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1. Introduction 

The equivalence of programs is an important question in computer science. Equi- 

valence relat ions between programs are extensively studied in the theory of pro- 

gram schemata (cf .  for  instance /Luckham et a l .  70/). But surpr is ing ly ,  pract ical  

computer science so far  has not paid much attent ion to th is  fundamental question; 

programmers s t i l l  understand the i r  programs - and consequently the equivalences 

between them - i n t u i t i v e l y .  They do a l l  modif icat ions, optimizations etc. only 

re ly ing on th is  i n t u i t i v e  understanding. I f  programsare, however, developed 

according to formal rules - generally cal led "transformations" - one also has to 

formalize the notion of the equivalence of programs in order to give the approach 

a sound basis. 

Of course, the notion of equivalence of programs is strongly connected to the 

semantics of the programming language in question. Any formal de f in i t i on  of the 

semantics immediately induces an equivalence re la t ion :  Two programs may be con- 

sidered equivalent i f  the i r  images under the semantical function are equal. On the 

other hand, establ ishing an equivalence re la t ion between programs can be used as a 

formal method for defining the semantics of (parts of) a programming language. 

Apart from these more fundamental appl icat ions, the study of various re lat ions 

between programs leads to a considerably better understanding of both programming 

languages and the programming a c t i v i t y .  This is in par t icu lar  so for  nondeter- 

min is t ic  and for  para l le l  programs. For instance, the examination of equivalence 

classes of nondeterministic programs can c l a r i f y  the d i f fe ren t  concepts of non- 

determinacy that are found in computer science today. F ina l l y ,  the consideration 

of re lat ions between data structures is useful to understand and to describe the 

process of f inding implementations for abstract speci f icat ions.  

2. Fundamental Requirements 

In formal program development (cf .  /CIP 80 b/) one starts from a given program P 

and t r i es  to come up with a f ina l  program P' such that P~P' holds for  some 

in terest ing re la t ion " ~ "  (mostly an equivalence). 

Relations for  program development therefore have to meet the fol lowing require- 

ments: 

( I )  Every re la t ion between programs must be ref lexive:~ V P : P~P 
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During the development one general ly procedes through a series of intermediate 

versions P = Po' P1 . . . .  ' Pn = P' " In th is  case, i t  should be possible to con- 

clude P~P' from the fact  that P i~P i+ l  for  a l l  i .  Therefore, we have to re 

quire: 

( I I )  Every re la t ion between programs must be t rans i t i ve  : 

v P, Q, R : PNQAQ~R ~ P~R 

Thus ~ has to be a quasi-ordering. Usually we are not considering complete pro- 

grams but only parts of programs (e.g. a single assignment, the body of a loop 

e tc . ) .  Therefore the " local"  v a l i d i t y  of a re la t ion ~ has to ensure also the 

"global" v a l i d i t y  of that re la t ion : 

( I I I )  Any complete program P[Q] containing the program part Q must f u l l -  

f i l  the subst i tut ion-property : 

v Q, Q' : Q~Q' : P[Q] ~ P[Q'] 

Therefore, equivalence relat ions actual ly  have to be congruence relat ions with 

respect to a l l  language constructs, and 

for par t ia l  orderings a l l  language constructs have to be monotonic. 

Remark 

In connection with f ixed points of functionals often the cont inui ty  of the 

language constructs with respect to a par t ia l  ordering is required: 

A program (scheme) P[x] is ~-continuous i f f  for a l l  ~-chains (El) iEIN 

with E i ~  Ei+ 1 lub(P[Ei]  ) exists i f  lub(Ei) exists :and 

lub(P[Ei]  ) =P[ lub(E i ) ] .  

Continuity plays an essential role for  instance in f ixed point semantics or 

for  induction proofs. (end of remark) 

In the fol lowing sections we are going to discuss a number of re lat ions which 

f u l f i l  these three fundamental requirements of r e f l e x i v i t y ,  t r a n s i t i v i t y  and 

monotonicity. 
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3. Semantical In terpretat ions 

Formally, the semantics of a programming language is defined by a mapping V 

in to  a given mathematical structure (e,g, Scott 's continuous l a t t i ces ) .  V should 

be a homomorphism,i,e. V induces a congruence re la t ion  between programs and there- 

fore sa t i s f ies  our condit ions ( I ) ,  ( I I ) ,  ( I I I ) .  

For appl icat ive languages a par t i cu la r  semantical funct ion V may be defined for  

every (determin is t ic )  expression E by 

V(E) = 
e i f  e is the resu l t  of the evaluation of E 

i f  the evaluation of E does not lead to a 

defined value, 

For i n s t a n c e , i f  V maps expressions of mode integer to the structure of the 

integral  numbers, then the congruence re la t ion  induced by V is the so- cal led 

"mathematical equivalence", 

But of course we can choose other semantical funct ions , too. When V 

gives for  every program i t s  " t races",  i t  induces an operational equivalence (cf .  

/Hoare 78/, /Broy 80/).  We even may r e s t r i c t  our a t tent ion to j us t  one special 

property of programs and use e.g. a predicate that indicates whether a given 

program terminates or not.  The resu l t ing  equivalence re la t ion  par t i t i ons  the set 

of a l l  programs in to  the two classes of a l l  terminating and a l l  non-terminating 

ones. Another example can be found in the approach of /81 ik le  78/ : His equivalence 

re la t ion  is based on the predicate "P is correct with respect to i t s  assert ions".  

Hence, the two programs 

{ i  = N} do i>O ~ i := i - 1  od { i  = O} 

and 
N 
z i }  

i =O  
{ i  = N^s = O} do i>O ~ s, i := s + l ,  i -  1 od { i  = OAS = 

are equivalent under th is  re la t ion  since both are assert ion-correct .  

The "axiomatic semantics" characterizes the semantics of procedural programming 

languages by g iv ing proof ru les,  thus also inducing congruence re lat ions on state- 

ments. Using D i jks t ra 's  approach we may define (S, S' statements): 

S ~wp S' ~def  wp(S, R) = wp(S', R) for  a l l  postcondit ions R 
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A comprehensive study of the impacts of d i f f e ren t  semantical funct ions is done in the 

f i e l d  that has become known under the catchword "algebraic semantics" (cf .  e.g. 

/Courcel le ,  Nivat 78/) .  Programs are viewed here as "program schemata" since the 

meaning of t he i r  base-functions is l e f t  open. This gives the p o s s i b i l i t y  not only 

to study one par t i cu la r  " in te rp re ta t ion"  ( i .e.one pa r t i cu la r  semantical funct ion V 

but whole classes of in te rpre ta t ions  ( /Courcel le,  Guessarian 78/).  Every such 
class C then induces an equivalence re la t ion  between expressions ("terms of the 

magma"): 
E I ~ E 2 ~ E11 = E21 for  a l l  in terpre ta t ions I E C . 

This study leads to a number of important resu l ts ,  for  instance to the va l ida t ion  

of cer ta in proof pr inc ip les  (such as computational induct ion for  a l l  algebraic 

in te rp re ta t ions ) .  

4. Appl icat ive versus Procedural Style 

In programs and programming languages we have to d is t ingu ish two fundamentally 

d i f f e ren t  sty les:  

In the appl icat ive s t y }e  programs are expressions the evaluation of which 

y ie lds values. 

- In the procedural s ty le programs are statements that change the "state" - i . e .  

the values of program variables - or even change the "control state" by means 

of goto's. The semantical funct ion for  a statement S thus is a mapping from 

"states" to "states".  

To cope with these two cases in a uniform way we can make use of the close re- 

la t ionsh ip  between statements and expressions: Let S be a statement wi thout 

goto's and l e t  x be the only global var iable (of mode ~) occurring in S 

(of  course, x may stand here fo r  a whole co l lec t ion  of var iab les) .  Then the 

statement S can be rewr i t ten in to  

x := [v ar_m y : = x  ; S~ ; yJ 

where S~ denotes the statement S with a l l  occurrences of x replaced by y. 

By introducing the local var iable y the block on the r ight-hand side of the 

assignment now is a proper expression (without s ide-e f fec ts ) .  By means of a few 

simple rewr i te rules th is  block even can be converted into a purely app l i ca t i ve  ex- 

pression (cf./Pepper 78/ ; in the case of i t e ra t i ve  statements th is  of course means 

the in t roduct ion of an e x p l i c i t  f i xpo i n t  operator).  This expression then semantical- 

l y  characterizes the statement S . 
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Def. 1 : Let S be a statement (without goto's) and l e t  x be i t s  only 

global var iable.  Let E S be the purely appl icat ive expression derived 

from the block 

Y ; Y] [v a r ~ y  : = x ; S x 

Then E S is cal led the associated expression of S . 

Of course, the execution of S and E S may be operat ional ly  d i f f e ren t .  

Obviously we can procede analogously from an expression E to i t s  associated 

statement by means of an assignment x := E to a su i tab ly  chosen program var iable 

x . In th is  way, any (equivalence) re la t ion  on expressions induces an (equivalence) 

re la t ion  on statements, and vice versa. 

Def. 2 : Let p be a re la t ion  on expressions. We then get an induced re la t ion  

on statements by 

S ~ S ' d ~  f ES ~ E S, 

where E S and ES~ are the expressions associated to S and S' resp. 

Note, however, that  E S in general depends on the value of x, i . e .  contains 

x as a free i d e n t i f i e r .  Hence, th is  expression has to be considered as a funct ion 

(m x) m: E s We therefore have to use an (equivalence) re la t ion  on funct ions 

that also is induced by that  on expressions according to 

f p g ~ f(E) ~ g(E) for  a l l  expressions E . 
def 

Now we can r e s t r i c t  ourselves to considering re la t ions on expressions only. This 

way of proceeding is analogous to the formal de f i n i t i on  of a programming language 

by "transformational semantics" - cf./Pepper 78/ - where most constructs of the 

language are reduced by "de f i n i t i ona l  transformation rules" to a small language 

kernel. 

Such techniques apply in par t i cu la r  to languages comprising d i f fe ren t  sty les of 

programming. As an example one may consider the Wide Spectrum Language which is de 

veloped in the course of the project CIP at the Technical Univers i ty  Munich. 
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5. Relations for  Determinist ic P r o ~  

Now we assume some f ixed semantical funct ion V. Extending notions of /McCarthy 62/ 

we may define two d i f f e ren t  re la t ions on (determin is t ic )  expressions: 

Def. 3:  (strong equivalence) 

Two expressions E and E' are cal led strongly equivalent ,  i f f  

V(E) = V(E') . 

Hence two strongl,y equivalent expressions have the same "course-of-values" (cf .  

/ CIP 80 b/). 

Def. 4 :  (weak "equivalence") 

Two expressions E and E' 

V(E) : ~ v V(E') : ~ v 

are cal led w e a k l ~ u _ i v a l e n t " ,  i f f  

V(E) = V(E') 

Example: In most programming languages the equation 

i f  B then E I else E 2 f_~_i = i__f_f ~ B then E 2 else E l f i 

denotes a strong equivalence whi le 

i f  B then E else E f i  = E 

only is a weak "equivalence" (the evaluat ion of B may not terminate).  

Unfortunately,  weak "equivalence" is not t r ans i t i ve  and hence no equivalence re- 

l a t i on .  For instance, l e t  us consider the three expressions El ,  E2, E 3 such 

that V(E2) = ~ , whereas E 1 and E 3 are defined but have d i f f e ren t  values. 

Then E I and E 2 as well as E 2 and E 3 are weakly "equivalent"  but E I and 

E 3 are not. This means that  in a sequence Po . . . . .  Pn of programs where any 

two successive programs Pi and Pi+l  are weakly "equiva lent" ,  no correspondence 

can be guaranteed between Po and Pn " Therefore, the notion of weak "equivalence" 

is in no way appropriate for  the development of programs, since i t  v io la tes the 

t r a n s i t i v i t y  condi t ion.  
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Much more appropriate is the fol lowing well-known notion of "less definedness": 

Def. 5 : (definedness preservation) 

E ~ E' ~ V(E) = (~) v V(E) : V(E') 

Example: Consider the fol lowing function 

funct f ~ (~ x, ~ y )  L : 

i f  B(x) then G(x)e!se H(x, y) f i 

A ca l l  f(E I ,  E2) is - according to cal l -by-value semantics - undefined i f  

E 2 is undefined. Replacing th is ca l l  by i t s  body (the respective transformation 

rule has become known under the name "UNFOLD" , c f . /  Burs ta l l ,  Darlington 75/) 

leads to 

i f  B(E1) the n G(E1) else H(E1, E2) f i 

which is defined i f  B(E1) is true. Therefore the rule 

definedness preservation (cf .  /Kot t  78/). 
"UNFOLD" only guarantees 

Although not being an equivalence re la t ion ,  the definedness preservation is useful 

in program developments since i t  is re f lex ive ,  t rans i t i ve  and monotonic ( for  the 

usual language constructs). In par t icu lar  when star t ing from a (w . r . t .  a given speci. 

f i ca t ion)  t o t a l l y  correct program Po ' the definedness preservation guarantees that 

the f ina l  program Pn is t o t a l l y  correct, too. On the other hand, when s tar t ing from 
an undefined program V(po)=~) nothing can be said about the f ina l  program Pn 

I f  we consider the reverse re la t ion of "u-preservation" i .e .  E ~ E' then 

again the par t ia l  correctness of Po implies that of Pn (and vice versa) . 

The transformation "FOLD" being the inverse of "UNFOLD" provides an obvious 

example. In contrast to the definedness preservation now the tota l  correctness of 

the f ina l  programm Pn ensures that also the or ig inal  program Po had been 

t o t a l l y  correct. This may be interest ing in those cases where the termination 

proof for  the resul t ing program - e,g, a loop - is simpler than that for  the 
or ig inal  one - e.g. a complex nested recursion. 

Obviously, two expressions E and E ' are strongly equivalent i f f  both E ~E '  

and E ~ E' hold. In th is way, the ~- re la t ion  also is used as a basis for the 

f ixpo in t - theory  underlying the technique of denotational semantics. 
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By v i r tue  of the d e f i n i t i o n  in section 4 every equivalence re la t ion  on expressions 

induces an equivalence re la t ion  on statements and vice versa. Thus e.g. strong 

equivalence fo r  statements is defined by the strong equivalence of t he i r  asso- 

ciated expressions. 

For instance, using D i j s t ra ' s  "predicate transformers" we have 

wp(S, R) = wp(x := E S, R) = I Rex i f  e = V(Es) is defined 

I fa lse otherwise 

Therefore strong equivalence and Nwp (cf .  section 3) coincide for  statements. 

Analogously the definedness preservation leads to ( l e t  

statements) : 

S ES '  ~ wp(S, R) = wp(S', R) 

since only undefined s i tuat ions (e.g. "abort")  

R. 

S and S' be determin is t ic  

for  a l l  postcondit ions R, 

y ie ld  fa lse for  every postcondit ion 

6~ Relations for  Nondeterminist ic Programs 

I f  a program allows some freedom of choice during the evaluation i t  is cal led 

nondeterminist ic . Since the de f i n i t i ons  of section 4 are va l id  fo r  both deter- 

m in is t i c  and nondeterminist ic cases, we again can r e s t r i c t  our a t tent ion so le ly  

to expressions. Nondeterminism here means that there may be d i f f e ren t  resul ts  for  
the same expression, Therefore we now have to extend the semantical funct ion V(E) 

to a funct ion B, cal led "breadth", that  gives the set B(E) of a l l  possible values 

of evaluations of E (c f . /C lP 78/). 

An expression is cal led determinate i f  IB(E)[ = 1 , i . e .  i f  a l l  possible evalua- 

t ions y ie ld  the same resu l t  or are a l l  undefined . I f  there ex is ts  a non-termina- 

t ing  evaluat ion then wE B(E) holds. An expression is cal led t o t a l l y  defined 

i f f  ~ ~ B(E) , and t o t a l l y  undefined i f f  B(E) = {~} . I f  there ex is t  i n f i n i t e l y  

many possible resu l ts ,  i . e .  i f  ~B(E)I = ~ , we speak of unbounded nondeterminism . 

Note that  B(E) is never empty . 
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Example: Consider the fol lowing ambiguous function where "E 1 0 E2" 

a rb i t ra ry  choice between the expressions E I and E 2, i . e .  

B(E 1 I E2) = B(E1) U B(E2) 

denotes an 

funct f m ( ~ t  x) na___~t : i f  x = 0 then 0 

x = 1 then f(O) ~ 1 

x > I then f (x-1)  + I ~ f (x+ l )  f i ,  

The expression f(O) is determinate while f(1) is not determinate but defined 

and f (2)  is unboundedly nondeterministic. 

Remarkably, there are two major areas in computer science using the notion of "non- 

determinism" with d i f fe ren t  (although related) meanings. In the theory of automata, 
in a r t i f i c i a l  in te l l igence and in par t icu lar  in complexity theory one has to decide 

for  a given nondeterminitic expression E and a given value x whether xEB(E) , 

i . e .  whether x may resu l t  from evaluating E (cf .  /Floyd 67/).  To answer th is  

question, a l l  possible evaluations of E may have to be explored. This notion w i l l  

be called here nondeterminstic exhaustion. 

The other understanding of nondeterminism can be found in the theory of para l le l  

programs and in formal program development. Here one accepts any arb i t ra ry  value 

of B(E) as a resu l t  of evaluating the expression E (cf .  /D i jks t ra  76/).  This 

notion w i l l  be called nondeterministic choice here. 

Example: To elucidate th is  d is t inc t ion  we consider the so-called "knapsack problem" 

which is known to be np-complete: Given a sequence of integers, is there a sub- 

sequence that sums exactly to a speci f ic  value k ? 

The fol lowing elementary program y ie lds the sum of an arb i t ra ry  subsequence: 

funct subsum ~ (sequ in___~.t s) in___t.t : 

i_~f empty(S) the 9 0 

else subsum(rest(s)) D f i r s t ( s )  + subsum(rest(s)) f i  

We can base the nondeterministic predicate on i t  : 

funct knapsack~(se.qu ' i nt s, in t k) bool : k = subsum(s). 

Note that th is only par t l y  solves our problem. I f  a cal l  of the function 

y ie lds fa lse ,  then there s t i l l  may be another subsequence which sums to 

resu l t  t rue, however, provides a def in i te  answer. 

knapsack 

k. The 
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UNFOLD and FOLD techniques the function can be developed into 

funct knapsack ~ (sequ in_~t s, ! n t  k) bool : 

i f  empty(s) then k = 0 

else knapsack(rest(s), k) ~ knapsack(rest(s), k - f i r s t ( s ) )  f.~i 

This program represents a nondeterministic choice and i t  is said to "nondeter- 

m in is tca l l y  solve the given problem in l inear  t ime". This means that the answer 

whether true CB(knapsack(s, k)) is given by the above program i f  in each re- 

cursive cal l  a "lucky choice" is taken. Since such a benevolent oracle, however, 

does not ex is t  in r e a l i t y ,  one has to trace out the tree of a l l  possible compu- 

tat ions in order to get the corret answer in any case. Hence, one has to replace 

the above nondeterministic choice by an exhaustive computation. In our speci f ic  

case th is  simply can be done by replacing the choice-operator "~" by the logical  

disjunction-operator "v" The resul t ing deterministc program, however, is not 

l inear  recursive and needs exponential time to compute the resul t .  

Note : Using the program 

funct iknapsack ~ (sg~ ~ i n t  s, in t  k ) b o o l  : 

i f  k = 0 then true 

els.___~e iknapsack(rest(s),  k) ~ iknapsack(rest(s), k - f i r s t ( s ) ) f i  

we get a semi-decision procedure which even works with sequences of i n f i n i t e  

length. (end of note) 

These d i f fe ren t  notions of nondeterminism, of course, lead to d i f fe ren t  "useful" 

re lat ions for  program development. Following the approach of /CIP 78/ we concen- 

t ra te on the nondeterministic choice and do not consider the nondeterministic ex- 

haustion. 

F i r s t  we look at re lat ions corresponding to the strong equivalence of the deter- 

min is t ic  cases, i .e .  at re lat ions that do not t reat  the undefined element ~ se- 

para te ly :  
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Def. 6 : (stron~ equivalence) 

Two (nondeterminist ic) expressions 

i f f  B(E) = B(E') .  

E and E' are cal led st rongly equivalent ,  

Since the breadth-funct ion gives a whole set of values i t  is quite natural to 

consider not only set equal i ty  but also set inc lus ion.  This leads to the t rans i -  

t i ve  re la t ion  (cf./McCarthy 6 2 / ) :  

Def. 7 : (strong descendant ) 

An expression E' is cal led a s___t~on~ descen#ant of E , i f f  B(E') ~ B(E) . 

The strong equivalence is appl icable both for  nondeterminist ic exhaustion and for  

nondeterminist ic choice. The re la t ion  of strong descendants, however, is only useful 

for  the l a t t e r  case. I t  is very important for  program developments since a r e s t r i c -  

t ion of the choice usual ly  represents a major design decision. 

Example: The fo l lowing nondeterminist ic program searches for  the posi t ion of 

a given element x in an ordered array a (under the assert ion that x indeed 

is in a, and that  i n i t i a l l y  m is the lower and n the upper bound of a) : 

funct search ~ (~ x, array a, halt m, n) nat: 

i f  m = n then m 

else nat r = some nat i : m < i < n  ; 

i f  a i r ]  = x then r 

a i r ]  < x then search(x, a, r+ l ,  n) 

a i r ]  < x then search(x, a, m, r - l )  f i  f i  

Where the expression "Some nat i : m < i < n "  has the breadth B ={m, . . . . .  n }  . 

Hence, both "m" and "(m+n) ÷2'' are strong descendant of i t  and may be subst i -  

tuted for  i t .  (The choice "na._._tt r ~ m" leads to l inear  search, "na___~t rE (m+ n) ÷ 2" 

leads to binary search.) (end of example) 

I f  we t ry  to carry the notion of weak "equivalence" over to nondeterminist ic con- 
s t ructs ,  we get 
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Def. 8 : (weak "equivalence") 

Two expressions E and E' are cal led weakly 

E B(E) v ~£ B(E') v B(E) = B(E') 

' ]equivalent" , i f f  

Again, th is  re la t ion  is not t r ans i t i ve  and therefore not suited for  the development 

of programs. The same were true i f  we would define a s im i la r  notion of a weak descen- 

dant. We get an equivalence re la t i on ,  however, by requi r ing that only the defined 

values of the expressions coincide: 

Def. 9 : (weak equivalence) 

Two expressions E and E ~ 

B(E) ~ {~} = B(E') ~ {~ ' }  

are cal led weakly equivalent ,  i f f  

Note that  fo r  t o t a l l y  defined/undefined expressions - and hence in par t i cu la r  for  

determin is t ic  ones - th is  notion coincides with that of strong equivalence. Analogous 

ly  we get a weak descendant by the d e f i n i t i o n  

Def.lO : (weak descendant) 

An expression E' is cal led a weak descendant of an expression E, i f f  

B(E') ~ {~} c B(E) 

Example: Both E and E' are strong descendants of (E B E') . A t o t a l l y  undefined 

expression E ~ is a weak descendant of any expression. 

How do these notions correspond to the definedness preservation E ~  E' fo r  deter- 

m in is t i c  expressions ? The idea there was that s ta r t ing  from a t o t a l l y  correct 

program one is guaranteed to ar r ive at a t o t a l l y  correct program, too. This means 

for  nondeterminist ic programs that ~ must not be in B(E') i f  i t  is not in B(E). 

In add i t ion,  one should require that  in cases of unbounded nondeterminism the de- 

f ined values pers is t .  

Def. 11 : (definedness preseryation) 

E c E' ~ (e E B(E) A B(E) x {~} ~ B(E')) 
def 

v (B(E) = B(E')) 

This means that we require strong equivalence for  t o t a l l y  defined expressions and 

otherwise content ourselves with a weak descendant. This re la t ion  coincides with 

the "Eg l i -M i lner " -o rder ing ,  that  is used to define the semantics of nondeterminist ic 

recursive funct ions (c f .  /de Bakker 76/) .  



72 

The analogous d e f i n i t i o n  using a descendant instead of an equivalence re la t ion  in 

the t o t a l l y  defined case is not very meaningful, since definedness preservation 

implies that a number of defined values may be added in the place of ~ , whereas 

descendant means that  a number of values may be l e f t  out. The combination of these 

"two notions would lead to a re la t ion  which were va l id  for  nearly any two programs. 

Again looking at D i jks t ra 's  predicate transformers, we now have for  a nondeter- 

m in is t i c  statement S the t rans la t ion  : 

,~V e E B(Es) : Rex ' i f  co~ B(Es) 
wp(S, R) = ~ fa l se  , otherwise 

where E S is the expression associated to S . 

In contrast to the determin is t ic  case, the re la t ion  ~wp does only coincide 

with the strong equivalence i f  the two statements are t o t a l l y  defined or t o t a l l y  
undefined. 

7. Relations on Data Structures 

In the las t  sections we have studied re lat ions on programs for  some f ixed seman- 

t i ca l  funct ion.  Transformations often hold for  whole classes of semantical func- 

t ions or equiva lent ly  they are va l id  over d i f fe ren t  data structures with s im i la r  

propert ies. 

To begin wi th ,  i t  seems more appropriate to speak of "computational st ructures" 

(cf .  /CIP 80 b/) instead of "data s t ructures" ,  in order to stress the point that  

the basic operations are an integrated part of these structures. Such computatio- 

nal structures are considered equivalent ,  i f  they show the same behaviour. This 

behaviour can be described formal ly by means of (algebraic) "abstract data types" 

(cf .  e .g. /L iskov,  Z i l l es  74/, /Guttag 75/, /ADJ 78/, /CIP 79/) which leads to the 

fundamental re la t ion :  "A computational s t ructure D is of a type T". In formal ly ,  

th is  means that  there are f ixed correspondences between the sorts of T and the 

car r ie r  sets of D and between the funct ion symbols of T and the operations 

of D and that the laws (axioms) of T hold in D . In order to have induct ion 

methods over types we require furthermore that  every object of a computation 

structure is denoted by a "well-formed term" of T , i . e .  by a term (without free 
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i d e n t i f i e r s )  b u i l t  up from the funct ion symbolds of T respecting t he i r  func t io -  

n a l i t i e s  ( fo r  a more detai led discussion cf .  e.g. /ADJ 78/, / l i P  79/).  

We are led in a st ra ight forward manner to re la t ions between computational struc- 

tures : 

Def. 12 : Two computational structures D and D' are strongly equivalent  i f  

for  every type T the structure D is of type T i f  and only i f  also 

D' is of type T. 

Since st rongly equivalent structures are isomorphic, th is  notion is too r e s t r i c t i v e  

for  being appl icable in program development. Consider fo r  instance the abstract 

concept of ( f i n i t e )  sets. The strong equivalence does not al low to switch from 

a representation by "charac te r is t i c  funct ions" to a representation by " l inked l i s t s " ,  

since these two structures have d i f f e ren t  propert ies.  Therefore we should better work 

with the not ion:  "Two computational structures D and D' are equivalent wi th re- 

sPect to a given type T i f  both D and D' are of that type T." 

But when working with abstract types we immediately are led to the question of the 

"equivalence of types", thus being able to do a formal program development also on 

the very abstract level of spec i f i ca t ions .  Since the notion of a type is c losely 

related to the notion of a theory in formal log ic ,  we could adopt the respective 

d e f i n i t i o n ,  v i z .  that  two theories are equivalent  i f  they have the same language and 

the same theorems (c f . /Shoenf ie ld  67/) .  But t h i s  means that the two types have 

exact ly  the same computational structures as models, which makes the notion too re- 

s t r i c t i v e  for  the needs of program development, 

Instead of considering (the p rovab i l i t y  of) a l l  kinds of formulas, we therefore re- 

s t r i c t  our a t ten t ion  to (various) equivalences between the terms of the given type. 

Two terms which represent the same object in every computation structure of the re- 

spective type obviously have to be considered equivalent:  

Def. 13 : Two terms s and t of a type T are st rongly equivalent  i f  the 

equation s = t  is va l id  in T . 
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But th is notion is quite r e s t r i c t i v e ,  too. For instance, in a data base system we 

are not interested whether two internal representations are exactly the same, but ra- 

ther whether they behave al ike for  every possible inquiry.  Such a data base is to be 

described as a new structure that is b u i l t  up from given "pr imi t i ve"  structures. 

The corresponding hierarchy of types suggests to dist inguish terms of two kinds: 

those that represent objects of the newly defined type, and those that represent 

objects of the already exist ing "p r im i t i ve"  types. The l a t t e r  are called terms of 

pr imi t ive  ' sort ( the i r  outermost operation symbol has as i t s  range one of the pr imi-  

t i ve  structures).  These terms of pr imi t ive  sort determine the behaviour that a 

computational structure (viewed as a "black box") exhib i ts  to the outer world. 

Def. 14 : Two (arb i t ra ry )  terms s and t are called y i s i b l y  equivalent , 

i f  for  a l l  terms u[x] of pr imi t ive  sort (containing only one free 

variable x) u[s] and u [ t ]  are equivalent ( in the respective pr imi t ive  

type). 

Note that for  s u f f i c i e n t l y  complete types (cf .  /Guttag 75/) both uCs]  and u [ t ]  

can be reduced to terms only consisting of operation symbols of the pr imi t ive  type in 

question . In the above de f in i t ion  we have l e f t  open which kind of equivalence is 

assumed for u[s] and u [ t ]  . Actual ly ,  any suitable re la t ion between the 

pr imi t ive  terms induces a respective re lat ion between the nonprimitive terms. 

Any equivalence re la t ion between terms induces an equivalence re la t ion between types. 

Let T and T' be two types having the same signature up to renaming (homologous 

types, c f . /  ClP 80 b/) . Then T and T' are s trong]y/visibly__e_quiyalent i f  

any two nonprimitive terms s, t are s t rong ly /v i s ib l y  equivalent in T i f f  they are 

i t  in T'.  Of course, th is requires that the same equivalence re lat ion in the pr imi t ive 
types is taken as a basis. 

Let us now consider twoequat ional lydef ined types T and T' based on the same 

(or at least strongly equivalent) pr imi t ive  types. T and T' are strongly equi- 

valent i f f  the i r  i n i t i a l  (cf.  /ADJ 78/) computation structures are isomorphic. 

T and T' are v i s i b l y  equivalent i f f  the i r  terminal (cf .  /ClP 79/) computation 
structures are isomorphic. 

For a nont r iv ia l  example for  these notions see /Pepper 78/ (cf .  also section 4). 

There a language kernel serves as a pr imi t ive type, while procedural constructs 

are defined by axiomatic transformation rules (playing the role of conditional 
equations). 
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8 .  Concluding Remarks 

Methods of program development which use several versions of the "same" program 

presuppose a notion of program equivalence; even assertion methods induce such 

equivalences. A j u s t i f i c a t i o n  of such development processes requires a sound 

formalizat ion of these re la t ions,  thus leading to a "calculus" of transformations. 

In par t icu lar ,  these approaches turn out to be considerably more f l ex i b l e  i f  not 

only equivalences are employed but also par t ia l  orderings l i ke  the descendant re- 

la t ion.  Note that ,  i f  one is interested in the basic concepts of a speci f ic  pro- 

gramming methodology, one should carefu l ly  study the underlying re lat ions charac- 

ter iz ing the approach. 

Apart from these pract ical  aspects of program development re lat ions between pro- 

grams also give valuable theoret ical  insights into the structure of programming 

languages. So far ,  however, re lat ions mainly have been considered on semantical 

domains ( f ixed point theory, denotational semantics). T r i v i a l l y ,  in th is way 

also relat ions between programs are induced by the semantical mappings. And i t  is 

hot surprising that we can procede the other way round: Using conditional equa- 

t ions (cal led transformation rules) to establish equivalences between programs one 

can specify the semantics (cf .  /Pepper 78/, /CIP 80 a/ ) .  These techniques allow 

to explain basic properties of a programming language without constructing com- 

plex semantical domains. Moreover, one can define a language in a modularized way, 

both from the syntact ic and from the semantic point of view, leading to a "stepwise 

development of the semantics". In par t i cu la r ,  one gets design c r i t e r i a  ensuring 

the coherence and independence of the concepts of the language. An i l l u s t r a t i v e  

example is given in /Broy 80/ where ( in connection with para l le l  programs) the in-  

compat ib i l i ty  of certain fairness conditions with the cont inui ty  of the language 

constructs with respect to the Egl i -Mi lner ordering is shown. 
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