
ON RELAT!Oi4S BETWEEN PROGRAMS ~)

M. Broy~ P. Pepper, M. Wirsing (I)

Abstract

Equivalence relat ions between programs are strongly connected to the formal de-

f i n i t i o n of the semantics of programming languages. In addition they provide a

basis for the formal j u s t i f i c a t i o n of the development of programs by t ransfor-

mations. Besides equivalences there are various other re lat ions on programs

and computational structures, which help to get a better understanding of both

programming languages and the programming a c t i v i t y . In par t i cu la r , the study of

re lat ions between nondeterministic programs allows to compare d i f fe ren t concepts

of nondeterminism.

This research was p a r t i a l l y sponsored by the Sonderforschungsbereich 49 -

Programmiertechnik - Munich.

(1)Technische Univers i t~t MUnchen, I n s t i t u t fur Informatik, Postfach 20 24 20~

D-8000 MUnchen 2, Germany

60

1. Introduction

The equivalence of programs is an important question in computer science. Equi-

valence relat ions between programs are extensively studied in the theory of pro-

gram schemata (cf . for instance /Luckham et a l . 70/). But surpr is ing ly , pract ical

computer science so far has not paid much attent ion to th is fundamental question;

programmers s t i l l understand the i r programs - and consequently the equivalences

between them - i n t u i t i v e l y . They do a l l modif icat ions, optimizations etc. only

re ly ing on th is i n t u i t i v e understanding. I f programsare, however, developed

according to formal rules - generally cal led "transformations" - one also has to

formalize the notion of the equivalence of programs in order to give the approach

a sound basis.

Of course, the notion of equivalence of programs is strongly connected to the

semantics of the programming language in question. Any formal de f in i t i on of the

semantics immediately induces an equivalence re la t ion : Two programs may be con-

sidered equivalent i f the i r images under the semantical function are equal. On the

other hand, establ ishing an equivalence re la t ion between programs can be used as a

formal method for defining the semantics of (parts of) a programming language.

Apart from these more fundamental appl icat ions, the study of various re lat ions

between programs leads to a considerably better understanding of both programming

languages and the programming a c t i v i t y . This is in par t icu lar so for nondeter-

min is t ic and for para l le l programs. For instance, the examination of equivalence

classes of nondeterministic programs can c l a r i f y the d i f fe ren t concepts of non-

determinacy that are found in computer science today. F ina l l y , the consideration

of re lat ions between data structures is useful to understand and to describe the

process of f inding implementations for abstract speci f icat ions.

2. Fundamental Requirements

In formal program development (cf . /CIP 80 b/) one starts from a given program P

and t r i es to come up with a f ina l program P' such that P~P' holds for some

in terest ing re la t ion " ~ " (mostly an equivalence).

Relations for program development therefore have to meet the fol lowing require-

ments:

(I) Every re la t ion between programs must be ref lexive:~ V P : P~P

61

During the development one general ly procedes through a series of intermediate

versions P = Po' P1 ' Pn = P' " In th is case, i t should be possible to con-

clude P~P' from the fact that P i~P i+ l for a l l i . Therefore, we have to re

quire:

(I I) Every re la t ion between programs must be t rans i t i ve :

v P, Q, R : PNQAQ~R ~ P~R

Thus ~ has to be a quasi-ordering. Usually we are not considering complete pro-

grams but only parts of programs (e.g. a single assignment, the body of a loop

e tc .) . Therefore the " local" v a l i d i t y of a re la t ion ~ has to ensure also the

"global" v a l i d i t y of that re la t ion :

(I I I) Any complete program P[Q] containing the program part Q must f u l l -

f i l the subst i tut ion-property :

v Q, Q' : Q~Q' : P[Q] ~ P[Q']

Therefore, equivalence relat ions actual ly have to be congruence relat ions with

respect to a l l language constructs, and

for par t ia l orderings a l l language constructs have to be monotonic.

Remark

In connection with f ixed points of functionals often the cont inui ty of the

language constructs with respect to a par t ia l ordering is required:

A program (scheme) P[x] is ~-continuous i f f for a l l ~-chains (El) iEIN

with E i ~ Ei+ 1 lub(P[Ei]) exists i f lub(Ei) exists :and

lub(P[Ei]) =P[lub(E i)] .

Continuity plays an essential role for instance in f ixed point semantics or

for induction proofs. (end of remark)

In the fol lowing sections we are going to discuss a number of re lat ions which

f u l f i l these three fundamental requirements of r e f l e x i v i t y , t r a n s i t i v i t y and

monotonicity.

62

3. Semantical In terpretat ions

Formally, the semantics of a programming language is defined by a mapping V

in to a given mathematical structure (e,g, Scott 's continuous l a t t i ces) . V should

be a homomorphism,i,e. V induces a congruence re la t ion between programs and there-

fore sa t i s f ies our condit ions (I) , (I I) , (I I I) .

For appl icat ive languages a par t i cu la r semantical funct ion V may be defined for

every (determin is t ic) expression E by

V(E) =
e i f e is the resu l t of the evaluation of E

i f the evaluation of E does not lead to a

defined value,

For i n s t a n c e , i f V maps expressions of mode integer to the structure of the

integral numbers, then the congruence re la t ion induced by V is the so- cal led

"mathematical equivalence",

But of course we can choose other semantical funct ions , too. When V

gives for every program i t s " t races", i t induces an operational equivalence (cf .

/Hoare 78/, /Broy 80/). We even may r e s t r i c t our a t tent ion to j us t one special

property of programs and use e.g. a predicate that indicates whether a given

program terminates or not. The resu l t ing equivalence re la t ion par t i t i ons the set

of a l l programs in to the two classes of a l l terminating and a l l non-terminating

ones. Another example can be found in the approach of /81 ik le 78/ : His equivalence

re la t ion is based on the predicate "P is correct with respect to i t s assert ions".

Hence, the two programs

{ i = N} do i>O ~ i := i - 1 od { i = O}

and
N
z i }

i =O
{ i = N^s = O} do i>O ~ s, i := s + l , i - 1 od { i = OAS =

are equivalent under th is re la t ion since both are assert ion-correct .

The "axiomatic semantics" characterizes the semantics of procedural programming

languages by g iv ing proof ru les, thus also inducing congruence re lat ions on state-

ments. Using D i jks t ra 's approach we may define (S, S' statements):

S ~wp S' ~def wp(S, R) = wp(S', R) for a l l postcondit ions R

63

A comprehensive study of the impacts of d i f f e ren t semantical funct ions is done in the

f i e l d that has become known under the catchword "algebraic semantics" (cf . e.g.

/Courcel le , Nivat 78/) . Programs are viewed here as "program schemata" since the

meaning of t he i r base-functions is l e f t open. This gives the p o s s i b i l i t y not only

to study one par t i cu la r " in te rp re ta t ion" (i .e.one pa r t i cu la r semantical funct ion V

but whole classes of in te rpre ta t ions (/Courcel le, Guessarian 78/). Every such
class C then induces an equivalence re la t ion between expressions ("terms of the

magma"):
E I ~ E 2 ~ E11 = E21 for a l l in terpre ta t ions I E C .

This study leads to a number of important resu l ts , for instance to the va l ida t ion

of cer ta in proof pr inc ip les (such as computational induct ion for a l l algebraic

in te rp re ta t ions) .

4. Appl icat ive versus Procedural Style

In programs and programming languages we have to d is t ingu ish two fundamentally

d i f f e ren t sty les:

In the appl icat ive s t y }e programs are expressions the evaluation of which

y ie lds values.

- In the procedural s ty le programs are statements that change the "state" - i . e .

the values of program variables - or even change the "control state" by means

of goto's. The semantical funct ion for a statement S thus is a mapping from

"states" to "states".

To cope with these two cases in a uniform way we can make use of the close re-

la t ionsh ip between statements and expressions: Let S be a statement wi thout

goto's and l e t x be the only global var iable (of mode ~) occurring in S

(of course, x may stand here fo r a whole co l lec t ion of var iab les) . Then the

statement S can be rewr i t ten in to

x := [v ar_m y : = x ; S~ ; yJ

where S~ denotes the statement S with a l l occurrences of x replaced by y.

By introducing the local var iable y the block on the r ight-hand side of the

assignment now is a proper expression (without s ide-e f fec ts) . By means of a few

simple rewr i te rules th is block even can be converted into a purely app l i ca t i ve ex-

pression (cf./Pepper 78/ ; in the case of i t e ra t i ve statements th is of course means

the in t roduct ion of an e x p l i c i t f i xpo i n t operator). This expression then semantical-

l y characterizes the statement S .

64

Def. 1 : Let S be a statement (without goto's) and l e t x be i t s only

global var iable. Let E S be the purely appl icat ive expression derived

from the block

Y ; Y] [v a r ~ y : = x ; S x

Then E S is cal led the associated expression of S .

Of course, the execution of S and E S may be operat ional ly d i f f e ren t .

Obviously we can procede analogously from an expression E to i t s associated

statement by means of an assignment x := E to a su i tab ly chosen program var iable

x . In th is way, any (equivalence) re la t ion on expressions induces an (equivalence)

re la t ion on statements, and vice versa.

Def. 2 : Let p be a re la t ion on expressions. We then get an induced re la t ion

on statements by

S ~ S ' d ~ f ES ~ E S,

where E S and ES~ are the expressions associated to S and S' resp.

Note, however, that E S in general depends on the value of x, i . e . contains

x as a free i d e n t i f i e r . Hence, th is expression has to be considered as a funct ion

(m x) m: E s We therefore have to use an (equivalence) re la t ion on funct ions

that also is induced by that on expressions according to

f p g ~ f(E) ~ g(E) for a l l expressions E .
def

Now we can r e s t r i c t ourselves to considering re la t ions on expressions only. This

way of proceeding is analogous to the formal de f i n i t i on of a programming language

by "transformational semantics" - cf./Pepper 78/ - where most constructs of the

language are reduced by "de f i n i t i ona l transformation rules" to a small language

kernel.

Such techniques apply in par t i cu la r to languages comprising d i f fe ren t sty les of

programming. As an example one may consider the Wide Spectrum Language which is de

veloped in the course of the project CIP at the Technical Univers i ty Munich.

65

5. Relations for Determinist ic P r o ~

Now we assume some f ixed semantical funct ion V. Extending notions of /McCarthy 62/

we may define two d i f f e ren t re la t ions on (determin is t ic) expressions:

Def. 3: (strong equivalence)

Two expressions E and E' are cal led strongly equivalent , i f f

V(E) = V(E') .

Hence two strongl,y equivalent expressions have the same "course-of-values" (cf .

/ CIP 80 b/).

Def. 4 : (weak "equivalence")

Two expressions E and E'

V(E) : ~ v V(E') : ~ v

are cal led w e a k l ~ u _ i v a l e n t " , i f f

V(E) = V(E')

Example: In most programming languages the equation

i f B then E I else E 2 f_~_i = i__f_f ~ B then E 2 else E l f i

denotes a strong equivalence whi le

i f B then E else E f i = E

only is a weak "equivalence" (the evaluat ion of B may not terminate).

Unfortunately, weak "equivalence" is not t r ans i t i ve and hence no equivalence re-

l a t i on . For instance, l e t us consider the three expressions El , E2, E 3 such

that V(E2) = ~ , whereas E 1 and E 3 are defined but have d i f f e ren t values.

Then E I and E 2 as well as E 2 and E 3 are weakly "equivalent" but E I and

E 3 are not. This means that in a sequence Po Pn of programs where any

two successive programs Pi and Pi+l are weakly "equiva lent" , no correspondence

can be guaranteed between Po and Pn " Therefore, the notion of weak "equivalence"

is in no way appropriate for the development of programs, since i t v io la tes the

t r a n s i t i v i t y condi t ion.

66

Much more appropriate is the fol lowing well-known notion of "less definedness":

Def. 5 : (definedness preservation)

E ~ E' ~ V(E) = (~) v V(E) : V(E')

Example: Consider the fol lowing function

funct f ~ (~ x, ~ y) L :

i f B(x) then G(x)e!se H(x, y) f i

A ca l l f(E I , E2) is - according to cal l -by-value semantics - undefined i f

E 2 is undefined. Replacing th is ca l l by i t s body (the respective transformation

rule has become known under the name "UNFOLD" , c f . / Burs ta l l , Darlington 75/)

leads to

i f B(E1) the n G(E1) else H(E1, E2) f i

which is defined i f B(E1) is true. Therefore the rule

definedness preservation (cf . /Kot t 78/).
"UNFOLD" only guarantees

Although not being an equivalence re la t ion , the definedness preservation is useful

in program developments since i t is re f lex ive , t rans i t i ve and monotonic (for the

usual language constructs). In par t icu lar when star t ing from a (w . r . t . a given speci.

f i ca t ion) t o t a l l y correct program Po ' the definedness preservation guarantees that

the f ina l program Pn is t o t a l l y correct, too. On the other hand, when s tar t ing from
an undefined program V(po)=~) nothing can be said about the f ina l program Pn

I f we consider the reverse re la t ion of "u-preservation" i .e . E ~ E' then

again the par t ia l correctness of Po implies that of Pn (and vice versa) .

The transformation "FOLD" being the inverse of "UNFOLD" provides an obvious

example. In contrast to the definedness preservation now the tota l correctness of

the f ina l programm Pn ensures that also the or ig inal program Po had been

t o t a l l y correct. This may be interest ing in those cases where the termination

proof for the resul t ing program - e,g, a loop - is simpler than that for the
or ig inal one - e.g. a complex nested recursion.

Obviously, two expressions E and E ' are strongly equivalent i f f both E ~E '

and E ~ E' hold. In th is way, the ~- re la t ion also is used as a basis for the

f ixpo in t - theory underlying the technique of denotational semantics.

67

By v i r tue of the d e f i n i t i o n in section 4 every equivalence re la t ion on expressions

induces an equivalence re la t ion on statements and vice versa. Thus e.g. strong

equivalence fo r statements is defined by the strong equivalence of t he i r asso-

ciated expressions.

For instance, using D i j s t ra ' s "predicate transformers" we have

wp(S, R) = wp(x := E S, R) = I Rex i f e = V(Es) is defined

I fa lse otherwise

Therefore strong equivalence and Nwp (cf . section 3) coincide for statements.

Analogously the definedness preservation leads to (l e t

statements) :

S ES ' ~ wp(S, R) = wp(S', R)

since only undefined s i tuat ions (e.g. "abort")

R.

S and S' be determin is t ic

for a l l postcondit ions R,

y ie ld fa lse for every postcondit ion

6~ Relations for Nondeterminist ic Programs

I f a program allows some freedom of choice during the evaluation i t is cal led

nondeterminist ic . Since the de f i n i t i ons of section 4 are va l id fo r both deter-

m in is t i c and nondeterminist ic cases, we again can r e s t r i c t our a t tent ion so le ly

to expressions. Nondeterminism here means that there may be d i f f e ren t resul ts for
the same expression, Therefore we now have to extend the semantical funct ion V(E)

to a funct ion B, cal led "breadth", that gives the set B(E) of a l l possible values

of evaluations of E (c f . /C lP 78/).

An expression is cal led determinate i f IB(E)[= 1 , i . e . i f a l l possible evalua-

t ions y ie ld the same resu l t or are a l l undefined . I f there ex is ts a non-termina-

t ing evaluat ion then wE B(E) holds. An expression is cal led t o t a l l y defined

i f f ~ ~ B(E) , and t o t a l l y undefined i f f B(E) = {~} . I f there ex is t i n f i n i t e l y

many possible resu l ts , i . e . i f ~B(E)I = ~ , we speak of unbounded nondeterminism .

Note that B(E) is never empty .

68

Example: Consider the fol lowing ambiguous function where "E 1 0 E2"

a rb i t ra ry choice between the expressions E I and E 2, i . e .

B(E 1 I E2) = B(E1) U B(E2)

denotes an

funct f m (~ t x) na___~t : i f x = 0 then 0

x = 1 then f(O) ~ 1

x > I then f (x-1) + I ~ f (x+ l) f i ,

The expression f(O) is determinate while f(1) is not determinate but defined

and f (2) is unboundedly nondeterministic.

Remarkably, there are two major areas in computer science using the notion of "non-

determinism" with d i f fe ren t (although related) meanings. In the theory of automata,
in a r t i f i c i a l in te l l igence and in par t icu lar in complexity theory one has to decide

for a given nondeterminitic expression E and a given value x whether xEB(E) ,

i . e . whether x may resu l t from evaluating E (cf . /Floyd 67/). To answer th is

question, a l l possible evaluations of E may have to be explored. This notion w i l l

be called here nondeterminstic exhaustion.

The other understanding of nondeterminism can be found in the theory of para l le l

programs and in formal program development. Here one accepts any arb i t ra ry value

of B(E) as a resu l t of evaluating the expression E (cf . /D i jks t ra 76/). This

notion w i l l be called nondeterministic choice here.

Example: To elucidate th is d is t inc t ion we consider the so-called "knapsack problem"

which is known to be np-complete: Given a sequence of integers, is there a sub-

sequence that sums exactly to a speci f ic value k ?

The fol lowing elementary program y ie lds the sum of an arb i t ra ry subsequence:

funct subsum ~ (sequ in___~.t s) in___t.t :

i_~f empty(S) the 9 0

else subsum(rest(s)) D f i r s t (s) + subsum(rest(s)) f i

We can base the nondeterministic predicate on i t :

funct knapsack~(se.qu ' i nt s, in t k) bool : k = subsum(s).

Note that th is only par t l y solves our problem. I f a cal l of the function

y ie lds fa lse , then there s t i l l may be another subsequence which sums to

resu l t t rue, however, provides a def in i te answer.

knapsack

k. The

By

69

UNFOLD and FOLD techniques the function can be developed into

funct knapsack ~ (sequ in_~t s, ! n t k) bool :

i f empty(s) then k = 0

else knapsack(rest(s), k) ~ knapsack(rest(s), k - f i r s t (s)) f.~i

This program represents a nondeterministic choice and i t is said to "nondeter-

m in is tca l l y solve the given problem in l inear t ime". This means that the answer

whether true CB(knapsack(s, k)) is given by the above program i f in each re-

cursive cal l a "lucky choice" is taken. Since such a benevolent oracle, however,

does not ex is t in r e a l i t y , one has to trace out the tree of a l l possible compu-

tat ions in order to get the corret answer in any case. Hence, one has to replace

the above nondeterministic choice by an exhaustive computation. In our speci f ic

case th is simply can be done by replacing the choice-operator "~" by the logical

disjunction-operator "v" The resul t ing deterministc program, however, is not

l inear recursive and needs exponential time to compute the resul t .

Note : Using the program

funct iknapsack ~ (sg~ ~ i n t s, in t k) b o o l :

i f k = 0 then true

els.___~e iknapsack(rest(s), k) ~ iknapsack(rest(s), k - f i r s t (s)) f i

we get a semi-decision procedure which even works with sequences of i n f i n i t e

length. (end of note)

These d i f fe ren t notions of nondeterminism, of course, lead to d i f fe ren t "useful"

re lat ions for program development. Following the approach of /CIP 78/ we concen-

t ra te on the nondeterministic choice and do not consider the nondeterministic ex-

haustion.

F i r s t we look at re lat ions corresponding to the strong equivalence of the deter-

min is t ic cases, i .e . at re lat ions that do not t reat the undefined element ~ se-

para te ly :

70

Def. 6 : (stron~ equivalence)

Two (nondeterminist ic) expressions

i f f B(E) = B(E') .

E and E' are cal led st rongly equivalent ,

Since the breadth-funct ion gives a whole set of values i t is quite natural to

consider not only set equal i ty but also set inc lus ion. This leads to the t rans i -

t i ve re la t ion (cf./McCarthy 6 2 /) :

Def. 7 : (strong descendant)

An expression E' is cal led a s___t~on~ descen#ant of E , i f f B(E') ~ B(E) .

The strong equivalence is appl icable both for nondeterminist ic exhaustion and for

nondeterminist ic choice. The re la t ion of strong descendants, however, is only useful

for the l a t t e r case. I t is very important for program developments since a r e s t r i c -

t ion of the choice usual ly represents a major design decision.

Example: The fo l lowing nondeterminist ic program searches for the posi t ion of

a given element x in an ordered array a (under the assert ion that x indeed

is in a, and that i n i t i a l l y m is the lower and n the upper bound of a) :

funct search ~ (~ x, array a, halt m, n) nat:

i f m = n then m

else nat r = some nat i : m < i < n ;

i f a i r] = x then r

a i r] < x then search(x, a, r+ l , n)

a i r] < x then search(x, a, m, r - l) f i f i

Where the expression "Some nat i : m < i < n " has the breadth B ={m, n } .

Hence, both "m" and "(m+n) ÷2'' are strong descendant of i t and may be subst i -

tuted for i t . (The choice "na._._tt r ~ m" leads to l inear search, "na___~t rE (m+ n) ÷ 2"

leads to binary search.) (end of example)

I f we t ry to carry the notion of weak "equivalence" over to nondeterminist ic con-
s t ructs , we get

71

Def. 8 : (weak "equivalence")

Two expressions E and E' are cal led weakly

E B(E) v ~£ B(E') v B(E) = B(E')

']equivalent" , i f f

Again, th is re la t ion is not t r ans i t i ve and therefore not suited for the development

of programs. The same were true i f we would define a s im i la r notion of a weak descen-

dant. We get an equivalence re la t i on , however, by requi r ing that only the defined

values of the expressions coincide:

Def. 9 : (weak equivalence)

Two expressions E and E ~

B(E) ~ {~} = B(E') ~ {~ ' }

are cal led weakly equivalent , i f f

Note that fo r t o t a l l y defined/undefined expressions - and hence in par t i cu la r for

determin is t ic ones - th is notion coincides with that of strong equivalence. Analogous

ly we get a weak descendant by the d e f i n i t i o n

Def.lO : (weak descendant)

An expression E' is cal led a weak descendant of an expression E, i f f

B(E') ~ {~} c B(E)

Example: Both E and E' are strong descendants of (E B E') . A t o t a l l y undefined

expression E ~ is a weak descendant of any expression.

How do these notions correspond to the definedness preservation E ~ E' fo r deter-

m in is t i c expressions ? The idea there was that s ta r t ing from a t o t a l l y correct

program one is guaranteed to ar r ive at a t o t a l l y correct program, too. This means

for nondeterminist ic programs that ~ must not be in B(E') i f i t is not in B(E).

In add i t ion, one should require that in cases of unbounded nondeterminism the de-

f ined values pers is t .

Def. 11 : (definedness preseryation)

E c E' ~ (e E B(E) A B(E) x {~} ~ B(E'))
def

v (B(E) = B(E'))

This means that we require strong equivalence for t o t a l l y defined expressions and

otherwise content ourselves with a weak descendant. This re la t ion coincides with

the "Eg l i -M i lner " -o rder ing , that is used to define the semantics of nondeterminist ic

recursive funct ions (c f . /de Bakker 76/) .

72

The analogous d e f i n i t i o n using a descendant instead of an equivalence re la t ion in

the t o t a l l y defined case is not very meaningful, since definedness preservation

implies that a number of defined values may be added in the place of ~ , whereas

descendant means that a number of values may be l e f t out. The combination of these

"two notions would lead to a re la t ion which were va l id for nearly any two programs.

Again looking at D i jks t ra 's predicate transformers, we now have for a nondeter-

m in is t i c statement S the t rans la t ion :

,~V e E B(Es) : Rex ' i f co~ B(Es)
wp(S, R) = ~ fa l se , otherwise

where E S is the expression associated to S .

In contrast to the determin is t ic case, the re la t ion ~wp does only coincide

with the strong equivalence i f the two statements are t o t a l l y defined or t o t a l l y
undefined.

7. Relations on Data Structures

In the las t sections we have studied re lat ions on programs for some f ixed seman-

t i ca l funct ion. Transformations often hold for whole classes of semantical func-

t ions or equiva lent ly they are va l id over d i f fe ren t data structures with s im i la r

propert ies.

To begin wi th , i t seems more appropriate to speak of "computational st ructures"

(cf . /CIP 80 b/) instead of "data s t ructures" , in order to stress the point that

the basic operations are an integrated part of these structures. Such computatio-

nal structures are considered equivalent , i f they show the same behaviour. This

behaviour can be described formal ly by means of (algebraic) "abstract data types"

(cf . e .g. /L iskov, Z i l l es 74/, /Guttag 75/, /ADJ 78/, /CIP 79/) which leads to the

fundamental re la t ion : "A computational s t ructure D is of a type T". In formal ly ,

th is means that there are f ixed correspondences between the sorts of T and the

car r ie r sets of D and between the funct ion symbols of T and the operations

of D and that the laws (axioms) of T hold in D . In order to have induct ion

methods over types we require furthermore that every object of a computation

structure is denoted by a "well-formed term" of T , i . e . by a term (without free

73

i d e n t i f i e r s) b u i l t up from the funct ion symbolds of T respecting t he i r func t io -

n a l i t i e s (fo r a more detai led discussion cf . e.g. /ADJ 78/, / l i P 79/).

We are led in a st ra ight forward manner to re la t ions between computational struc-

tures :

Def. 12 : Two computational structures D and D' are strongly equivalent i f

for every type T the structure D is of type T i f and only i f also

D' is of type T.

Since st rongly equivalent structures are isomorphic, th is notion is too r e s t r i c t i v e

for being appl icable in program development. Consider fo r instance the abstract

concept of (f i n i t e) sets. The strong equivalence does not al low to switch from

a representation by "charac te r is t i c funct ions" to a representation by " l inked l i s t s " ,

since these two structures have d i f f e ren t propert ies. Therefore we should better work

with the not ion: "Two computational structures D and D' are equivalent wi th re-

sPect to a given type T i f both D and D' are of that type T."

But when working with abstract types we immediately are led to the question of the

"equivalence of types", thus being able to do a formal program development also on

the very abstract level of spec i f i ca t ions . Since the notion of a type is c losely

related to the notion of a theory in formal log ic , we could adopt the respective

d e f i n i t i o n , v i z . that two theories are equivalent i f they have the same language and

the same theorems (c f . /Shoenf ie ld 67/) . But t h i s means that the two types have

exact ly the same computational structures as models, which makes the notion too re-

s t r i c t i v e for the needs of program development,

Instead of considering (the p rovab i l i t y of) a l l kinds of formulas, we therefore re-

s t r i c t our a t ten t ion to (various) equivalences between the terms of the given type.

Two terms which represent the same object in every computation structure of the re-

spective type obviously have to be considered equivalent:

Def. 13 : Two terms s and t of a type T are st rongly equivalent i f the

equation s = t is va l id in T .

74

But th is notion is quite r e s t r i c t i v e , too. For instance, in a data base system we

are not interested whether two internal representations are exactly the same, but ra-

ther whether they behave al ike for every possible inquiry. Such a data base is to be

described as a new structure that is b u i l t up from given "pr imi t i ve" structures.

The corresponding hierarchy of types suggests to dist inguish terms of two kinds:

those that represent objects of the newly defined type, and those that represent

objects of the already exist ing "p r im i t i ve" types. The l a t t e r are called terms of

pr imi t ive ' sort (the i r outermost operation symbol has as i t s range one of the pr imi-

t i ve structures). These terms of pr imi t ive sort determine the behaviour that a

computational structure (viewed as a "black box") exhib i ts to the outer world.

Def. 14 : Two (arb i t ra ry) terms s and t are called y i s i b l y equivalent ,

i f for a l l terms u[x] of pr imi t ive sort (containing only one free

variable x) u[s] and u [t] are equivalent (in the respective pr imi t ive

type).

Note that for s u f f i c i e n t l y complete types (cf . /Guttag 75/) both uCs] and u [t]

can be reduced to terms only consisting of operation symbols of the pr imi t ive type in

question . In the above de f in i t ion we have l e f t open which kind of equivalence is

assumed for u[s] and u [t] . Actual ly , any suitable re la t ion between the

pr imi t ive terms induces a respective re lat ion between the nonprimitive terms.

Any equivalence re la t ion between terms induces an equivalence re la t ion between types.

Let T and T' be two types having the same signature up to renaming (homologous

types, c f . / ClP 80 b/) . Then T and T' are s trong]y/visibly__e_quiyalent i f

any two nonprimitive terms s, t are s t rong ly /v i s ib l y equivalent in T i f f they are

i t in T'. Of course, th is requires that the same equivalence re lat ion in the pr imi t ive
types is taken as a basis.

Let us now consider twoequat ional lydef ined types T and T' based on the same

(or at least strongly equivalent) pr imi t ive types. T and T' are strongly equi-

valent i f f the i r i n i t i a l (cf. /ADJ 78/) computation structures are isomorphic.

T and T' are v i s i b l y equivalent i f f the i r terminal (cf . /ClP 79/) computation
structures are isomorphic.

For a nont r iv ia l example for these notions see /Pepper 78/ (cf . also section 4).

There a language kernel serves as a pr imi t ive type, while procedural constructs

are defined by axiomatic transformation rules (playing the role of conditional
equations).

/5

8 . Concluding Remarks

Methods of program development which use several versions of the "same" program

presuppose a notion of program equivalence; even assertion methods induce such

equivalences. A j u s t i f i c a t i o n of such development processes requires a sound

formalizat ion of these re la t ions, thus leading to a "calculus" of transformations.

In par t icu lar , these approaches turn out to be considerably more f l ex i b l e i f not

only equivalences are employed but also par t ia l orderings l i ke the descendant re-

la t ion. Note that , i f one is interested in the basic concepts of a speci f ic pro-

gramming methodology, one should carefu l ly study the underlying re lat ions charac-

ter iz ing the approach.

Apart from these pract ical aspects of program development re lat ions between pro-

grams also give valuable theoret ical insights into the structure of programming

languages. So far , however, re lat ions mainly have been considered on semantical

domains (f ixed point theory, denotational semantics). T r i v i a l l y , in th is way

also relat ions between programs are induced by the semantical mappings. And i t is

hot surprising that we can procede the other way round: Using conditional equa-

t ions (cal led transformation rules) to establish equivalences between programs one

can specify the semantics (cf . /Pepper 78/, /CIP 80 a/) . These techniques allow

to explain basic properties of a programming language without constructing com-

plex semantical domains. Moreover, one can define a language in a modularized way,

both from the syntact ic and from the semantic point of view, leading to a "stepwise

development of the semantics". In par t i cu la r , one gets design c r i t e r i a ensuring

the coherence and independence of the concepts of the language. An i l l u s t r a t i v e

example is given in /Broy 80/ where (in connection with para l le l programs) the in-

compat ib i l i ty of certain fairness conditions with the cont inui ty of the language

constructs with respect to the Egl i -Mi lner ordering is shown.

Acknowledgement

The resul ts presented in th is paper were strongly influenced by discussions we had

with our colleagues of the CIP research group at the Technical Universi ty Munich,

notably with Prof, F.L. Bauer and Prof. K, Samelson.

76

References :

/ADJ 78/

J. A. Goguen, J. W. Thatcher, E. G. Wagner: An I n i t i a l Algebra Approach to

the Specification, Correctness and Implementation of Abstract Data Types.

In: R. T. Yeh (ed.): Current Trends in Programming Methodology, Vol. 3,

Data Structuring, Englewood C l i f f s : Prentice Hall 1978

/de Bakker 76/

J. W. de Bakker: Semantics and Termination of Nondeterministic Recursive

Programs. 3rd Int. Symp. on Automata, Languages and Programming, Edinburgh

1976

/B l ik le 78/

A. Bl ik le: Specified Programming. In: Mathematical Studies in Information

Processing, Proc. Int. Conf., Kyoto, Aug. 1978

/Broy 80/

M. Broy: Transformation paral lel ablaufender Programme. Technische Uni-

versi t~t MUnchen, Dissertation an der Fakult~t fur Mathematik, Februar

1980

/Bursta l l , Darlington 75/

R. M. Burstal l , J. Darlington: Some Transformations for Developing Re-

cursive Programs. Proc. of 1975 Int. Conf. on Reliable Software, Los Angeles

1975, 465-472. Also: J. ACM 2__~4, I , 44-67 (1977)

/CIP 781
M. Broy, R. Gnatz, M, Wirsing: Semantics of Nondeterministic and Noncontinuous

Constructs. In: F. L. Bauer, M. Broy (eds.): Program Construction. (Proc.

Int. Summer School, Marktoberdorf 1978) Lecture Notes in Computer Science 6_.99,

553-592, Berlin: Springer 1979

ICIP 79/

M. Broy, W. Dosch, H. Partsch, P. Pepper, M. Wirsing: Existential Quantifiers

in Abstract Data Types. In: H. A. Maurer (ed.): Proc. of the Sixth Collo-

quium on Automata, Languages and Programming, Graz, Lecture Notes in Com-

puter Science 7_~I, 73-87, Berlin: Springer 1979

/CIP 80 a/

M. Broy, M. Wirsing: Programming Languages as Abstract Data Types. To appear

in the Proc. of the 5th Colloquium on "Arbres en Alg6bre et en Programmation"

L i l l e 1980

/CIP 80 b/

F. L. Bauer, H. W~ssner: Algorithmic Language and Program Development. (to

appear)

/Courcelle, Guessarian 78/

B. Courcelle, I. Guessarian: On Some Classes of Interpretations. JCSS 17: 3,

388-413 (1978)

/Courcelle, Nivat 78/

B. Courcelle, M. Nivat: The Algebraic Semantics of Recursive Program Schemes.

In: Proc. Math. Foundations of Comp. Sc., Zakopane 1978

/Di jkstra 76/

E. W. Dijkstra: A Discipline of Programming. Englewood Cl i f fs : Prentice Hall,

1976

/Floyd 67/

R. Wo Floyd: Nondeterministic Algorithms. J. ACM I._~4, 636-644, (1967)

/Guttag 75/
J. V. Guttag: The Specification and Application to Programming of Abstract

Data Types. Ph.D. Thesis, Univ. of Toronto, Dept. of Comp. Sc., Rep. CSRG-

59, 1975

/Hoare 78/

C. A. R. Hoare: Some Properties of Predicate Transformers. J. ACM 2_.~5, 3,

461-480, (1978)

/Kott 78/

L. Kott: About a Transformation System: A Theorectical Study. In: B. Robinet

(ed.): Program Transformations, Proc, 3rd Int. Symp. on Programming, Paris :

Dunod 1978

/Liskov, Zi l les 74/

B. Liskev, S. Zi l les: Programming with Abstract Data Types. Proc. ACM SIG-

PLAN Conf. on Very High Level Languages, SIGPLAN Notices ~, 4, 50-59 (1974)

/Luckham et al. 70/

D. Luckham, D, Park, M. Paterson: On Formalized Computer Programs. J. CSS 4

(1970)

78

/McCarthy 62/

J, McCarthy: A Basis for a Mathematical Theory of Computation. In: P. Braf-

fo r t , D. Hirschberg (eds,): Computer Programming and Formal Systems. Amster-

dam: North-Holland 1963

/Pepper 78/

P. Pepper: A Study on Transfomational Semantics, In: F. L, Bauer, M. Broy

(eds.): Program Construction. (Proc. Int. Summer School, Marktoberdorf 1978)

Lecture Notes in Computer Science 6_~9, 322-405, Berlin: Springer 1979. (Also:

Dissertation, Techn. Univ, MUnchen 1979)

/Shoenfield 67/

J. Ro Shoenfield: Mathematical Logic. Reading: Addison-Wesley 1967

