ON RELATIONS BETWEEN PROGRAMS™

M. Broy, P. Pepper, M. Wirsing (1)

Abstract

Equivalence relations between programs are strongly connected to the formal de-
finition of the semantics of programming languages. In addition they provide a
basis for the formal justification of the development of programs by transfor-
mations. Besides equivalences there are various other relations on programs

and computational structures, which help to get a better understanding of both
programming languages and the programming activity. In particular, the study of
relations between nondeterministic programs allows to compare different concepts
of nondeterminism.

This research was partially sponsored by the Sonderforschungsbereich 49 -
Programmiertechnik - Munich .

<1)Technische Universitdt Minchen, Institut fir Informatik, Postfach 20 24 20,
D-8000 Miinchen 2, Germany

60

1. Introduction

The equivalence of programs is an important question in computer science. Equi-
valence relations between programs are extensively studied in the theory of pro-
gram schemata (cf. for instance /Luckham et al. 70/). But surprisingly, practical
computer science so far has not paid much attention to this fundamental question:
programmers still understand their programs - and consequently the equivalences
between them - intuitively. They do all modifications, optimizations etc. only
relying on this intuitive understanding. If programs are, however, developed
according to formal rules - generally called "transformations” - one also has to
formalize the notion of the equivalence of programs in order to give the approach
a sound basis.

Of course, the notion of equivalence of programs is strongly connected to the
semantics of the programming language in question. Any formal definition of the
semantics immediately induces an equivalence relation: Two programs may be con-
sidered equivalent if their images under the semantical function are equal. On the
other hand, establishing an equivalence relation between programs can be used as a
formal method for defining the semantics of (parts of) a programming language.

Apart from these more fundamental applications, the study of various relations
between programs leads to a considerably better understanding of both programming
Janguages and the programming activity. This is in particular so for nondeter-
ministic and for parallel programs. For instance, the examination of equivalence
classes of nondeterministic programs can clarify the different concepts of non-
determinacy that are found in computer science today. Finally, the consideration
of relations between data structures is useful to understand and to describe the
process of finding implementations for abstract specifications.

2. Fundamental Requirements

In formal program development (cf. /CIP 80 b/) one starts from a given program P
and tries to come up with a final program P' such that P~P' holds for some
interesting relation "~" (mostly an equivalence).

ReTations for program development therefore have to meet the following reguire-
ments:

(1) Every relation between programs must be reflexive: v P : P~P

61

During the development one generally procedes through a series of intermediate
versions P = Po’ Pl’ vees Pn = P' . In this case, it should be possible to con-
clude P~P' from the fact that Pi"“Pi+1 for all 1. Therefore, we have to re
quire:

(IT) Every relation between programs must be transitive :

vP,Q, R:P~QaQ~R=P~R

Thus ~ has to be a quasi-ordering. Usually we are not considering complete pro-
grams but only parts of programs {e.g. a singie assignment, the body of a loop
etc.). Therefore the "local" validity of a relation ~ has to ensure also the
"global" validity of that relation :

{I11) Any complete program P[Q] containing the program part Q must full-
i1 the substitution-property :

vQ, Q' :Q~Q" = PIQ]l ~ PIQ']

Therefore, equivalence relations actually have to be congruence relations with

respect to all Tanguage constructs, and

for partial orderings all language constructs have to be monotonic.
Remark

In connection with fixed points of functionals often the continuity of the
Janguage constructs with respect to a partial ordering is required:

A program (scheme) P[x] is ~-continuous iff for all ~-chains (Ei)i €N
with Eiru Eiin 1ub(P[Ei]) exists if Tub(E,) exists,and
}ub(P[Ei]) =P[7ub(Ei)].

Continuity plays an essential role for instance in fixed point semantics or

for induction proofs. (end of remark)

In the following sections we are going to discuss a number of relations which
fulfil these three fundamental reguirements of reflexivity, transitivity and
monotonicity .

62

3, Semantical Interpretations

Formally, the semantics of a programming language is defined by a mapping V
into a given mathematical structure {e.g. Scott's continuous Tattices). V should
be a homomorphisms i.e. V¥ induces a congruence relation between programs and there-

fore satisfies our conditions (I}, (II), (III).

For applicative languages a particular semantical function V may be defined for
every [(deterministic) expression E by

e if e 1is the result of the evaluation of E
V(E) Y if the evaluation of E does not lead to a
defined value.

For instance, if V maps expressions of mode integer to the structure of the
integral numbers, then the congruence relation induced by V 1is the so-called
“mathematical equivalence".

But of course we can choose other semantical functions . too. When V

gives for every program its "traces", it induces an operational equivalence (cf.
/Hoare 78/, /Broy 80/). We even may restrict our attention to just one special
property of programs and use e.g. a predicate that indicates whether a given
program terminates or not. The resulting equivalence relation partitions the set
of all programs into the two classes of all terminating and all non-terminating
ones. Another example can be found in the approach of /Blikle 78/ : His equivalence
relation is based on the predicate "P is correct with respect to its assertions”.
Hence, the two programs

{i =N do i>0>1i:=1-1 od {i =0}

and

UM =

{i=Nas=0) do i>0-35, 7 :=s+1,1i-1 od{i=20as-= i}

are equivalent under this relation since both are assertion-correct.

The "axiomatic semantics" characterizes the semantics of procedural programming
Tanguages by giving proof rules, thus also inducing congruence relations on state-
ments. Using Dijkstra's approach we may define (S, S' statements):

S ~wp S! ® def wp(S, R) = wp(S', R) for all postconditions R

83

A comprehensive study of the impacts of different semantical functions is done in the
field that has become known under the catchword “"algebraic semantics” {cf. e.g.
/Courcelle, Nivat 78/). Programs are viewed here as "program schemata" since the
meaning of their base~functions is left open. This gives the possibility not only
to study one particular "interpretation” (i.e.one particular semantical function V
but whole classes of interpretations (/Courcelle, Guessarian 78/). Every such
class C then induces an equivalence relation between expressions (“terms of the
magma"):

E1 ~ E2 = E1 = E2 for all interpretations I € C .

This study leads to a number of important results, for instance to the validation
of certain proof principles (such as computational induction for all algebraic
interpretations).

4, Applicative versus Procedural Style

In programs and programming languages we have to distinguish two fundamentally
different styles:

- In the applicative style programs are expressions the evaluation of which
yields values.

- In the procedural style programs are statements that change the "state" - i.e.
the values of program variables - or even change the "control state" by means
of goto's. The semantical function for a statement S thus is a mapping from
"states” to "states".

To cope with these two cases in a uniform way we can make use of the close re-
lationship between statements and expressions: Let S be a statement without
goto's and let x be the only global variable (of mode m) occurring in S
{of course, x may stand here for a whole collection of variables). Then the
statement S can be rewritten into

xi=lvarmy :=x 38 5 y]

where Si denotes the statement S with all occurrences of x replaced by v.
By introducing the ilocal variable y the block on the right-hand side of the
assignment now is a proper expression (without side-effects). By means of a few
simple rewrite rules this block even can be converted into a purely applicative ex-
pression (cf./Pepper 78/ ; in the case of iterative statements this of course means
the introduction of an explicit fixpoint operator). This expression then semantical-
1y characterizes the statement S .

64

Def, 1 : Let S be a statement (without goto's) and let x be its only
global variable. Let ES be the purely applicative expression derived
from the biock

fyarmy : = x5S 3y

Then E. s called the associated expression of S .

S

Of course, the execution of S and ES may be operationally different.

Obviously we can procede analogously from an expression E to its associated
statement by means of an assignment x:=E to a suitably chosen program variable
% . In this way, any (equivalence) relation on expressions induces an {equivalence)
relation on statements, and vice versa.

Def. 2 : Let o be a relation on expressions. We then get an induced relation
B on statements by

ST 5" ggr Eg o B

where ES and ES‘ are the expressions associated to S and §' resp,

Note, however, that ES in general depends on the value of x, i.e. contains

x as a free identifier. Hence, this expression has to be considered as a function
(m x) m: ES . We therefore have to use an {eguivalence) relation on functions

thet alsc is induced by that on expressions according to

fpo g = f(E) o g{E) for all expressions E .
def
Now we can restrict ourselves to considering relations on expressions only. This
way of proceeding is analogous to the formal definition of a programming language
by "transformational semantics" - cf./Pepper 78/ - where most constructs of the
language are reduced by "definitional transformation rules" to a small language

kernel.

Such techniques apply in particular to languages comprising different styles of
programming. As an example one may consider the Wide Spectrum Language which is de
veloped in the course of the project CIP at the Technical University Munich.

65

5. Relations for Deterministic Programs

Nowwe assume some fixed semantical function V. Extending notions of /McCarthy 62/
we may define two different relations on (deterministic) expressions:

Def. 3: (strong equivalence)

Two expressions E and E' are called strongly equivalent, iff
V(E) = V(E') .

Hence two strongly equivalent expressions have the same "course-of-values" (cf,
/ CIP 80 b/).

Def. 4 : (weak "equivalence")

Two expressions E and E' are called weakly "equivalent”, iff
V(E) = w v V(E') = wv V(E) = V(E")

Example: In most programming languages the equation

if B then E; else E, fi = if o B then E, else Ey i

denotes a strong equivalence while

if B then E else E fi = E
only is a weak "equivalence" (the evaluation of B may not terminate).

Unfortunately, weak "equivalence" is not transitive and hence ne equivalence re-
jation. For instance, let us consider the three expressions El’ EZ’ E3 such

that V(Ez) = w , whereas E1 and E5 are defined but have different values.
Then E1 and E2 as well as EZ and E3 are weakly “equivalent” but E1 and
E3 are not. This means that in a sequence p_, ..., Py of programs where any
two successive programs py and Pigp 2re weakly “equivalent", no correspondence
can be guaranteed between p_ and Pn . Therefore, the notion of weak "equivalence”
is in no way appropriate for the development of programs, since it violates the
transitivity condition.

66
Much more appropriate is the following well-known notion of "less definedness™:

Def. 5 : (definedness preservation)

ECE e V(E)=0 v V()= V(")
Example: Consider the following function

funct f=(mx, ny)r:

if B(x) then 6(x)

else H(x, y) fi
A call f(El, EZ) is - according to cali-by-value semantics - undefined if
E2 is undefined. Replacing this call by its body (the respective transformation
rule has become known under the name “UNFOLD" , cf./ Burstall, Darlington 75/)
leads to

if B(El) then G(El) else H(El’ EZ) fi
which is defined if B(El) is true. Therefore the rule "UNFOLD" only guarantees

definedness preservation {cf. /Kott 78/).

Although not being an equivalence relation, the definedness preservation is useful
in program developments since it is reflexive, transitive and monotonic (for the
usual Tanguage constructs). In particular when starting from a (w.r.t. a given speci-
fication) totally correct program Py » the definedness preservation guarantees that
the final program Pn is totally correct, too. On the other hand, when starting from
an undefined program v(p) =w nothing can be said about the final program p,

If we consider the reverse relation of ‘“w-preservation", i.e. E 3 E' , then
again the partial correctness of P, implies that of Pn {(and vice versa) ,

The transformation "FOLD" being the inverse of "UNFOLD" provides an obvious
example. In contrast to the definedness preservation now the total correctness of
the final programm P, ensures that also the original program P, had been
totally correct. ThlS may be interesting in those cases where the termination
proof for the resulting program - €.9. a Toop - is simpler than that for the
original one - e.g. a complex nested recursion.

Obviously, two expressions E and E' are strongly equivalent iff both E CE
and E JE' hold. In this way, the Z-relation also is used as a basis for the
fixpoint-theory underlying the technique of denotational semantics.

67

By virtue of the definition in section 4 every equivalence relation on expressions
induces an equivalence relation on statements and vice versa. Thus e.g. strong
equivalence for statements is defined by the strong equivalence of their asso-
ciated expressions.

For instance, using Dijstra's "predicate transformers” -we have

e . _ . ,
Wp(Ss R) = wp(x := ES* R) = {.Rx if e = V(Es) is defined

false otherwise

Therefore strong equivalence and ~wp (cf. section 3) coincide for statements.

Analogously the definedness preservation leads to {let S and S' be deterministic
statements) :

SES' e« wp(S, R) = wp(S', R) for all postconditions R,
since only undefined situations (e.g. "abort”) yield false for every postcondition

R.

6. Relations for Nondeterministic Programs

If a program allows some freedom of choice during the evaluation it is called
nondeterministic . Since the definitions of section 4 are valid for both deter-

ministic and nondeterministic cases, we again can restrict our attention solely

to expressions. Nondeterminism here means that there may be different results for
the same expression, Therefore we now have to extend the semantical function V{(E)

to a function B, called "breadth", that gives the set B(E) of all possible values
of evaluations of E (cf./CIP 78/).

An expression is called determinate if |[B(E)[=1, i.e. if all possible evalua-
tions yield the same result or are all undefined . If there exists a non-termina-
ting evaluation then w€ B(E) holds. An expression is called totally defined

iff w4§ B(E) , and totally undefined iff B(E) = {w} . If there exist infinitely
many possible results, i.e. if |B(EY} = = , we speak of unbounded nondeterminism .

Note that B(E) 1is never empty .

68

Example: Consider the following ambiguous function where “E1] EZ“ denotes an
arbitrary choice between the expressions E1 and EZ’ i.e.

B(El'u E,) = B(E)) U B(E,)

#
o

funct f = (nat x) nat : if x then 0
I x=1 then f(0O)] 1
I x>1 then f{x-1) + 1 [f(x+1) fi.

The expression f(0) is determinate while f(1} 1is not determinate but defined
and f(2) 1s unboundedly nondeterministic.

Remarkably, there are two major areas in computer science using the notion of "non-

determinism" with different (although related) meanings. In the theory of automata
in artificial intelligence and in particular in complexity theory one has to decide

for a given nondeterminitic expression E and a given value x whether x€B(E) ,
i.e. whether x may result from evaluating E (cf. /Floyd 67/). To answer this
question, all possible evaluations of E may have to be explored. This notion will
be called here nondeterminstic exhaustion.

The other understanding of nondeterminism can be found in the theory of parallel
programs and in formal program development. Here one accepts any arbitrary value
of B(E) as a result of evaluating the expression E (cf. /Dijkstra 76/). This
notion will be called nondeterministic choice here.

Example: To efucidate this distinction we consider the so-called "knapsack problem"
which is known to be np-complete: Given a sequence of integers, is there a sub-
sequence that sums exactly to a specific value k ?

The following elementary program yields the sum of an arbitrary subsequence:

funct subsum = (sequ int s} int :
if empty(S) then 0
else subsum{rest(s)) [first(s) + subsum({rest(s)) fi

We can base the nondeterministic predicate on it:
funct knapsack= {sequ int s, int k) bool : k = subsum(s).
Note that this only partly solves our problem. If a call of the function knapsack

yields false, then there still may be another subsequence which sums to k. The
resuit true, however, provides a definite answer.

69

By UNFOLD and FOLD techniques the function can be developed into

funct knapsack = {sequ int s, int k) bool :
if empty(s) then k =0
else knapsack(rest(s), k) [knapsack(rest(s), k-first(s)) fi

This program represents a nondeterministic choice and it is said to "nondeter-
ministcally solve the givenproblemin linear time". This means that the answer
whether true € B(knapsack(s, k)) 1is given by the above program if in each re-
cursive call a "lucky choice” is taken. Since such a benevolent oracle, however,
does not exist in reality, one has to trace out the tree of all possible compu-
tations 1in order to get the corret answer in any case. Hence, one has to replace
the above nondeterministic choice by an exhaustive computation. In our specific
case this simply can be done by replacing the choice-operator “[J" by the logical

"y,

disjunction-operator 'V The resulting deterministc program, however, is not

Tinear recursive and needs exponential time to compute the result.
Note : Using the program

funct iknapsack = (sequ int s, int k) beol :

if k=0 then true
else iknapsack(rest(s), k) [] iknapsack(rest(s), k-first(s}) fi

we get a semi-decision procedure which even works with sequences of infinite

length, (end of note)

These different notions of nondeterminism, of course, lead to different “useful®
relations for program development. Following the approach of /CIP 78/ we concen-

trate on the nondeterministic cheice and do not consider the nondeterministic ex-
haustion.

First we look at relations corresponding to the strong equivalence of the deter-
ministic cases, j.e. at relations that do not treat the undefined element w se-
parately :

70

Def. 6 : (strong equivalence)

Two (nondeterministic) expressions E and E' are called strongly equivalent,
iff B(E) = B(E").

Since the breadth-function gives a whole set of values it is quite natural to

consider not only set equality but also set inclusion. This leads to the transi-
tive relation (cf./McCarthy 62/) :

Def. 7 : (strong descendant)

An expression E' {s called a strong descendant of E , iff B(E') < B(E) .

The strong equivalence is applicable both for nondeterministic exhaustion and for
nondeterministic choice. The relation of strong descendants, however, is only usefyl
for the latter case. It is very important for program developments since a restric-
tien of the choice usually represents a major design decision.

Example: The following nondeterministic program searches for the position of
a given element x 1in an ordered array a (under the assertion that x indeed
is in a, and that initially m is the lower and n the upper bound of a) :

funct search = (m x, array a, nat m, n) nat:
fm=n thennm
else pat r = some pat ¥ : m<iz<n;
if alr] = x then r
I alr] < x then search(x, a, r+l, n)
0

alr] < x then search(x, a, m, r-1) fifi

Where the expression "Some nat i : m<i<n" has the breadth B ={m, ..., n}.

)¥ 2" are strong descendant of it and may be substi-

=

Hence, both "m" and "(m+
tuted for it. (The choice °
leads to binary search.)

t r=m" leads to linear search, "pat r={m+n)*2"

]

(end of example)

If we try to carry the notion of weak "equivalence" over to nondeterministic con-
structs, we get

71

Def. 8 : (weak "equivalence")

Two expressions E and E' are called weakly “eguivalent", iff
w € B(E) v w€ B{E') v B{(E) = B(E")

Again, this relation is not transitive and therefore not suited for the develepment
of programs. The same were true if we would define a similar notion of a weak descen-
dant. We get an equivalence relation, however, by requiring that only the defined
values of the expressions coincide:

Def. 9 : (weak equivalence)

Two expressions E and E' are called weakly eguivalent, iff
B(E) ~ {w} = B(E') ~ {w'}

Note that for totally defined/undefined expressions - and hence in particular for
deterministic ones - this notion coincides with that of strong equivalence. Analogous
ly we get a weak descendant by the definition

Def.10 : (weak descendant)

An expression E' s called a weak descendant of an expression E, iff
B(E') ~ {w} & B(E)

Example: Both E and E' are strong descendants of (E [E') . A totally undefined
expression E' 1s a weak descendant of any expression.

How do these notions correspond to the definedness preservation Eg E' for deter-
ministic expressions ? The idea there was that starting from a totally correct
program one is guaranteed to arrive at a totally correct program, too. This means
for nondeterministic programs that « must not be in B(E') 1if it is not in B(E).
In addition, one should require that in cases of unbounded nondeterminism the de-
fined values persist.

Def.ll : (definedness preservation)

EcE' o (w€B(E) A B(E)~{wt=B(E')) v (B(E) = B(E'}))
def

This means that we require strong equivalence for totally defined expressions and
otherwise content ourselves with a weak descendant. This relation coincides with

the "Egli-Milner"-ordering, that is used to define the semantics of nondeterministic
recursive functions (cf. /de Bakker 76/).

72

The analogous definition using a descendant instead of an egquivalence relation in
the totally defined case is not very meaningful, since definedness preservation
implies that a number of defined values may be added in the place of « , whereas
descendant means that a number of values may be Teft out. The combination of these
“two notions would Tead to a relation which were valid for nearly any two programs.

Again looking at Dijkstra's predicate transformers, we now have for a nondeter-
ministic statement S the translation:

. e ; }
Jve€ B(E) : R, if of B(E)

Wp(S, R) = Lfa1se , otherwise

where ES is the expression associated to S .

In contrast to the deterministic case, the relation ~u does only coincide
with the strong equivalence if the two statements are totally defined or totally
undefined.

7. Relations on Data Structures

In the last sections we have studied relations on programs for some fixed seman-
tical function. Transformations often hold for whole classes of semantical func-
tions or equivalently they are valid over different data structures with similar
properties.

To begin with, it seems more appropriate to speak of “computational structures®
(cf. /CIP 8C b/) instead of "data structures”, in order to stress the point that
the basic operations are an integrated part of these structures. Such computatio-
nal structures are considered equivalent, if they show the same behaviour. This
behaviour can be described formally by means of (algebraic) "abstract data types"
(cf. e.g./Liskov, Zilles 74/, /Guttag 75/, /ADJ 78/, /CIP 79/) which leads to the
fundamental relation: "A computational structure D s of a type T". Informally,
this means that there are fixed correspondences between the sorts of T and the
carrier sets of D and between the function symbols of T and the operations

of D and that the Taws (axioms) of T hold in D . In order to have induction
methods over types we require furthermore that every object of a computation
structure is denoted by a "well-formed term” of T,i.e. by a term (without free

73

identifiers) builtup from the function symbolds of T respecting their functio-
nalities (for a more detailed discussion cf. e.g. /ADJ 78/, /CIP 79/).

We are led in a straightforward manner to relations between computatiocnal struc-
tures :

Def.12 : Two computational structures D and D' are strongly equivaient if
for every type T the structure D s of type T if and only if also

D' s of type T.

Since strongly equivalent structures are isomorphic, this notion is too restrictive
for being applicable in program development. Consider for instance the abstract
concept of (finite) sets. The strong equivalence does not allow to switch from

a representation by "characteristic functions” to a representation by "linked lists”,
since these two structures have different properties. Therefore we should better work
with the notion: "Two computational structures D and D' are gguivalent with re-

ol]

spect to a given type T 1if both D and D' are of that type T.

But when working with abstract types we immediately are led to the question of the
"equivalence of types", thus being able to do a formal program development also on
the very abstract Tevel of specifications. Since the notion of a type is closely
related to the notion of a theory in formal logic, we could adopt the respective
definition, viz. that two theories are equivalent if they have the same language and
the same theorems (cf./Shoenfield 67/). But this means that the two types have
exactly the same computational structures as models, which makes the notion too re-
strictive for the needs of program development.

Instead of considering (the provability of) all kinds of formulas, we therefore re-
strict our attention to (various) equivalences between the terms of the given type.

Two terms which represent the same object in every computation structure of the re-
spective type obviously have to be considered equivalent:

Def.13 : Two terms s and t of a type T are strongly equivalent if the
equation s=t s validin T .

74

But this notion is quite restrictive, too, For instance, in a data base system we
are not interested whether two internal representations are exactly the same, but ra-
ther whether they behave alike for every possible inquiry. Such a data base is to be
described as a new structure that is built up from given "primitive" structures.

The corresponding hierarchy of types suggests to distinguish terms of two kinds:
those that represent objects of the newly defined type, and those that represent
objects of the already existing "primitive” types. The latter are called terms of
primitive sort (their outermost operation symbol has as its range one of the primi-
tive structures). These terms of primitive sort determine the behaviour that a
computational structure (viewed as & "black box") exhibits to the outer world.

Def, 14 : Two (arbitrary) terms s and t are called visibly equivalent ,
if for all terms ulx] of primitive sort (containing only one free
variable x) ulsl and uftl are equivalent (in the respective primitive
type).
Note that for sufficiently complete types (cf. /Guttag 75/) both uls] and ult]
can be reduced to terms only consisting of operation symbols of the primitive type in
guestion . In the above definition we have Teft open which kind of equivalence is
assumed for uls] and uft] . Actually, any suitable relation between the
primitive terms induces a respective relation between the nonprimitive terms.

Any equivalence relation between terms induces an equivalence relation between types.
Let T and T' be two types having the same signature up to renaming (homologous
types, ¢f./ CIP 80 b/) . Then T and T' are strongly/visibly equivalent if
any two nonprimitive terms s, t are strongly/visibly equivalent in T iff they are
it in T, Of course, this requires that the same equivalence relation in the primitive
types is taken as a basis.

Let us now consider two equationally defined types T and T' based on the same
(or at least strongly equivalent) primitive types. T and T' are strongly equi-
valent iff their initial {(cf. /ADJ 78/) computation structures are isomorphic.

T and T' are visibly equivalent iff their terminal (cf. /CIP 79/} computation
structures are isomorphic.

Fora nontrivial example for these notions see /Pepper 78/ (cf. also section 4),

There a Tanguage kernel serves as a primitive type, while procedural constructs

are defined by axiomatic transformation rules {playing the role of conditional
equations),

1o

8. Concluding Remarks

Methods of program development which use several versions of the "same” program
presuppose a notion of program equivalence; even assertion methods induce such
equivalences. A justification of such development processes requires a sound
formalization of these relations, thus leading to a "calculus" of transformations.
In particular, these approaches turn out to be considerably more flexible if not
only equivalences are employed but also partial orderings like the descendant re-
lation. Note that, if one is interested in the basic concepts of a specific pro-
gramming methodology, one should carefully study the underlying relations charac-
terizing the approach.

Apart from these practical aspects of program development relations between pro-
grams also give valuable theoretical insights into the structure of programming
languages. So far, however, relations mainly have been considered on semantical
domains (fixed point theory, denotational semantics). Trivially, in this way

also relations between programs are induced by the semantical mappings. And it is
not surprising that we can procede the other way round: Using conditional equa-
tions {called transformation rules) to establish equivalences between programs one
can specify the semantics {cf. /Pepper 78/, /CIP 80 a/). These techniques allow

to explain basic properties of & programming language without constructing com-
plex semantical domains. Moreover, one can define a language in a modularized way,
both from the syntactic and from the semantic point of view, leading to a "stepwise
development of the semantics”, In particular, one gets design criteria ensuring
the coherence and independence of the concepts of the Tanguage. An illustrative
example is given in /Broy 80/ where (in connection with parallel programs) the in-
compatibility of certain fairness conditions with the continuity of the language
constructs with respect to the Egli-Milner ordering is shown.

Acknowledgement

The results presented in this paper were strongly influenced by discussions we had
with our colleagues of the CIP research group at the Technical University Munich,
notably with Prof. F.L. Bauer and Prof. K. Samelson.

76

References:

/ADd 78/
J. A. Goguen, J. W. Thatcher, E. G. Wagner: An Initial Algebra Approach to
the Specification, Correctness and Implementation of Abstract Data Types.
In: R. T. Yeh (ed.): Current Trends in Programming Methodology, Vol. 3,
Data Structuring, Englewcod Cliffs: Prentice Hall 1978

/de Bakker 76/
J. W. de Bakker: Semantics and Termination of Nondeterministic Recursive
Programs. 3rd Int. Symp. on Automata, Languages and Programming, Edinburgh
1976

/Blikle 78/
A. Blikle: Specified Programming. In: Mathematical Studies in Information
Processing, Proc. Int. Conf., Kyoto, Aug. 1978

/Broy 80/
M. Broy: Transformation parallel ablaufender Programme. Technische Uni-
versitdt Minchen, Dissertation an der Fakultdt fiir Mathematik, Februar
1980

/Burstall, Darlington 75/
R. M. Burstall, J. Darlington: Some Transformations for Developing Re-
cursive Programs. Proc. of 1975 Int. Conf. on Reliable Software, Los Angeles
1975, 465-472. Also: J. ACM 24, 1, 44-67 (1977)

/CIp 78/
M. Broy, R. Gnatz, M. Wirsing: Semantics of Nondeterministic and Noncontinuous
Constructs. In: F. L. Bauer, M, Broy {eds.): Program Construction. {Proc.
Int. Summer School, Marktoberdorf 1978) Lecture Notes in Computer Science 69,
553-592, Berlin: Springer 1979

/CIP 79/
M. Broy, W. Dosch, H. Partsch, P. Pepper, M. Wirsing: Existential Quantifiers
in Abstract Data Types. In: H. A. Maurer {ed.): Proc. of the Sixth Collo-
quium on Automata, Languages and Programming, Graz, Lecture Notes in Com-
puter Science 71, 73-87, Berlin: Springer 1879

/CIP 80 a/
M. Broy, M. Wirsing: Programming Languages as Abstract Data Types. To appear
in the Proc., of the 5th Colloguium on "Arbres en Algébre et en Programmation’
Lille 1980

77

/CIP 80 b/
F. L. Bauer, H. Wossner: Algorithmic Language and Program Development, (to
appear)

/Courcelle, Guessarian 78/
B. Courcelle, I. Guessarian: On Some Classes of Interpretations. JCSS 17: 3,
388-413 (1978)

/Courcelle, Nivat 78/
B. Courcelle, M. Nivat: The Algebraic Semantics of Recursive Program Schemes.
In: Proc. Math. Foundations of Comp. Sc., Zakopane 1978

/Dijkstra 76/
E. W. Dijkstra: A Discipline of Programming. Englewocod C1iffs: Prentice Hall,
1976

/Floyd 67/
R. W, Floyd: Nondeterministic Algorithms. J. ACM 14, 636-644, (1967)

/Guttag 75/
J. V. Guttag: The Specification and Application to Programming of Abstract
Data Types. Ph. D, Thesis, Univ. of Toronto, Dept. of Comp. Sc., Rep. CSRG-
59, 1975

/Hoare 78/
C. A. R. Hoare: Some Properties of Predicate Transformers. J. ACM 25, 3,
461-480, (1978)

/Kott 78/
L. Kott: About a Transformation System: A Theorectical Study. In: B. Robinet
{ed.): Program Transformations, Proc. 3rd Int. Symp. on Programming, Paris:
Dunod 1978

/Liskov, Zilles 74/
B. Liskov, S. Zilles: Programming with Abstract Data Types. Proc. ACM SIG-
PLAN Conf. on Very High Level Languages, SIGPLAN Notices 9, 4, 50-59 (1974)

/Luckham et al. 70/
D. Luckham, D. Park, M. Paterson: On Formalized Computer Programs. J. CSS 4
(1970)

78

/McCarthy 62/
J. McCarthy: A Basis for a Mathematical Theory of Computation. In: P. Braf-
fort, D. Hirschberg {eds.): Computer Programming and Formal Systems. Amster-
dam: North-Holland 1963

/Pepper 78/
P. Pepper: A Study on Transfomational Semantics. In: F. L. Bauer, M. Broy
(eds.): Program Construction. (Proc. Int. Summer School, Marktoberdorf 1978)
Lecture Notes in Computer Science €9, 322-405, Berlin: Springer 1979, {Also:
Dissertation, Techn. Univ. Miinchen 1979)

/Shoenfield 67/
J. R. Shoenfield: Mathematical Logic. Reading: Addison-Wesley 1967

