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Abstract Let α be an algebraic number of degree d with minimal polynomial F ∈ Z[X ],
and let Z[α] be the ring generated by α over Z. We are interested whether a given number
β ∈ Q(α) belongs to the ring Z[α] or not. We give a practical computational algorithm
to answer this question. Furthermore, we prove that a rational number r/t ∈ Q, where
r ∈ Z, t ∈ N, gcd(r, t) = 1, belongs to the ring Z[α] if and only if the square-free part of its
denominator t divides all the coefficients of the minimal polynomial F ∈ Z[X ] except for
the constant coefficient F(0) that must be relatively prime to t , namely gcd(F(0), t) = 1.
We also study the question when the equality Z[α] = Z[α′] for algebraic numbers α, α′
conjugates over Q holds. In particular, it is shown that for each d ∈ N, there are conjugate
algebraic numbersα, α′ of degree d satisfying Q(α) = Q(α′) and Z[α] �= Z[α′]. The question
concerning the equality Z[α] = Z[α′] is answered completely for conjugate quadratic pairs
α, α′ and also for conjugate pairs α, α′ of cubic algebraic integers.
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370 P. Drungilas et al.

1 Introduction

Recall that α ∈ C is an algebraic number over the field of rationals Q if there exists a nonzero
polynomial

F(X) = ad Xd + · · · + a1 X + a0 ∈ Z[X ]
such that α is a root of F . Among all polynomials F ∈ Z[X ] vanishing at X = α, there
exists a polynomial of the least possible degree d , which is irreducible in the ring Z[X ] and
has positive leading coefficient ad > 0. This polynomial is called the minimal polynomial of
α. The degree of the algebraic number α is defined as the degree of its minimal polynomial
F . Note that the irreducibility in Z[X ] implies that the minimal polynomial F is primitive,
namely gcd(ad , . . . , a0) = 1. In particular, if the minimal polynomial F is monic (i.e., its
leading coefficient ad is 1), then α is called an algebraic integer. The roots α1, α2, . . . , αd

of the minimal polynomial F are called algebraic conjugates of α.
For an arbitrary number α ∈ C, the ring Z[α] is defined as the subset of all complex

numbers that can be written as integer polynomials in α, i.e., the number β ∈ C belongs to
Z[α] if and only if there exists a polynomial G ∈ Z[X ] such that β = G(α) (in general, the
polynomial G is not unique). A necessary (but not sufficient) condition for the number β to
be in Z[α] is β ∈ Q(α) (which is a field of fractions of Z[α]).

In this paper, we study two problems related to the ring Z[α] generated by an algebraic
number α.

Problem 1 Let α be an algebraic number. Given β ∈ Q(α), find whether β ∈ Z[α] or
β /∈ Z[α].

This problem is inspired by the study of the representations of the numbers in different
non-integer bases. Two natural problems arising in this context are the following. Which
numbers can be represented by such expansions? When the representation (expansion) is
finite? For instance, if a non-integer rational fraction r/t ∈ Q can be expressed in base α,
where α ∈ C, using only finitely many terms with integer coefficients (digits), then

r/t = b0 + b1α + · · · + bnαn

for some integers b j ∈ Z, j = 0, 1, . . . , n. This implies that α is a root of the polynomial
r − tG(X) ∈ Z[x], where G(X) = b0 +b1 X +· · ·+bn Xn . Hence, α is an algebraic number.
It is easy to see that Z[α]∩Q = Z when α is a transcendental number or an algebraic integer,
so the set Z[α]∩Q can be non-trivial only if α is an algebraic number that is not an algebraic
integer.

The first authors who investigated the representations of the real numbers x ∈ [0, 1)

obtained by the greedy expansion using the map Tα(x) = αx (mod 1) were Rényi [20] and
Parry [19]. Such representations, in general, are infinite. In [19], Parry asked which numbers
have finite expansions and which have ultimately periodic expansions. Bertrand [5] proved
that all numbers in Q(α) ∩ [0, 1) have ultimately periodic greedy expansions if α is a Pisot
number, i.e., a real algebraic integer greater than 1 whose all the remaining conjugates (if
any) lie strictly inside the unit disc. In addition, Schmidt [21] showed that if each number in
Q∩[0, 1) has ultimately periodic greedy expansion in base α, then α must be a Pisot number
or a Salem number (i.e., real algebraic integer greater than 1 with all the other conjugates
being of modulus at most 1 and with some conjugates of modulus equal to 1). It is still not
known whether every number in Q(α) has a periodic greedy expansion for a Salem number
α; see a paper of Boyd [7] for a discussion on this subject, which is supported by substantial
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Algebraic numbers and their conjugates 371

computational evidence. See also [1,6,8–10,14] for other problems concerning so-called
beta-expansions.

Closely related to the expansions in non-integer bases are the studies of the spectra of real
numbers

�B(α) = {b0 + b1α + · · · + bnαn : n ∈ N, b j ∈ B}, B ⊂ Z, |B| < ∞.

For instance, a recent paper on the accumulation points of �B(α) by Akiyama and Komornik
[3] contains a comprehensive list of references on the subject, whereas [2] is devoted to the
construction of the number systems in the rings Z[α], where α is an algebraic integer with
all conjugates of modulus >1 (see also [4] for further research on this topic).

In all the above-mentioned problems of finite and periodic representations, the case of α

being an algebraic integer is of the central importance, and the integer coefficients of the repre-
sentation of the number β are restricted. Clearly, this is not the case for general representations
in rings Z[α] as the coefficients of an arbitrary element β /∈ Z[α] do not have to be bounded
in any way, and moreover, α need not be an algebraic integer. However, the study of the rings
Z[α] for algebraic numbers α that are not algebraic integers have received surprisingly little
attention so far. One of the main results of this paper concerning Problem 1 is an algorithm
that determines whether a given element β ∈ Q(α) belongs to Z[α] or not (see Theorem 4
and Sect. 5 for all the details concerning the verification of the congruence (1)). In the case
when β is a rational number, the set Z[α] ∩ Q can be determined by using Theorem 5 below.

If the number β belongs to Z[α], then Z[β] ⊆ Z[α]. For which α and β the equality
Z[α] = Z[β] holds? For this equality, it is sufficient to check whether the inclusions β ∈ Z[α]
and α ∈ Z[β] hold at the same time using the algorithm that verifies the congruence (1) below.
However, if one assumes that α and β are conjugate algebraic numbers, then it is possible to
prove some more explicit results. In particular, we will investigate the following problem:

Problem 2 Let α and α′ be two conjugate algebraic numbers generating the same field,
namely Q(α) = Q(α′). Determine whether Z[α] = Z[α′] or Z[α] �= Z[α′].

We remark that Problem 2 is of some interest in the context of non-integer expansions
and number systems. More precisely, our results show that the behavior of the ring Z[α] as a
subset of C under different embeddings is highly non-trivial. We shall demonstrate that it is
possible for a number β ∈ Q(α) to have a finite representation in Z[α] but do not have one
in Z[α′], even if Q(α) = Q(α′) and the respective rings Z[α] and Z[α′] are isomorphic in
the algebraic sense.

One can see that the results that are proved in this paper can be restated for a polynomial ring
R[α] over any principal ideal domain R (instead of Z) with the quotient field K (instead of Q)
of characteristic 0, provided that α is algebraic over K . However, we are not aware of any prac-
tical applications of such generalization, so in this paper we focus on the number field setting.

2 Main results

Let α be an algebraic number of degree d with minimal polynomial F ∈ Z[X ], and let
β ∈ Q(α). We assume that the expression of the number β ∈ Q(α) is known, that is, one
knows some polynomial with rational coefficients R ∈ Q[X ], which represents β in the form
β = R(α). Expressing the powers of αn , where n � d , by smaller powers of α, we may pick
R of the degree at most d − 1 and write this polynomial in the form

R(X) = G(X)

t
,
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where t ∈ N, and the coefficients of the polynomial

G(X) = g0 + g1 X + · · · + gd−1 Xd−1 ∈ Z[X ]
satisfy

gcd(g0, g1, . . . , gd−1, t) = 1.

We call the polynomial R the canonical representative of β, while G shall be called the
numerator polynomial. Both the canonical representative and the numerator polynomial are
unique, since 1, α, . . . , αd−1 is the basis of Q(α). In particular, if β = α′ is conjugate to α

over Q, the polynomial R is called the root polynomial (see, e.g., [13,15]).
For an algebraic integer α, the answer to Problem 1 is trivial. We record it here only for

the sake of completeness.

Lemma 3 Suppose that α is an algebraic integer. Then, β ∈ Q(α) belongs to Z[α] if and only
if the canonical representative R ∈ Q[X ] of β has all integer coefficients, that is, R ∈ Z[X ]
(or, equivalently, R = G, t = 1).

We shall write U ≡ V (mod t) for polynomials U, V ∈ Z[X ] and an integer t �= 0, if all
the coefficients of the polynomial U − V are divisible by t .

Theorem 4 Let α be an algebraic number with minimal polynomial F ∈ Z[X ]. Suppose
that β ∈ Q(α) is canonically represented in Q(α) by

β = R(α) = G(α)

t
.

Then, β ∈ Z[α] if and only if the congruence

F(X) · H(X) ≡ G(X) (mod t) (1)

has a solution H ∈ Z[X ].
Theorem 4 is simple to state (and very simple to prove). Unfortunately, the condition (1)

is sometimes very difficult to check. In Sect. 5, below we shall study the congruence (1)
in detail and give an algorithm for its solution. This algorithm either gives some solution
H ∈ Z[X ] of (1) or shows that such H does not exist.

Theorem 5 gives a complete description of the set Z[α] ∩ Q. Obviously, Z ⊆ Z[α], so we
shall only consider rational non-integer numbers.

Theorem 5 Let

F(X) = ad Xd + · · · + a1 X + a0 ∈ Z[X ]
be the minimal polynomial of an algebraic number α. A rational fraction r/t , where r ∈
Z, r �= 0, t ∈ N, t � 2, gcd(r, t) = 1, belongs to the ring Z[α] if and only if the square-free
part of t divides the coefficients a j for each j = 1, . . . , d but does not divide a0.

Recall that the square-free part of a positive integer n � 2 is the product of all distinct
prime divisors of n and the square-free part of 1 is 1. Note that for t � 2, no prime divisor of
t cannot divide all the coefficients of F in view of gcd(ad , . . . , a0) = 1. Hence, the condition
concerning the divisibility of a0 by the square-free part of t can be removed from Theorem 5
(it is given there only for the sake of clarity).

Note that Theorem 5 settles Problem 2 in the quadratic case:
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Corollary 6 Let

F(X) = aX2 + bX + c = a(X − α)(X − α′), a ∈ N, b, c ∈ Z,

be irreducible in Z[X ]. Then, Z[α] = Z[α′] if and only if the square-free part of a divides b.

Let α be a cubic algebraic integer with conjugates α1 = α, α2, α3. Any relation αi ∈
Z[α j ], where the indices i �= j are in {1, 2, 3}, implies that all three rings Z[α1], Z[α2], Z[α3]
coincide (see Theorem 11 below). This is possible only if α is a root of an irreducible cubic
integer polynomial whose discriminant is a square �(F) = �2, � ∈ Z, so that the splitting
field of this polynomial has a cyclic Galois group.

In [13] (see also [12]), Girstmair investigated cyclic cubic equations and derived some
explicit formulas for the root polynomials that represent α2 and α3 in Q(α1). More precisely,
he showed that if the minimal polynomial of α is given by

F(X) = X3 + a2 X2 + a1 X + a0 ∈ Z[X ]
whose splitting field is cyclic, then the root polynomials R j ∈ Q[X ], α j = R j (α), j = 2, 3,
are given by

R j (X) = c j2 X2 + c j1 X + c j0

with

c j2 = (a2
2 − 3a1)/� j ,

c j1 = (2a3
2 − 7a1a2 + 9a0)/2� j − 1/2, (2)

c j0 = (a2
2a1 + 3a2a0 − 4a2

1)/2� j − a2/2,

where j = 2, 3 and {�2, �3} = {−�, �}, � = √
�(F) (the choice of the sign depends on the

enumeration of the roots α2, α3). Combining Lemma 3 with the formulas (2), we immediately
obtain the answer to Problem 2 for cubic integer rings.

Corollary 7 Let

F(X) = X3 + a2 X2 + a1 X + a0 = (X − α1)(X − α2)(X − α3)

be an irreducible cubic polynomial in Z[X ] with discriminant

�(F) = −4a3
2a0 + a2

2a2
1 + 18a0a1a2 − 4a3

1 − 27a2
0 .

Then,

Z[α1] = Z[α2] = Z[α3]
if and only if the polynomial F(X) satisfies the following four conditions:

1. �(F) = �2 for some � ∈ N;
2. � | a2

2 − 3a1;
3. 2� | 2a3

2 − 7a1a2 + 9a0 − �;
4. 2� | a2

2a1 + 3a2a0 − 4a2
1 − a2�.

Below, we shall also prove the following:

Theorem 8 Let K be a normal extension of Q degree d � 2. Then, there exist two alge-
braic numbers α, α′ ∈ K that are conjugate over Q such that Q(α) = Q(α′) = K and
Z[α] �= Z[α′].

We shall give two independent proofs of Theorem 8. Our original proof is based on the
observation that, by a simple linear transformation, every algebraic number can be modified
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in such a way that the ring equality does not hold for all of its algebraic conjugates at the
same time:

Theorem 9 Let α be an algebraic number with conjugates α1 = α, α2, . . . , αd , where d � 2.
Then, there exist an integer t and a prime number p such that

Z

[
αi + t

p

]
�= Z

[
α j + t

p

]

for some indices i < j from the set {1, . . . , d}.
An alternative proof of Theorem 8 was supplied by the referee. It is shorter, but involves

a bit more of algebraic number theory.
Here is a result in the opposite direction:

Theorem 10 Let K be a normal extension of Q of degree d � 2. Then, there exists an
algebraic number α ∈ K with conjugates α1 = α, α2, . . . , αd over Q such that Q(α j ) = K
for each j = 1, 2, . . . , d and

Z[α1] = Z[α2] = · · · = Z[αd ].
As a side note, we also record the next observation.

Theorem 11 Let α1, α2, . . . , αd be distinct conjugate algebraic numbers of degree d. If d is
a prime number, then the relation αi ∈ Z[α j ] for some two conjugates αi , α j , i �= j , implies

Z[α1] = Z[α2] = · · · = Z[αd ].
Furthermore, we show that any two algebraic numbers that generate the same number

field can be modified in such a way that the rings that they generate over Z coincide. This
fact will be used in the proof of Theorem 10.

Theorem 12 Let α and β be two algebraic numbers satisfying Q(α) = Q(β). Then, there
exists a nonzero integer m for which the equality

Z

[ α

tm

]
= Z

[
β

tm

]

holds for every t ∈ Z \ {0}.
The proof of Theorem 9 is based on the next criterion.

Lemma 13 Let α1, α2, . . . , αd be d � 2 conjugate algebraic numbers with minimal poly-
nomial

F(X) = ad Xd + · · · + a1 X + a0 ∈ Z[X ].
Suppose that there exists a prime number p such that p | a0 and p � a1. Then, Z[αi/p] �=
Z[α j/p] for some indices i < j .

The existence of the parameters p and t in Theorem 9 is guaranteed by the following
lemma.

Lemma 14 Suppose that F(X) ∈ Z[X ] is non-constant and separable. Then, there exist a
prime number p and an integer t such that p|F(t), but p � F ′(t). Moreover, the set of such
pairs (p, t) is infinite.

In Sect. 3, we shall give some motivating numerical examples. The proofs are given in
Sect. 4. Note that in the proof of Theorem 8, we use Theorem 9; in the proof of Theorem 10,
we use Theorem 12; and in the proof of Lemma 13, we use Theorem 5.
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3 Some numerical examples

Example 15 Consider an algebraic number α with minimal polynomial

F(X) = 6X3 − 6X2 + 4X + 3.

The prime factorization of the leading coefficient is a3 = 2 · 3. The prime p = 2 divides
a1, a2 and does not divide a0. The prime p = 3 divides the coefficients a2 and a0, but not
a1. Hence, Theorem 5 implies

Z[α] ∩ Q = {r/2m | r ∈ Z, m ∈ N ∪ {0}}.
Example 16 Let α be the root of

F(X) = 5X4 + 4X3 + 10X2 + 5X + 3.

Since the greatest common divisor of the first four coefficients of F , namely 5, 4, 10, and 5
equals 1, by Theorem 5, we obtain Z[α] ∩ Q = Z.

Example 17 Let

F(X) = 2X2 + 2X + 3 = 2(X − α1)(X − α2),

where

α1 = −1 + i
√

5

2
, α2 = −1 − i

√
5

2
.

Then, Corollary 6 gives Z[α1] = Z[α2]. Analogously, for

F(X) = 2X2 + 3X + 2 = 2(X − α1)(X − α2),

where

α1 = −3 + i
√

7

4
, α2 = −3 − i

√
7

4
,

using Corollary 6 we find that Z[α1] �= Z[α2].
Example 18 Consider

F(X) = X3 − 3X − 1 = (X − α1)(X − α2)(X − α3).

The discriminant of F is �(F) = 92. Therefore, K = Q(α1) is a normal extension of Q. In
view of (2), the root polynomials of α2, α3 are

R2(X) = X2 − X − 2, R3(X) = −X2 + 2.

Since they have integer coefficients, we obtain Z[α1] = Z[α2] = Z[α3].
Example 19 Let α = α1 be a cubic with minimal polynomial

F(X) = X3 + 9X2 − X − 1 = (X − α1)(X − α2)(X − α3).

Then, �(F) = 562; therefore, Q(α1) is a normal extension of Q. Consequently, Q(α1) =
Q(α2) = Q(α3). It is easy to see that the polynomial F does not satisfy the condition 2) of
Corollary 7. Thus, αi /∈ Z[α j ], for all i, j ∈ {1, 2, 3}, i �= j , according to Corollary 7 and
Theorem 11.
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Example 20 Consider a “random” irreducible quartic integer polynomial

F(X) = 6X4 − 4X2 + 19X + 2

with one of the roots α. Assume that three algebraic numbers β, γ, δ ∈ Q(α) are given by

β = 40α3 − 152α2 + 353α + 74

36
, γ = 12α3 − 271α2 + 35α + 2

10
,

δ = 6α3 − 3α2 + 229α + 4

12
.

We will determine which of the numbers β, γ, δ belong to the ring Z[α] and which do not.
Moreover, in case a number lies in Z[α], we shall find its representation in the form T (α)

with T ∈ Z[X ]. Let us start with β. Evidently, β = G(α)/t , where

G(X) = 40X3 − 152X2 + 353X + 74 and t = 36.

Since gcd(40,−152, 353, 74, 36) = 1, G(X) is the numerator polynomial, and t is the
denominator of the canonical representation of β. Note that the prime factorization of t is
t = 22 · 32. We next use the algorithm from Sect. 5 to check whether β is in Z[α] or not. For
this, by Theorem 4, it suffices either to find H ∈ Z[X ] satisfying the congruence

F · H ≡ G (mod 36) (3)

or to show that no such H as in (3) exists. Firstly, we run Algorithm 23 from Sect. 5 for
p = 2, m = 2 on MAPLE computer algebra system. The program successfully computes
the polynomials

H0(X) = 1, H1(X) = 1 + X3,

and the partial sum of the 2-adic representation of H(X)

S2(X) = H(0) + 2H1(X) = 3 + 2X3.

For p = 3, m = 2, Algorithm 23 outputs

H0(X) = 1 + 2X, H1(X) = X + X3,

so the 3-adic partial sum of H(X) is

S2(X) = H(0) + 3H1(X) = 1 + 5X + 3X3.

It follows that the congruence (3) has solutions modulo 4 and modulo 9. Hence, by Proposition
(21), there exists an integer solution modulo 36, so that β ∈ Z[α].

One can recover the solution H(X) using the formulas (12) from the proof of Proposition
21. Since δ2(36) = 9, δ3(36) = 28, we have

H(X) ≡ 9(3 + 2X3) + 28(1 + 5X + 3X3)

≡ 30X3 + 32X + 19 (mod 36).

So the representation of β in Z[α] is given by the polynomial

T (X) = G(X) − F(X)H(X)

36
= 1 − 2X − 19X2 + 3X3 − 19X4 − 2X5 − 5X7.

123



Algebraic numbers and their conjugates 377

This representation β = T (α) is not unique. For instance, β = 1 + α3 + α7 gives another
(more simple) representation.

We next prove that γ /∈ Z[α] and δ /∈ Z[α]. For this, one can also use the main algorithm.
On the other hand, there exists a short proof using Proposition 24. Indeed, the prime p = 5 in
the denominator of the number γ does not divide the leading coefficient a4 = 6 of the minimal
polynomial F(X), so γ /∈ Z[α], by Proposition 24. For the number δ, this trick does not work,
as all the prime divisors of 12 divide ad = 6. However, the numerator polynomial G(X) =
6X3 −3X2 +229X +4 reduced modulo 3 to G(X) = X +1 is of degree 1, whereas F(x) =
2X2 + X +2 has degree 2, so F � G in F3[X ]. Hence, δ /∈ Z[α], according to Proposition 24.

4 Proofs of the main results

Proof of Lemma 3 The proof follows easily from the fact that the collection of powers
1, α, . . . , αd−1 is a basis of Q(α) over Q and a basis of Z-module Z[α] over Z (see the
conditions INT 1 and INT 2 on p. 334 in [16]); thus, the representation of the numbers
β ∈ Z[α] ∩ Q(α) is unique.

Another proof of Lemma 3 can also be derived from Proposition 24 (see the discussion
after the proof of Proposition 24). �
Proof of Theorem 4 Necessity: Suppose that β ∈ Z[α]. Then, there exists a polynomial
T ∈ Z[X ] such that β = T (α). Since β = G(α)/t , by the representation of β in Q(α), one has
G(α)− tT (α) = 0. By the Gauss lemma, there exists H ∈ Z[X ] such that G(X)− tT (X) =
F(X)H(X). Thus, F(X)H(X) − G(X) = −tT (X), and hence, (1) holds with H ∈ Z[X ].

Sufficiency: Let H ∈ Z[X ] be a solution to the congruence (1). Then, there exists a
polynomial T ∈ Z[X ] for which G(X) − F(X)H(X) = tT (X). Since F(α) = 0, one
obtains G(α) = tT (α). Thus, β = G(α)/t = T (α) ∈ Z[α]. �
Proof of Theorem 5 Necessity: Suppose that t � 2 and r �= 0 are relatively prime integers
and r/t ∈ Z[α]. Then, there exists a polynomial G(X) ∈ Z[X ] such that

r

t
= G(α).

Since tG(α) − r = 0, the polynomial tG(X) − r is divisible by the minimal polynomial of
α, that is, F(X). Thus, for some H(X) ∈ Z[X ], we have

F(X)H(X) = tG(X) − r. (4)

Now, fix any prime number p that divides t . Reduction in (4) modulo p gives

F(X)H(X) = −r ,

where F, H ∈ Fp[X ] and −r ∈ Fp . Hence, F and H must be constant polynomials. In
particular, this implies that all the coefficients a1, a2, . . . , ad of F(X) are divisible by p. Of
course, a0 must be relatively prime to p, since F is a primitive polynomial.

Sufficiency: Let r ∈ Z and t ∈ N be as above. Assume that every prime divisor of t
divides each coefficient a1, a2, . . . , ad (clearly, none of them divides a0). Then, there exists
a positive (sufficiently large) integer n such that all the coefficients of the polynomial

V (X) = ( − a1 X − a2 X2 − · · · − ad Xd)n

are divisible by t . Note that

an
0 = (a0 − F(α))n = V (α). (5)
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Since gcd(an
0 , t) = 1, there exist integers u, v ∈ Z such that an

0 u + tv = 1. Hence, according
to (5),

1

t
= an

0 u + tv

t
= u

t
an

0 + v = u

t
V (α) + v ∈ Z[α],

because all the coefficients of V (X) are divisible by t . Finally, 1/t ∈ Z[α] implies r/t ∈ Z[α]
for every r ∈ Z. �
Proof of Corollary 6 Observe that α + α′ = −b/a. Hence, the relations α′ ∈ Z[α] and
α ∈ Z[α′] both are equivalent to b/a ∈ Z[α]. There is nothing to prove for a = 1. For a � 2,
write a = gt and b = gr with g, t ∈ N, r ∈ Z, gcd(r, t) = 1. Note that gcd(g, c) = 1,
since F is irreducible in Z[X ]. To conclude, it remains to apply Theorem 5 to the fraction
r/t = b/a and the polynomial F . �
Proof of Theorem 8 According to the Primitive Element Theorem (see Theorem 4.6 on p.
243 in [16]), there exists a number β ∈ K of degree d � 2 such that K = Q(β). Since K is
normal, any algebraic conjugate β ′ of β also generates K , that is, K = Q(β ′). By Theorem
9 (whose proof is given below), there exist integers p > 0 and t such that

Z

[
β ′ + t

p

]
�= Z

[
β ′′ + t

p

]

for some two conjugates β ′ �= β ′′ of β. Selecting α := (β ′ + t)/p and α′ := (β ′′ + t)/p we
see that α and α′ are conjugate algebraic numbers of degree d satisfying Q(α) = Q(α′) = K
and Z[α] �= Z[α′]. �
Alternative proof of Theorem 8 It is well known (see, e.g., Theorem 4.37 in [18]) that for
any number field K of degree d � 2, there exist infinitely many primes p ∈ Z such that the
ideal (p) splits completely in the ring of integers of K , namely

(p) = ℘1℘2 . . . ℘d ,

where ℘ j , j = 1, . . . , d , are d distinct prime ideals. So let p be a prime with such a property.
By the Chinese Remainder Theorem, one can find an algebraic integer β = β1 ∈ ℘1 such
that β �∈ ℘ j for j = 2, . . . , d . Since K is normal over Q, the ideals ℘ j are all conjugate.
Therefore, β has at least d distinct conjugates β j ∈ ℘ j over Q. It follows that β is of maximal
degree in K and so Q(β) = K .

Let β ′ �= β be one of these conjugates. Then, Z[1/β] �= Z[1/β ′] (in fact, none of these
rings is a subring of the other). Indeed, assume that 1/β ′ ∈ Z[β]. Then, 1/β ′ = P(1/β)

for some polynomial P ∈ Z[X ] of degree n � 1, which implies βn = β ′ · P∗(β), where
P∗(X) = Xn P(1/X). Consequently, β belongs to the same prime ideal ℘ j , j � 2, as β ′
does, in contradiction to the initial choice of p and β. To complete the proof, one takes
α := 1/β. �
Proof of Theorem 9 Let F(X) = ad Xd + · · · + a0 ∈ Z[X ] be the minimal polynomial of
α. By Lemma 14, there exists an integer t and a prime number p such that p|F(−t), but
p � F ′(−t). The constant coefficient of the polynomial F(X − t) (written as the polynomial
in X ) is a0 = F(−t) while the coefficient of X is F ′(−t). Note that F(X − t) is the minimal
polynomial of the number α + t . In order to complete the proof, observe that, by Lemma 13,
the d rings Z[(α j + t)/p], j = 1, . . . , d , generated by the algebraic conjugates of (α + t)/p
cannot all be equal. �
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Proof of Theorem 10 By the Primitive Element Theorem, there exists β ∈ K such that
K = Q(β). Let β1 = β, β2, . . . , βd be all the conjugates of β over Q. Since K is a normal
extension of Q, for each j = 1, 2, . . . , d we must have K = Q(β j ). On applying Theorem
12 (whose proof is given below) to β1 and β j , where j = 2, 3, . . . , d , we get some nonzero
integers m2, m3, . . . , md such that equality

Z

[
β1

m j t j

]
= Z

[
β j

m j t j

]
(6)

holds for every t j ∈ Z \ {0}. Now fix j ∈ {2, 3, . . . , d}. Choosing

t j = m2 · m3 · · · · · md

m j
∈ Z

in (6), we obtain

Z

[
β1

m

]
= Z

[
β j

m

]

for each j = 2, . . . , d , where m := m2 ·· · ··md . It is now evident that the algebraic conjugates
of the number α := β1/m have all required properties. �
Proof of Theorem 11 Set α := αi and p := d , where p is a prime. Let G be the Galois group
of the normal closure of Q(α) over Q. Observe that [Q(α) : Q] = p; hence, p divides the
order of G. By Cauchy’s theorem, G contains an element of order p, say τ . Now, consider
G as the group of permutations of the set S := {α1, . . . , αd}. Since τ is of the order p, it
must be a p-cycle. Hence, there exists k ∈ N, where 1 � k � p − 1, such that τ kαi = α j .
Put σ := τ k . Since k and p are relatively prime, σ is a p-cycle too. Note that αi ∈ Z[α j ]
implies that Z[α] = Z[αi ] ⊆ Z[α j ] = Z[σα]. A repeated application of σ on the relation
Z[α] ⊆ Z[σα] yields

Z[α] ⊆ Z[σα] ⊆ Z[σ 2α] ⊆ · · · ⊆ Z[σ p−1α] ⊆ Z[σ pα] = Z[α]. (7)

Since σ is a p-cycle on S, one has {α, σα, . . . , σ p−1α} = S. Hence, by (7), we conclude
that Z[α1] = Z[α2] = · · · = Z[αd ]. �
Proof of Theorem 12 Let d be the degree of α over Q. Since β ∈ Q(α), we have β/α2 ∈
Q(α). Hence, there exists a numerator polynomial G(X) = g0 + g1 X + · · · + gd−1 Xd−1 ∈
Z[X ] such that

β

α2 = g0 + g1α + · · · + gd−1α
d−1

m1

for some denominator m1 ∈ N. Multiplying by both sides α2, we get

β = g0α
2 + g1α

3 + · · · + gd−1α
d+1

m1
.

Hence, for any s ∈ Z \ {0}, the equality

β = g0m1s2
(

α

m1s

)2

+ g1(m
2
1s3)

(
α

m1s

)3

+ · · · + gd−1(m
d
1sd+1)

(
α

m1s

)d+1

holds. Writing the latter equality in the form

β

m1s
= g0s

(
α

m1s

)2

+ g1(m1s2)

(
α

m1s

)3

+ · · · + gd−1(m
d−1
1 sd)

(
α

m1s

)d+1

,
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we obtain

Z

[
β

m1s

]
⊆ Z

[
α

m1s

]
for every s ∈ Z \ {0}. (8)

Analogously, by interchanging α with β, there exists a nonzero integer m2 such that

Z

[
α

m2s

]
⊆ Z

[
β

m2s

]
for every s ∈ Z \ {0}. (9)

Substituting s = m2t into (8) and s = m1t into (9), we find that

Z

[
β

m1m2t

]
⊆ Z

[
α

m1m2t

]

and

Z

[
α

m1m2t

]
⊆ Z

[
β

m1m2t

]

for every t ∈ Z \ {0}. Hence,

Z

[ α

tm

]
= Z

[
β

tm

]

for m := m1m2 and every t ∈ Z \ {0}. �
Proof of Lemma 13 Assume the contrary,

Z

[
α1

p

]
= Z

[
α2

p

]
= · · · = Z

[
αd

p

]
,

where α1 = α. Then,

a0

ad pd−1α
= (−1)d α2

p
· α3

p
· · · · · αd

p
∈ Z

[
α

p

]
.

Similarly, a0/ad pd−1α j ∈ Z[α j/p] = Z[α/p] for each j = 1, . . . , d . Hence,

Trace

(
a0

ad pd−1α

)
= a0

ad pd−1 Trace

(
1

α

)
= − a1

ad pd−1 ∈ Z

[
α

p

]
,

since the minimal polynomial of 1/α is ±Xd F(1/X) (the trace denotes the sum of the
conjugates of an algebraic number). From p � a1, we see that p divides the denominator of
the nonzero fraction −a1/ad pd−1. By Theorem 5, the prime p must divide all the coefficients
of the minimal polynomial of α/p except for the constant coefficient. Since p|a0, α/p is the
root of the irreducible polynomial

pd−1ad Xd + pd−2ad−1 Xd−1 + · · · + a1 X + a0

p
∈ Z[X ]

whose coefficient a1 is not divisible by p, a contradiction. �
Proof of Lemma 14 The greatest common divisor of F(X) and F ′(X) in Q[X ] is 1, because
F(X) is separable and has a positive degree. By the Euclidean algorithm, there exists poly-
nomials U, V ∈ Z[X ] and a nonzero integer a such that

U (X)F(X) + V (X)F ′(X) = a. (10)
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Suppose that for some prime number p > a and an integer t , we have p | F(t). Substituting
x = t into (10), we obtain U (t)F(t) + V (t)F ′(t) = a. Then, p � F ′(t), since otherwise
p|a which contradicts to p > a. Since for any non-constant integer polynomial F ∈ Z[X ],
the set of distinct prime divisors of the integers F(t), t ∈ Z, is infinite (see, e.g., Theorem 1
in [11] or Exercise 1.2.5 and its solution in [17]), there are infinitely many primes p and
integers t such that p | F(t) and p � F ′(t). �

5 Main algorithm

For a given integer t �= 0, let νp(t) be the power of the prime number p in the factorization
of t , namely the largest integer m for which pm | t and pm+1

� t . A finite field of integer
residue classes modulo p is denoted by Fp . Let U be a polynomial in Fp[X ], obtained by
reducing the coefficients of U ∈ Z[X ] modulo p. We will also make some use of the p-adic
representation of integers (one may consult, for instance, Chapter 13 of [22] as a reference).

A standard strategy of solving congruences modulo an integer is to factor this integer into
prime powers and solve the congruence for those prime powers first. The solution is then
recovered by using the Chinese remainder theorem. This is described in the next proposition.

Proposition 21 Let F, G ∈ Z[X ], t ∈ N be the same as in Theorem 4. Then, the congruence
(1) of Theorem 4 has a solution H ∈ Z[X ] if and only if for each prime p | t , the congruence

F(X) · H(X) ≡ G(X) (mod pνp(t)) (11)

has a solution H = Hp ∈ Z[X ]. (The solutions Hp(X) do not need to be the same for
different primes p).

Proof of Proposition 21 The necessity is trivial, so we only need to prove the sufficiency. By
the Chinese remainder theorem, for each prime p | t , there exists an integer δp(t) such that{

δp(t) ≡ 1 (mod pνp(t)),

δp(t) ≡ 0 (mod qνq (t)) if q | t, q − prime, q �= p.

Define

H(X) :=
∑

p|t, p − prime

δp(t)Hp(X). (12)

Since H ≡ Hp (mod pνp(t)) for each p | t , by (11), the coefficients of the polynomial
F · H − G are all divisible by t . Hence, the polynomial H defined in (12) is a solution of the
congruence (1).

In view of Proposition 21, one needs a practical algorithm for solving polynomial con-
gruences modulo a fixed prime power pm , where m ∈ N. For m = 1, solving the congruence
F · H ≡ G (mod p) is equivalent to checking if the polynomial G, reduced modulo p to
the polynomial G, is divisible by F in Fp[X ], which is simply the polynomial F reduced
modulo p. We record this observation as follows:

Proposition 22 Let t ∈ N be square-free, and let α be an algebraic number with minimal
polynomial F ∈ Z[X ]. Then, an element β ∈ Q(α) canonically represented as β = G(α)/t
belongs to Z[α] if and only if for each prime p | t , the polynomial F divides the polynomial
G in Fp[X ].
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For higher prime powers pm, m � 2, the p-adic notation is useful. Observe that one can
write any polynomial H ∈ Z[X ] in the p-adic form

H(X) = H0(X) + pH1(X) + · · · + pm Hm(X) + · · · , (13)

where the polynomials Hk ∈ Z[X ] are of degree at most deg H . The form (13) can be obtained
by using the p-adic expansion for integer coefficients of H . To ensure that polynomials Hk in
(13) are unique, we require that all polynomials Hk have coefficients in the set {0, 1, . . . , p−
1}. Observe that the expression (13) is infinite if some coefficients of the polynomial H are
negative. This is because all negative integers have infinite p-adic expansions.

Next, for the polynomial H ∈ Z[X ] in the form (13), we define its partial sums Sk(X) by
the formula

Sk(X) :=
k−1∑
j=0

p j Hj (X). (14)

Observe that H(X) ≡ Sk(X) (mod pk). To solve (11), one can use the following algorithm.

Algorithm 23 Solves the congruence F(X) · H(X) ≡ G(X) (mod pm).

Input: Polynomials F, G ∈ Z[X ], a prime number p, a positive integer m.
Output: A solution H ∈ Z[X ] of F(X) · H(X) ≡ G(X) (mod pm) or ∅

if such H does not exist.
Variables:Polynomials Hk ∈ Z[X ].

Partial sums Sk ∈ Z[X ].
Auxiliary polynomials Wk ∈ Z[X ].
Step number k.

Initialization: set S0 := 0, k := 0,
calculate the reduction of F ∈ Fp[X ] of F modulo p.

Step k � 0: while k � m do
calculate Wk := (G − Sk · F)/pk

reduce Wk modulo p to a polynomial W k ∈ Fp[X ]
check whether W k is divisible by F in Fp[X ]
if F | W k

then
calculate Hk := W k/F
define Hk ∈ Z[X ] to be the polynomial with

coefficients in the set {0, 1, . . . p − 1} whose
reduction modulo p coincides with Hk

set Sk+1 := pk Hk + Sk

increase k := k + 1
else

end do.
end do.

Last step: if k < m, then output ∅

else output the solution H := Sk.

We will now prove the correctness of Algorithm 23.
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Proposition 23 If the congruence F(X)H(X) ≡ G(X) (mod pm) is solvable, then Algo-
rithm 23 always finds one of its solutions H ∈ Z[X ]. If the congruence F(X)H(X) ≡ G(X)

(mod pm) is insolvable, then Algorithm 23 will determine that there are no solutions.

Proof of Proposition 24 First, suppose that the congruence has at least one solution H ∈
Z[X ]. Write H in the p-adic form (13) and consider the partial sums Sk defined in (14).
We claim that Algorithm 23 calculates the partial sums Sk+1 of the p-adic form (13). To
see this, we use the induction on k. Indeed, for k = 0, the polynomial S1 = H0 coincides
with the one calculated by Algorithm 23, since the solution to the congruence F · H ≡ G
(mod p) is unique modulo p, and all the coefficients of the polynomial H0 belong to the
set {0, 1, . . . , p − 1}. Assume now that the claim is true for some k � 0. Since H ≡
Sk+1 (mod pk+1) for k = 0, 1, . . . , m − 1, each partial sum Sk+1 satisfies the congruence
F · Sk+1 ≡ G (mod pk+1). Write

Sk+1 = pk Hk + Sk . (15)

Then,

F ·
(

pk Hk + Sk

)
≡ G (mod pk+1), (16)

which is equivalent to

pk F Hk ≡ G − F · Sk (mod pk+1). (17)

Since Sk is a solution to F · Sk ≡ G (mod pk), the polynomial

Wk = G − F Sk

pk
(18)

has all integer coefficients. Therefore, the congruence (17) is equivalent to

F Hk ≡ Wk (mod p). (19)

Note that the congruence (19) is equivalent to the fact that the polynomial F , reduced modulo
p, divides the polynomial Wk in Fp . The polynomials Hk have all the coefficients in the set
{0, 1, . . . , p − 1}. Therefore, by (19), the polynomial Hk , reduced modulo p, coincides with
the polynomial W k/F ∈ Fp[X ]. By the induction hypothesis, the partial sum Sk coincides
with the polynomial computed by Algorithm 23. Thus, the polynomials Wk, Hk , and Sk+1

also coincide with respective polynomials calculated by Algorithm 23. This concludes the
induction step and proves the first statement of Proposition 23. To prove the second assertion,
note that polynomials Sk+1, calculated at the k-th iteration of Algorithm 23, satisfy

F · Sk+1 ≡ G (mod pk+1). (20)

This is easily proved by induction on k as in the first part of Proposition 23. Indeed, for k = 0,
observe that the polynomial S1 solves the congruence F · S1 ≡ G (mod p). Suppose that
this is true for some k � 0 and consider the polynomial Sk+1 calculated by Algorithm 23.
By the induction hypothesis, one has F · Sk ≡ G (mod pk), so that the coefficients of the
polynomial Wk in (18) are all integers. The condition F | W k in Fp[X ] implies that (19)
holds. Observe that (18) and (19) together imply (17). This proves F ·Sk+1 ≡ G (mod pk+1)

via (15), (16) and completes the induction. If the congruence F · H ≡ G (mod pm) has no
solutions, the above argument implies that Algorithm 23 will stop at some step k < m − 1,
since the congruence (20) has no solutions. The proof of Proposition 23 is completed.
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We finish Sect. 5 by recording an observation that has some practical applications to
Problem 1.

Proposition 24 Let α be an algebraic number of degree d � 2 with minimal polynomial
F ∈ Z[X ] whose leading coefficient is ad . Suppose that β ∈ Q(α) is canonically represented
by β = G(α)/t , and suppose that a prime number p divides t . Then, β ∈ Z[α] implies p|ad .
Moreover, the degree of the polynomial F is smaller than or equal to the degree of G in
Fp[X ].
Proof of Proposition 25 According to Theorem 4 and Proposition 21, β ∈ Z[α] implies that
F · H ≡ G (mod p) for some polynomial H ∈ Z[X ]. This occurs if F | G in Fp[X ].
Hence, the degree of F is smaller than or equal to the degree of G. Since G is the numerator
polynomial of the canonical representation of β in Q(α), the degree of G is at most d − 1,
so the degree of F cannot exceed d − 1 too. This yields p | ad . �

Proposition 24 can be used to give an alternative proof of Lemma 3. Indeed, if α is an
algebraic integer, then the leading coefficient ad of its minimal polynomial is 1, so t = 1 and
the canonical representing polynomial of each β ∈ Z[α] must have integer coefficients.

One can also derive Theorem 5 as a corollary of Proposition 22 and Proposition 24. The
necessary condition for r/t ∈ Z[α] follows easily from Proposition 24, by observing that
1/p ∈ Z[α] for each prime p | t implies r/t ∈ Z[α]. To prove the sufficiency, note that every
polynomial F �= 0 of degree zero in Fp[X ] divides all polynomials in Fp[X ] and then apply
Proposition 22.
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