
denote the set of

quartets (g, S, θ, η) such that
(1) g is a real form of gC ,
(2) S is a non-zero semisimple element of g such that the eigenvalue of adg S is ±i or

zero,
(3) θ is a Cartan involution of g which satisfies θ(S) = S,
(4) η is an involutive automorphism of g such that η(S) = −S and η ◦ θ = θ ◦ η; and

let HgC
denote the set of quartets (ḡ, Z̄, τ̄ , σ̄ ) such that

(i) ḡ is a real form of gC ,
(ii) Z̄ is a non-zero semisimple element of ḡ such that the eigenvalue of adḡ Z̄ is ±1

or zero,
(iii) τ̄ is a Cartan involution of ḡ which satisfies τ̄ (Z̄) = −Z̄,
(iv) σ̄ is an involutive automorphism of ḡ such that σ̄ (Z̄) = Z̄ and σ̄ ◦ τ̄ = τ̄ ◦ σ̄ .

Then, the following mapping F is a bijection of EgC
onto HgC

:
F : EgC

−→ HgC
(bijective)

∈ ∈

(g, S, θ, η) 
→ (gd , iS, η, θ) .

Here, (gd, θ) is the Berger dual symmetric pair of (g, η).

PROOF. First, let us confirm that, for any (g, S, θ, η) ∈ EgC
, the quartet (gd, iS, η, θ)

belongs to HgC
. Let k and p (resp. h and m) denote the +1 and −1-eigenspaces of θ (resp. η)

in g, respectively. Then, gd is a real form of gC given by

gd = (k ∩ h)⊕ i(k ∩ m)⊕ i(p ∩ h)⊕ (p ∩ m) ,

because (gd , θ) is the Berger dual symmetric pair of (g, η) (cf. Oshima-Sekiguchi [15, p. 435–
436]). Notice that η is a Cartan involution of gd (cf. Oshima-Sekiguchi [15, p. 435]), where
η is extended to gC as C-linear involution. From θ(S) = S and η(S) = −S, we have iS ∈
i(k ∩ m) ⊂ gd . Naturally, iS is a non-zero semisimple element of gd such that the eigenvalue
of adgd iS is ±1 or zero. It is obvious that η(iS) = −iS and θ(iS) = iS, where θ is also
extended to gC as C-linear involution. Consequently, by virtue of η◦θ = θ ◦η we deduce that
the quartet (gd, iS, η, θ) belongs to HgC

. This means that F((g, S, θ, η)) ∈ HgC
for every

(g, S, θ, η) ∈ EgC
.

In a similar way, we can see that, for any (ḡ, Z̄, τ̄ , σ̄ ) ∈ HgC
, a quartet (ḡd ,−iZ̄, σ̄ , τ̄ )

belongs to EgC
. Here, ḡd denotes a real form of gC such that (ḡd, τ̄ ) is the Berger dual

symmetric pair of (ḡ, σ̄ ). Accordingly, one gets a mapping F ′ of HgC
into EgC

defined by
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F ′ : (ḡ, Z̄, τ̄ , σ̄ ) 
→ (ḡd,−iZ̄, σ̄ , τ̄ ). It is natural that F ◦ F ′ = idHgC
and F ′ ◦ F = idEgC

.
Hence, F is a bijection of EgC

onto HgC
. �

From now on, let us demonstrate Theorem 1.1.

PROOF OF THEOREM 1.1. (I): Let us prove the first item (I). Let g be a real form gC ,
and let (g, r) be a pseudo-Hermitian symmetric pair with complex structure J . Proposition
2.10 assures that there exist an elliptic element S ∈ g, a Cartan involution θ of g and an
involutive automorphism η of g such that

(i) r = cg(S),
(ii) J is induced by adg S,
(iii) θ(S) = S, η(S) = −S and η ◦ θ = θ ◦ η.

Therefore, it suffices to deduce that (gd, cgd (iS)) is a para-Hermitian symmetric pair with
para-complex structure induced by adgd iS. Here, (gd, θ) is the Berger dual symmetric pair
of (g, η);

gd = (k ∩ h)⊕ i(k ∩ m)⊕ i(p ∩ h)⊕ (p ∩ m) ,

where k and p (resp. h and m) denote the +1 and −1-eigenspaces of θ (resp. η) in g, re-
spectively. It is clear that iS ∈ i(k ∩ m) ⊂ gd . Besides, by Remark 2.11, iS is a non-zero
semisimple element of gd such that the eigenvalue of adgd iS is ±1 or zero. Consequently,
(gd , cgd (iS)) is a para-Hermitian symmetric pair with para-complex structure induced by
adgd iS (cf. Lemma 2.8-(b)).

(II): Let ḡ be a real form gC , and let (ḡ, b̄) be a para-Hermitian symmetric pair with
para-complex structure Ī . Then, Proposition 2.12 implies that there exist a hyperbolic element
Z̄ ∈ ḡ, a Cartan involution τ̄ of ḡ, and an involutive automorphism σ̄ of ḡ such that

(i) b̄ = cḡ(Z̄),
(ii) Ī is induced by adḡ Z̄,
(iii) τ̄ (Z̄) = −Z̄, σ̄ (Z̄) = Z̄ and σ̄ ◦ τ̄ = τ̄ ◦ σ̄ .

Thus by Remark 2.13 and Proposition 3.1 for HgC
, we deduce that the quartet (ḡ, Z̄, τ̄ , σ̄ )

belongs to HgC
. Proposition 3.1 enables us to obtain an element (g, S, θ, η) ∈ EgC

such that
(gd , iS, η, θ) = (ḡ, Z̄, τ̄ , σ̄ ). Here, (gd , θ) is the Berger dual symmetric pair of (g, η). From
the definition of EgC

, it follows that (1) g is a real form of gC , (2) S is an elliptic element
of g, (3) θ is a Cartan involution of g which satisfies θ(S) = S and (4) η is an involutive
automorphism of g which satisfies η(S) = −S and η ◦ θ = θ ◦η. Since (ḡ, Z̄) = (gd, iS), the
rest of proof is to confirm that (g, cg(S)) is a pseudo-Hermitian symmetric pair with complex
structure induced by adg S. However, that is confirmed, because the element S is a non-zero
semisimple element of g and the eigenvalue of adg S is ±i or zero (see Lemma 2.8-(a)). Hence
the second item (II) holds, too. �

4. Application. In 1979, Leung [10, p. 182] has determined Lagrangian reflective
submanifolds of irreducible Hermitian symmetric spaces. By use of his results, we will de-
termine the para-Hermitian symmetric pair (ḡ, b̄) which a (pseudo-)Hermitian symmetric pair
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(g, r) brings about by means of Theorem 1.1-(I) (see Theorem 4.6 and Remark 4.4). For the
goal, we first prove the following:

LEMMA 4.1. Let (ḡ, b̄) = (gd, cgd (iS)) be the para-Hermitian symmetric pair which
a pseudo-Hermitian symmetric pair (g, r) = (g, cg(S)) and two involutions θ, η ∈ Aut(g)
bring about by means of Theorem 1.1-(I). Then, (ḡ, b̄) is given as follows:

(i) (ḡ, θ) is the Berger dual symmetric pair of (g, η);
(ii) b̄ = (rss)

d ⊕ R, where ((rss)
d, θ ′) is the Berger dual symmetric pair of (rss, η

′).
Here, rss denotes the semisimple part of r, and θ ′ := θ |rss (resp. η′ := η|rss).

REMARK 4.2. Let h denote the +1-eigenspace of η in g. By Lemma 4.1, we can
completely determine (ḡ, b̄) by using three structures of (g, r), h and rss ∩ h. Indeed, ḡ is
determined by the Berger dual symmetric pair of (g, h). Furthermore, (rss)

d is determined
by the Berger dual symmetric pair of (rss, rss ∩ h), and b̄ is given by b̄ = (rss)

d ⊕ R. Here,
we remark that Oshima-Sekiguchi [15] tables Berger’s dual symmetric pairs, where there are
some minor misprints in [15] (cf. [5, p. 660]).

PROOF OF LEMMA 4.1. The first item (i) is obvious (see Theorem 1.1-(I)). So, we only
show the second item (ii). Since b̄ is reductive, it is decomposed as follows:

b̄ = b̄ss ⊕ b̄z ,

where b̄ss and b̄z denote the semisimple part and the center of b̄, respectively. Since ḡ is a real
form of gC and (ḡ, b̄) = (gd , cgd (iS)) is para-Hermitian, Koh [7, p. 304 Lemma I and p. 306
Theorem 6] allows us to have

b̄z = R .

Therefore, the rest of proof is to deduce that b̄ss = (rss)
d . From θ(S) = S, η(S) = −S and

r = cg(S), it follows that θ(r) ⊂ r and η(r) ⊂ r. This, combined with rss = [r, r], implies
that θ(rss) ⊂ rss and η(rss) ⊂ rss. Thus, θ ′ = θ |rss is a Cartan involution of rss and η′ = η|rss

is an involutive automorphism of rss. Naturally, η′ ◦ θ ′ = θ ′ ◦ η′ comes from η ◦ θ = θ ◦ η.
Now, let us consider the semisimple Lie algebra (rss)

d . Let k and p (resp. h and m) denote the
+1 and −1-eigenspaces of θ (resp. η) in g, respectively. Then, one has

(rss)
d =(rss ∩ k ∩ h)⊕ i(rss ∩ k ∩ m)⊕ i(rss ∩ p ∩ h)⊕ (rss ∩ p ∩ m)

=([cg(S), cg(S)] ∩ k ∩ h)⊕ i([cg(S), cg(S)] ∩ k ∩ m)

⊕ i([cg(S), cg(S)] ∩ p ∩ h)⊕ ([cg(S), cg(S)] ∩ p ∩ m)

=[cgd (iS), cgd (iS)]
=b̄ss,

because ((rss)
d , θ ′) is the Berger dual symmetric pair of (rss, η

′) and b̄=cgd (iS)=
(cg(S) ∩ k ∩ h) ⊕ i(cg(S) ∩ k ∩ m) ⊕ i(cg(S) ∩ p ∩ h) ⊕ (cg(S) ∩ p ∩ m). Hence, (ii) is
also proved. �

Leung [10, p. 182] determines Lagrangian reflective submanifolds of irreducible Hermit-
ian symmetric spaces by selecting them from reflective submanifolds in his previous papers
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[8, 9]. Furthermore, he determines reflective submanifolds in [8, 9], by using Table II in
Berger [1, p. 157–161]. Considering Berger’s process of getting Table II, we can assert the
following:

LEMMA 4.3. Let G/R be an irreducible Hermitian symmetric space of non-compact
type (resp. compact type), let L be a Lagrangian reflective submanifold ofG/R determined by
Leung [10, p. 182], let θ denote the Cartan involution of g such that r = {X ∈ g ; θ(X) = X}
(resp. θ = id), and let η denote the involutive automorphism of g inducing L, where g :=
Lie(G) and r := Lie(R). Then, θ and η satisfy the following two conditions:

(1) θ(S) = S, η(S) = −S and η ◦ θ = θ ◦ η;
(2) ToL is isomorphic to the coset vector space h/(r ∩ h).

Here, we denote by S any central element of r, denote by h the +1-eigenspace of η in g, and
denote by ToL the tangent space of L at the origin.

REMARK 4.4. Theorem 1.1-(I) enables us to obtain a para-Hermitian symmetric pair
(ḡ, b̄) by using a pseudo-Hermitian symmetric pair (g, r) and two involutions θ, η ∈ Aut(g).
So, both θ and η are required in the determination of (ḡ, b̄). However, Lemma 4.3 implies that
L can be substituted for η, and the involution whose +1-eigenspace coincides with r (resp. the
identity mapping) can be substituted for θ , in the case where (g, r) is non-compact (resp. com-
pact) Hermitian. For these reasons, (g, r) and L bring about a para-Hermitian symmetric pair
by means of Theorem 1.1-(I), if (g, r) is Hermitian.

Now, let us explain how to determine the para-Hermitian symmetric pair (ḡ, b̄) which a
Hermitian symmetric pair (g, r) and L bring about by means of Theorem 1.1-(I). Here, L is
a Lagrangian reflective submanifold of G/R determined by Leung [10, p. 182], g = Lie(G)
and r = Lie(R).

EXAMPLE 4.5 (Case (g, r) = (e7(−25), e6 ⊕ t) and L = (E6(−26)/F4)× R). Let (g,

r) := (e7(−25), e6 ⊕ t). Leung [10, p. 182] shows that L := (E6(−26)/F4) × R is a La-
grangian reflective submanifold of G/R = E7(−25)/(E6 × T ). We are going to determine the
para-Hermitian symmetric pair (ḡ, b̄) which (g, r) and L bring about by means of Theorem
1.1-(I). In terms of L = (E6(−26)/F4)× R and Lemma 4.3, one comprehends that

(4.0.1) h/(r ∩ h) = (e6(−26)/f4)⊕ R .

Here and hereafter, we utilize the same notation in Lemma 4.3. Then, Table II in Berger [1,
p. 157–161] enables us to obtain

(4.0.2) h = e6(−26) ⊕ R

since (g, h) is a symmetric pair and satisfies (4.0.1). Therefore from (4.0.1), it is easy to see
that r ∩ h = f4. That yields

(4.0.3) rss ∩ h = f4
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since rss = e6 and (rss, rss ∩ h) is a symmetric pair. Accordingly, Remark 4.2, together with
(4.0.2) and (4.0.3), implies that (g, r) and L bring about a para-Hermitian symmetric pair

(ḡ, b̄) = (e7(−25), e6(−26) ⊕ R)

by means of Theorem 1.1-(I) (recall Remark 4.4).

In a similar way, we deduce the following (recall Remark 4.4 again):

THEOREM 4.6. By means of Theorem 1.1-(I), a Hermitian symmetric pair (g, r) and
L bring about the following para-Hermitian symmetric pair (ḡ, b̄). Here, L denotes a La-
grangian reflective submanifold of G/R determined by Leung [10, p. 182], g = Lie(G) and
r = Lie(R).

Compact type

1 (g, r) (su(n+m), su(n)⊕ su(m)⊕ t), n ≥ m ≥ 1

L SO(n+m)/(SO(n)× SO(m))

(ḡ, b̄) (sl(n+m,R), sl(n,R)⊕ sl(m,R)⊕ R)

2 (g, r) (su(2n+ 2m), su(2n)⊕ su(2m)⊕ t), n ≥ m ≥ 1

L Sp(n+m)/(Sp(n)× Sp(m))

(ḡ, b̄) (su∗(2n+ 2m), su∗(2n)⊕ su∗(2m)⊕ R)

3 (g, r) (su(2p), su(p)⊕ su(p)⊕ t), p ≥ 2

L U(p)

(ḡ, b̄) (su(p,p), sl(p,C)⊕ R)

4 (g, r) (so(q + 2), so(q)⊕ t), q ≥ 3

L (SO(k + 1)/SO(k))× (SO(q − k + 1)/SO(q − k)), 1 ≤ k ≤ [q/2]
(ḡ, b̄) (so(k + 1, q − k + 1), so(k, q − k)⊕ R)

5 (g, r) (so(p + 2), so(p)⊕ t), 1 ≤ p and p �= 2

L SO(p + 1)/SO(p)

(ḡ, b̄) (so(1, p + 1), so(p)⊕ R)

6 (g, r) (so(2n), su(n)⊕ t), n ≥ 3

L SO(n)

(ḡ, b̄) (so(n, n), sl(n,R)⊕ R)

7 (g, r) (so(4n), su(2n)⊕ t), n ≥ 3

L (SU(2n)/Sp(n))× T

(ḡ, b̄) (so∗(4n), su∗(2n)⊕ R)
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Compact type

8 (g, r) (sp(n), su(n)⊕ t), n ≥ 3

L (SU(n)/SO(n))× T

(ḡ, b̄) (sp(n,R), sl(n,R)⊕ R)

9 (g, r) (sp(2m), su(2m)⊕ t), m ≥ 2

L Sp(m)

(ḡ, b̄) (sp(m,m), su∗(2m)⊕ R)

10 (g, r) (e6, so(10)⊕ t)

L F4/SO(9)

(ḡ, b̄) (e6(−26), so(1, 9)⊕ R)

11 (g, r) the same as (g, r) in the above 10-th item

L Sp(4)/(Sp(2)× Sp(2))

(ḡ, b̄) (e6(6), so(5, 5)⊕ R)

12 (g, r) (e7, e6 ⊕ t)

L SU(8)/Sp(4)

(ḡ, b̄) (e7(7), e6(6) ⊕ R)

13 (g, r) the same as (g, r) in the above 12-th item

L (E6/F4)× T

(ḡ, b̄) (e7(−25), e6(−26) ⊕ R)

Non-compact type

1 ≤ j ≤ 13 (g, r) the non-compact dual of (g, r) in the above j -th item

L the non-compact dual of L in the above j -th item

(ḡ, b̄) the same as (ḡ, b̄) in the above j -th item

REMARK 4.7. Theorem 4.6 gives us all para-Hermitian symmetric pairs (ḡ, b̄) on the
list of Kaneyuki-Kozai [4, p. 97], in the case where ḡ are real forms of complex simple Lie
algebras.
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