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INTRODUCTION

We give here details of the results announced in [21], and also extend
these results to situations involving sets of arbitrary eardinality. Thus
in [21] we proved that every injective Banach space of infinife dimension
contains an isomorph of I°; here we prove that if an injective Banach
space containg an isomorph of e, (I") for some set I, it containg an isomorph
of (I} (Corollary 1.5 below). From this we deduce easily the result of
Amir [1] that /e, is mot injective, and assuming the continuum hypo-
thegis, that if K is a closed subset of AN such that ¢(K) is injective, then
K is Stonian (CoroHary 1.6). (AN denotes the Stone-Cech compaectification
of N, the dizerete set of positive integers).

These results are consequences of the key Proposition 1.2 which
asserts that if T: i®{I") > B is an operator such that Tle (") is an iso-
morphism {i.e. T|¢{l") is one-one with clogsed range), then there is
a I" o I' with cardl" = cardl” sueh that T|I(I") is an isomorphism.
(Throughout, “operator” [resp. “projection”] refers to a “bounded linear
operator” [resp. “bounded linear projection™]. Throughout the intre-
duction, B and X denote Banach spaces and I and A denote infiniie
get). Proposition 1.2 in turn yields the considerably stronger Theorem 1.3,
which implies immediately that if X is complemented in X* and X
contains an isomorph of ¢, (I), then X contains an isomorph of (D),
(We regard X as being canonically imbedded in X**.) Theorem 1.3 can
also be used to prove a result concerning extensions of isomorphisms of
subspaces of 1°(I") into injective Banach spaces, thus generalizing & résult
in [13]. (Cf. Corollary 1.7 and the Theorem following it.}- :

* This rescarch was partially supported by NSF-GP-8964.
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Proposition 1.2 and most of the results of this paper are consequences
of a lenuna which generalizes Lenuna 1 of [21] (which in turn generalizes
“Phillip’s Lemma” [20]). We state this lemma (Lemma 1.1) in Section 1
and deduce there its consequences for injective Banach spaces mentioned
above. Section 2 is devoted to the proof of 1.1; the argument is seli-
contained, and is a generalization of the proof of Lemma 1 of [21]. In
2 gense this argument combines the approaches of Phillips [20] and
Nakamura and Kakutani [14]. (For applications of the latter, c¢.f. [11],
[19], and [26]).

n Section 3 we introduce the notions of relatively disjoint and
strongly relatively disjoint families of measnres. (We feel that these
notions, already implieit in the literature for some time (e.g., e.f. [7],
[91, [10], [16], and [18]), underlic most of the results of this paper. How-
ever, Sections 1 and 2 do not explicitly use these coneepts). After showing
in. Proposition 3.1 the essentially known result that infinite relatively
disjoint families in I'(I") span eomplemented subspaces isomorphic to
1'(A) for some /A, we deduce further consequences of Lemma 1.1 con-
cerning the spaces I' (") and ¢, (I"). Thus in Theorem 3.3 (resp. Theorem 3.4)
we give rather weak sufficient conditions en a subset of I'(I") (rvesp. of
any B) such that it be equivalent to the unit-vectors-basis of I (I") (vesp.
of ¢;(I")). (The conditions are trivially also necessary.) 3.3 may be used to
deduee the known result that every infinite-dimensional ecomplemented
subspace of #{1) is isomorphic to I'(4) for some A (due to Petezynski
for countable (I) [18] and Kothe for the general case [10]), and it also
vields a new proof of our Lemma 1.1 of [22] (c.f. the second corollary
following 3.3 below). Theorem 3.4 is easily seen to be equivalent to the
assertion that if 7' is an operator from ¢, (I to B such that inf 1T %60 > 0,

pel'

then there exists a I = I" such that cardl” = cardl™ and T'|e,(I") is an
isomorphism. This yields some new information also for countable I,
generalizing Theorem & of [2]. {y,(f) =1 if y= 4§, =0 otherwise)
We conclude Section 3 with applications of strongly relatively disjoint
sequences of measures, deducing the results 1-7 of [21]. The arguments
given there are already implicitly contained in [21], and yield new proofys
of some known results (e.g., of Theorem 1 of [177), '

DEFINITIONS AND NOTATIONS

We follow [8] and [5] for the most part. Banach gpaces are taken
over either the real or complex scalars, Let X and ¥ be Banach Spaces.
The unit ball of X, {weX: |lg] <1}, is denoted by Sy, An operator T
from X to ¥ is called an isomorphism if it is one-one with closed range.
X and Y are called isomorphic {denoted by X Y) if there i an isomox-
phism (ie., invertible operator) mapping X onto Y. It X < Y, X is said

icm
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to be complemented if there is a projection mapping ¥ onto X. A Banach
space is said to be imjective if it is complemented in every Banach space
containing it.

Given a set I, I™(I") denotes the Banach space of all bounded sealar-
valued functions defined on " under the supremum norim; e,(I) denotes
the closed subspace of I®(I") consisting of all f such that for any ¢ >0
there exists a finite subset F, of I" with |f(y)]| < e for all y¢ .. I A ig
a subset of I', y, denotes the characteristic function of A (i.e. ¥, is one
on A and zere off A.) If f is a scalar-valued function defined on I, f| A
denotes the function y.f. 1'(I) denotes the space of all sealar-valued f
defined on I such that |fij = ¥ }f(¥)| < oo, under the norm ||, AI'

<

ye
denotes the Stonme—Cech compaetification of I' and cardl” denotes the
cardinality of I

¢ denotes the cardinality of the set of real nmmbers and x, the
cardinality of the set of integers. If cardl” =m, we denote I®(I") by Iy
and (1) by I;. In the case where I’ = N, the sef of positive integers,
we denote I™(I), ¢, (M), and ' (I") by 1°, ¢g, and. I' respectively. (We assume
the notation and standard facts concerning cardinal and ordinal numbers,
as exposed in [25].)

If X is a o-algebra of subsets of the set H,ca(®, L) denotes the
Banach space of countably additive scalar-valued set funcfions on Z,
under total variation norm. If x is a countably or finitely additive scalar-
valued measure defined on £, |u| denotes the total variation of ux (as
defined in [5]).

Given a compact Hausdorff space S, C(S) denotes the Banach space
of scalar-valued continuwous funetions on §, under supremum norm.
We denote by M (8) the space of all regular scalar-valued Borel measures
on §, and identify ¢/(8)* with M (S) by the Riesz representation theorem,
(Of course we also regard M (8) < ca(§, Z) where X denotes the o-algebra
of Borel subsets of 8.) A subset of § is called elopen if it is both closed and
oper. A iy said to be o-Stonian (resp. an F-space) it open F, subsets of §
have open closures (resp. if disjoint open F.'s have disjoint closures).
More generally, S is said to be m-Stonian if the clopen subsets of S form
a hase for its open sebs, and if every family F of disjoint clopen subsets
of 8 with card # < m is such that | F is open. (Thus o-Stonian = R,
Stonian).

S is called Stomian, ov extremely disconnected, it the closurs of every
open subset of § is open. It is easily seen that S is Stonian if and only
i § is m-Stonian for all cardinals m and that I is Stonian for all sets I';
it is also known that C(8) is injective for any Stonian 8 (c.f. [3]). Finally,
we say that § satisfies the Countable Chain Condition (the C.C.C.) if
gvery family of disjoint open subsets of § is finite or counsable.
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SECTION 1

All of our results are consequences of the following lemma whoso

countable case generalizes a lemma of Phillips (see the last vesult of this~

section):

Tmvma 1.3, Let A be a diserete sel and let {m,: cel} be an infinite

Jomily of finitely additive mositive measures on A such thai sup u, (A) < oo
el

and let {B,: a<l'} be a family of disjoint subsets of A. Then for all ¢ > 0
there exists a I < I' with card!” = card!" such that

po (U (Bt Bel”, p # at) < e for all uel”.

This lemma has some non-trivial consequences also for families
of countably additive measures defined on all subsets of A (i.e., for families
contained in I'{4)) which we explore in Section 3. We develop its conse-
quences for injective spaces and their quotients in the present section,
and delay its proof until Seetion 2, where we prove the apparently stronger

Lemwma 1.1 (a). Tet m be an infinite cardinal number. Let S8 be an
m-8tonian compact Hausdorff space, let I' be a st with cardl™ =nt, and
let {p,: ael} and {B,: ael'} be given, where for all ael’, p, is a non-nega-
tive member of M (S) with | ) < 1 and B, is a clopen subset of § such that
for all Bel' with f =« B, NE; =@, Then given e >0, there evists
@ subset I of I with card I = cardl’, such that for all ael”,

ﬁu(u {E.ﬂ: ‘3611,, ﬁ #* CL}) < &
(Of course if § is Stonian, this holds for all infinite sets I', with no re-
strietion on cardl.)

Remarks. 1. In view of the fact that to every finitely-additive
positive measure x on the discrete set 4, there corresponds a unigue
positive i ¢ M (AA) such that @ {(F) = u(B) for all B < A, 1.1 is an imme-
diate consequence of 1.1 (a). Actually, following an observfmtmn of Gro-
thendieck [7], 1.1 (a) is also a consequence of 1.1. Indeed, let &,m, I,
{#: ael'} and {B,: ael'} satisfy the hypothesis of 1.1 (a). For each ae[‘
define the set function », on the discrete set I° by

l‘l( '_'nLLu(UEu)

Since § is m-Stonjan, it follows that », is finitely additive with {jv,| << 1;
applying Lemma 1.1 to {r,: ael} and {{a}: asf} (the family of smgle»
tong of '), we obtain for all ¢ >0, & I'" < I' with card " = card " such
that v, (1" ~ {a}) < & for all ael”, whence 1.1(a) follows.

2. It is eaily seen, using a result of Grothendieck, that 1.1(a)

_ for m =¥, is equivalent to Lemma 1 of [21] (see the last result of
Section 3).

?

7

for all P < I,
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Our next result provides the key tool for applying 1.1 to injective
Banach spaces.

ProposrtioN 1.2. Let B be a Banach space, I' an infinite set, and
T: I°(I') ~ B an operator such that T|e () is an isomorphism. Then
there emists a set I = I' with cardl™ = card D" such that T|{I=(I") is an
isomorphism.

Proof. Put K = ||[T]e(I))~"|. Now fix pel; then by the Hahn-
Banach Theorem, there exists an f,<B*, if,]l < X, such that

fy (T’,‘{(,}) =1

Defining the set function u, by u, (B) = T*f,,(xE) for all # < Iy, we have
ag is well-known [3] thab g, is finitely-additive with ||| = 1T*.0,
of course sup el < [TH K. Now letting B, = {y}, we have by Lemma, 1 1

that there ex1sts 2 8ot I < I''with eard I = card! such thatb [p,|(I" ~ {a})
<} for all ael™. But then if pel™(I™) and if ael”,

oau,

(sinee [Tyl = 1/K).

=+ [ wdn) > w(@l— ol
refay
since u(a) = Tf.(x) = 1.
Thus

1 1
Tl = 5 sup If,(T9)1 = oo el

whence T[I*°(I"} iy an isomorphism. Q. B.D.

Remarks. 1. The above argument shows that the conelusion of 1.2
holds if we replace the assumption that 7'|c,(I"} is an isomorphism by
the assumption that int[Ty,} > 0. In this connection, see also Theorem 3.4

yel’

helow.

2. If I’ is eountable, 1.2 may be proved without the aid of Lemma 1.1.
We identify (") with C'(1"), and choose a constant K such that for each
yel', we can choose an f,eB* with [|f| <K and f,(Tym) = 1, (8) for
all 8. (This is possible since T'|¢ (") is an isomorphism.) Now g, is defined
as in the proof of 1.2; then sinee SI" ~ I" does not satizfy the C.C.C, there
exists an infinite subset I of I such that |w |(I" ~ 1) = 0 for all ael”
(c.f. the footnote following 1.5 below). Then identifying 1°(I") with all
peC(pl7) such that ¢ is supported on I and feking into account that

4, ({B1) = 1, () for all pel, we have that for sueh ¢, { @dp, = ¢(y) for
all pel™. Hence T|I°(™) ;”&an isomorphism sinee |[Ty| = Iganm for

all gel™(IY).

Studia Mathematica XXXVIL| 2
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We now deduce our next result (the main theorem of this section)
from 1.2.

TaEOREM 1.3. Let I' be an infinite set, and let B and X be Banach
spaces with X complemented in X™. Let T+ X — B be an operalor suoh
that theve ewisis a subspace A of X, isomorphic 1o & (I), with T|.A an iso-
worphism. Then there ewists a subspace Y of X, dsomorphic o I=(17), with
Y an isomorphism.

Proof. We first obgerve that there exists an operator S: [*(/) —+ X
such that Se () is an isomorphism onte A. Indeed, we identify 1™(I")
with (¢, ([)}** and regard as always X = X**, Then choose Sy (1) X
an izomorvphism of ¢o(I") with A. Then S}*: I°(I) - X™ is wuch that
8y ley(I) = 8.

Now let P be a projection from X** onto ¥; then § = PS;* iz the
desired operator.

Thus T8 iz an operator from. I°(1) inte B, such that T81e,(T) iz an
isomorphism. By Proposition 1.2, we may choose I < I" with caxdl™
= card.", such that Z7§|1*(I”) is an isomorphism. Thus S{®(I") and
T|8(1°(I)) are both isomorphisms; so putting ¥ = S(I®(I")), the result
follows. Q.E.D.

CoroLLARY 1.4, Let X and B be Banach spaces and let T be o non-
weakly compact operator from X to B. Then if X is injective, there cwists
@ subspace ¥ of X isomorphic to 1°°, such that T\ Y is an isomorphism.

Proof. Sinee X is injective, there existy a ((K) space Z and & sur-
jective operator §: Z — X. Then T8 is not weakly compact, hence by
2 result of Pelozytiski (Theorem 1 of [17]), there exists a subspace 4,
of Z with A, ~ ¢, and S|4, an isomorphism. (We give an independent
proof of this result of Pelezyriski’s in Theorem. 3.7 below.) Thus 4 = §(4,)
is isomorphic to ¢y and T'|.4 is an isomorphism, whenee sinee X is comple-
mented in X**, the result follows from 1.3. Q.E.D.

Remarlks. 1, Corollary 1.4 implies, of course, that every injective
Banach space containg a subspace isomorphic to I (Corollary 3 of [21]).

2. The above argument easily yields that the conclusion of 1.4 holds
provided we agsume that X is o continuous linear image of gome injective
Banach space, or assuming the contintum hypothesis and o ¥eswi of Linden-
strausg [12], provided X iz a continuous linear image of C(I) for some
compact F-space K. It follows from our Theorem 3.7 below that the
conelugion also holds without the assumption of the continwum hypothesis,
provided X iz a continwous linear image of ¢(8) for some o-Stonian §.

It is easily seen (and is well-known) that X is. complemented in X**
if and only if X iy isomorphic to a complemented subspace of some con-
jugate Banach space. We thus obtain immediately from 1.3.

icm
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COROLLARY 1.5. Let X be injective, or more generally, let X be iso-
morphic to a complemented subspace of some conjugate Banach space, and
let I' be an infinite set. If X containg o subspace isomorphie to ¢y(I), then
X contains a subspace isomorphic to I°(I).

Remarks. 1. In [22] we proved that if X is a &, space (i.e. X = ((8)
for some Sfonian §) containing a subspace isomorphic to e,(I"), then X
contains a snhspace isometric to I*(I"). We also proved in Corollary 1.2
of [22] that if B is a Banach space such that B* contains an isomorph
of ¢y(I"), then B contains a complemented isomorph of I* (I") and hence B*
contains an isomorph of I**(I'). This result is due to Bessaga and Pelezyriski
for the case of countable I” [2]. (The main tool of proof of 1.2 of [22] was
Lemma 1.1 of [22]; we give a new proof of 1.1 of [22] using our present
Lemma 1.1 in Section 3 (c.f. the second Corollary following Theorem 3.3
below).)

2. Let X De a complemented subspace of I°(I"), containing an iso-
morph of ¢,(I"). Then by 1.3, X contains an isomorph of I (I'). Since I™°(I)
is isomorphic to (I(I@I{)@...)w, We obtain by the “decomposition
method” of Pelezyliski [18] that X and I™(I") are isomorphic (c.f. Pro-
position 1.4 of [22]). This result is due to Lindenstraunss (unpublished for
uncountable I'; proved in [11] for countable I).

We obtain immediately from 1.5 and known resulfs the following
result of Amir:

CoroLLARY (Amir [17]). I®[e, is not an tnjective Banach space.

Proof. It is well-known that I*/¢, contains a subspace isometric
0 ¢, (") where cardl” = c.(*) But since cardI™/e, = ¢, it iz impossible
that Ife, contain a subspace isomorphic to I™(I"), for cardI®(I") == 2°.
Thus the result follows by Corollary 1.5. Q.E.D.

The preceding result shows that C{fN ~ N} iz not injective. If we
assume a hypothesis weaker than the continuum hypothesis, we obfain
a: vesult which implies that if § is a closed subset of pN such that C(S)
is injective, then 8 is extremely disconnected.

‘We first need the simple

ProrosrrioN. Let K be a compact F-space satisfying the Countable
C'hain. Condition; then I is Stonian.

Proof. Let U and V be disjoint open subsets of K. By Zorn’s lemma,
we may choose maximal fanilies # and % of pairwise disjoint open F,

(%) Identify I* with I™(Q) where @ is the set of rational numbers. For each real
number r, choose a sequence (x7) of distinet rationals tending te =, and put
Fo={al: n=1,2,...}. Then F, n Fp i finite if + # 7. Leb a: 1% - I%]¢; be the
quotient map; then the closed linear span of {myp : 7 i a real number} is isometric
t0 ¢,(I") where eardl” = ¢. T
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subsets of U and T respectively. Then by maximality, (& = T and
U9 =T7. Since K satisties the €.C.C., F and # are countable, thus
U & and {J ¢ are disjoint open F, sets, so 7 n ¥V = 0. Q.E.D.

Remark. Tt follows that if ge M(K) and K is an F-space, then the
support of u is Stonian, sinee the support of u is an F-gpace satisfying the
0.CL0. This result is due to Seever [24].

COROTLARY 1.6. Assuine the hypothesis 2% < 3% Lot § be a compact
F-space with weight 8§ = ¢, such that O(8) is injective. Then S is Stonian.
(The weight of S i3 defined as the smallest cardinal corvesponding o a hase
for the open sets of S.)

Proof. By the Proposition, it suffices to prove that & satisties the
Countable Chain Condition. Suppose that § does not satisfy the ¢.0.C.
Then there exists a family [” of pairwise digjoint open subsets of 8, with
cardl" = §;, and hence C(8) containg a subspace isometric to e, (/") (chooso
for each yel' a non-zero @,c((8) supporbed in y, and then take the
closed linear span of {g,: yel1). Thus by Corolliry 1.5 and our
hypotheses, C{8) contains a subspace isomorphic to P°(I". Since card
PI) = 2%, card C(8) > 2%, But weightS = ¢ = card 0 (8) = ¢ = 2%« 2%,
& contradiction. Q.E.D.

QUEsTTON: Does fhere exivt a eompact F-space & such that ¢(8)
is injective yet & is not Stonian?

We know only that the answer is affirmative if there exiyts 5 neasar-
able infinite cardinal m. (m is said to be measurable, if letting I’ be a sei
with eard]" =, there is a non-zero countably-additive measure 4 defined
on all subsets of I, taking values either 0 or 1, such that wly} =0 for
all yef' )

Our next result may be used to generalize one of the rexults of [13]
concerning extensions of certain isomorphism; it is a simple congequence
of Theorem 1.3, (If 4 and B are closed subspaces of the Banach space X,
then we write 4| B (4 iy perpendicular to B) provided A n B = {0}
and A4 B is closed.)

CoROLLARY 1.7, Let X be an injective Banach space, A a closed sub-
space of X, and I' an infinite set. Suppose there ewists o closed subspuce
B of X, isomorphic to ¢y (1), such that A B. Then there ewists projection
P from X onto & subspace isomorphic lo 1°(I" )y such that PA == {0}.

FProof. Let m: X — X4 be the quotient map. Then =|B is an iso-
morphism. Henee by Theorem 1.3, there exists a subgpace D of X with
D =~ (I} such that =|D is an isomorphigm. Since I®(I") is injeetive,
there exists a projection ¢ from X/4 onto #n(D). Then P = (z|1)'Qun
iz the desired projection. Q.I.D.

Now an argnment similar to the proof of Theorem 3 of [13] yields
the following
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TunoreM. Let X be an injoctive Banach space, ¥ a closed subspace
of I°(I") for some set I', and T: ¥ -~ X an isomorphisu, Suppose that there
ewists @ B e X with B ~ ¢(I') and B T(Y). Then there exists an iso-
wmorphism T ) - X eatending T (i.e. such thet TVY = T).

Remark. As was observed in [13], such a B always exists if I is
countable and X[T(Y) is non-reflexive (this also follows immediately
from our Theorem 3,7 below). If X = (/") itself then it follows from our
Proposition 3.5 below that such a B exists if dim ¥ < dimI®(I") (in fach
it ¥ contains ne fsomorph of I;m where m = cardl; see the remark
following 3.5).

We conclude this section by showing that Phillip’s Lemma is a rather
easy consequence of Lemma 1.1 for the case of countable I' (ie. of
Lemmaea 1 of [2173).

TueoREM. Let (i) be a sequence of finitely additive set functions
(complex valued) defined on the discrele set A.

(a) (Dieudonné [4]) If sup'lu,(B)} < oo for all B <= A, then

n

Sup fu,f < oo,
)

(L) (Phillips [20]) If Jimu,(E) = 0 for all B = A, then
L

lim Mg, ()] = 0.
oGed
Proof. Buppose first that (u,) satisties the hypotheses of (a), yet
sup|le,ll = oo. Put A(E) = sup g, {F)| for all E < A, and choose v, v,, ...
n n

a subsequence of the u,’s and F,, H,, ... subsets of 4 such thas

1
MB;)  for all w>1.

3
|

I (E)] 2 o ll/B 2 nt-2

]

e
]

n=1

Then putting ¥, = K, ~ | JE; for all » > 1 (and ¥, = F,), we have
=1

that for all », v, (F ) = | 4/10 and F, n F, =G for all » =m. By
Lemma 1.1, we may choose », < n, << ... such that for all 7,

Vg (U ) < Sl (Bl

FEL
{(We apply 1.1 to the measures |u,|/», (F,)] and put & == L3 |y, (A) /|12, (F,)]

< 10 for all », of couvse.) Then putting # = [J F,,j,
#=1
[y (F)] 22 [, /36, whence ju, (F)| — oo,

a contradiction.
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To prove (b}, we have by (a) and the hypotheses of (b) that sup ||z,
n

<7 oo, Suppose that the conclusion of (b) were false. Then by the same
standard sliding hump argument used in (a), we could choose u § > 0,
& subsequence (»,) of the w,’s, and a sequence (5,) of finite disjoint subsets
of A sueh that for all », »,(E,)| = 4. Then by Lemmu 1.1, there would
exist an increaging sequence of indices (n,) such that for all i,

[1pr.,:! (U Enj) < r$/2 :
7#t
Then putting B = ) &, ,
j=1

o, () = 812
contradicting the hypothesis of (b). Q.BE.D,

for all 4,

SECTION 2

This section is devoted to the proof of Lemma 1.1(a).

We first need some notation. For an ordinal number «, a* denotes
the successor of o, and o denotes the cardinality of the set of ordinals
less than . For a cardinal number m, let o, be the least ordinal number
a with @ = nt. For an ordinal number s,, we shall refer to functions f
from the set of ordinals less than z, into the ordinal numbers a8 transfi-
nite sequences, and use fthe motation (f(); # <<, or (f(x)) when
is understood. Finally, we say that a cardinal number is of type I if it
is not the limit of a denumerable sequence of gmaller eardinals, and we
say it is of type II if it is not of type L.

Our proof proceeds by tramsfinite induction. Let m be an infinite
cardinal number, and assume the lemma has been proved for all infinite
cardinal numbers m’ with m’ < m. (We allow m = ¥, also, in which cage
this is vacuously true.) Now let I" be given with eardl” =111, let § be
a given m-Stonian cempact Hausdorft space, let & > 0, and let {#a: ael™}
and {&,: a<l} be as in the statement of the lemma. We now assumo
(a8 we may) that I' equals the set of all ordinal numbers less than o
“<” denotes the natural order on I.

We shall firgt prove that there exists a set A’ « 1" with cardA’ = m ,
such that

(*)

jL]

p{U{Bp: B> 0, fed}) < f2

We then complete the proof by showing that there exigty o set I < A’
with eardl™ = m, such that

(%)

for all ged’.

wa(U By F< o, Bel}) < o2 for all ael,

icm®
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‘We proceed with the proof of the existence of A'. We need the following
proposition, which is a variation of a theorem of Tarski (c.f. Theorem 1,
page 448 of [25]):

ProPOSITION. There exists a family F of subsets of I' such that card &
>m; cardd =m for all AeF; and if A and A’ are distinct members of F,
then there is @ B << o, such that aed N A" = a<CB.

We shall use this proposition for now; we give a proof of it at the
end of this section, for the sake of completeness.

Choose & a family of subsets of I', satisfying the conclusion of the
proposition. For each 1< #, pub

Fy=N U {E,: aed, a > p}.
fied
Since § iy m-Stonian, Fy; N F o = @ for all A, A'eF with A % A’. Now
for each e, the set of A<¥ such that x, (F,) s 0 is eountable. Thus the
set of A’s in F such that there exists an ael” with u,(F,) # 0 has car-
dinality at most 8,-m =m < card#. Hence we may choose a deF
with 6, (F,) =0 for all wel.
Fixing a, it then follows from the regularity of ux, if m is of type T
(resp. the countable additivity of u, if m is of type II} that

{1 injyu({U By fiyed]) =0.
fie.
Now for each feA, put
Ag = {aed: a< f and p(U {B,: v = B, ved}) < &f4].

We now define for some 7, < o, a transfinite sequence {a(n); y << 7oy
of elements of A ag follows: Let a(0) be the least element of A. Let 5 << oy
If «{#) has been defined, choose feA with § > a{#) such that

card Az n {red: 72 a(y)} = a(y).

(This is possible, since «(y) < m and by (1), 4 = [J ; (and by definition,
Best
Ay e Ay B <)) Then put a(n®) = p.
If 5 is u limit ordinal and «(y') has been defined for all 4’ < 7, then

if supaly’) < o,, we choose a fesd such that f > a(y’) for all 4 < 9,

L] -
and put a(y) = 4. (This is possible since card.d = m and v < ¢y = 7 << 1L.)
It supa(y’) = 0,, we put u, = and thus complete the definition of

] . . .
the transfinite sequence (a{y)). We then have that {a(m) is striefly in-
creasing, with supa(y) = o,, and thus supa(y) ==m. For each 5 with

1<ng 1<y
17 < 7y, pub
Ay = Ayyry N {ved: T3 aly)}
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We have that the .,'s are pairwise digjoint; indeed (u(n)) is a strictly

increasing sequence and if reAT;, then
(2) aln) < v < ulnt).
Thus

eard () A = limea(y) = .
W<y 7=y
Now leb 1 << 5y. Since card ./I’Z < a(pt) <m, by induction hypothesis
we may choose a subset A" of A} with cardA}* = cwd 4] sueh that

{3) (U {Bp: Ped f #7)) < efd

3 *
for all zedAl"

it A7 Is infinite; otherwise we let A" be o singleton subset of A7,

We now put A" = (J 45", Since eardd, = aly) for all 5 < 4, we
7y
have that card A’ =m. Now let v¢A'; so choose 1 - 5, with T,
Since A" = A4, we have that

(U (Bt f= aln?), Bed)) < efd

by the definition of A.,+y. But it follows from (2) that it ged’ ~ Ay
and § > v, then f = a(y'). Hence by (3) and the definition of Aoy
(*) holds. (If m is a regular cardinal (i.e. if o, is a regular initial number,
a8 defined on p. 403 of [25]), the existence of A’ follows easily from (1).)

Now for each y;, y,ed’ with y, < v, set

Ay = faed’s wa(U B, 7 <y <y yed'h) < o4},
We claim that we can choose a y,e4’ sueh that for all fed’ with B> v,
czmrd/l,,ﬂ",f = m. Indeed, if this were not true, let N be an integer with
1/N < ¢ft. We could choose «, an arbitrary element of A’ and having

chosen a,, (with n < ¥), we could choose a,,; > «, such that eard Ay
< m. Then R

Ne-1
card |J 4

n=0

By O 1 <m.
But then we could choose an ae.’ such that g A

for any n with
0={n< N—1. Then

o Byl 1

U {8yt o, <y < ) 2 /1
and henc_e since § is m-Stonian, |ju,l = N(efd) > 1, contradicting our
hypothesis that ||u,) <1 for all a

, Now choose such a 9, and for all fed -with £z 9, pub
Ay ={aed, 41 f<a). We thus have that cardA) —m, with

for all s,

(4) (U {B,: y0§y<ﬁ,yé7’})< /4 for all aedp.

icm

On relatively disjoint families of measures

1o
o

The proof now proceeds as in the proof of fhe existence of A'. We
define for some i, < 0, & transfinite sequence ('y(n); N < 7;0) of elements
of A" as follows: y(0) = y,. Let n < o, if v () has been defined, let y(»™)
be the least yed',, such thab

(3) cardfred’, 10 <) = p(y).

Now suppose that » is a limit ordinal, and that «(y’) has been defined
for all 9" << . I suDy (') << 0, We may choose a T’ such that v > ¢(y)

L]

for all ' << 5. Then we put 4 (y) equal to the least member of .. Con-
tipuing in this manner, we will eventually reach an ordinal #, <C 0, such
that supy(n) = o, thus completing the definition of (y{5); y < 7)-
g .

Thus, v(y) is a strictly increasing sequence of elements of A’ with
supy(n) = o,. Now for each % <, pub
<y

Ay = {redyy: Ty

then i fed,,v(m) < f<p(yt). Now fiv 5 < 1y,. Let wed]. Then if
Bed,. for some 5 5 4 and f < g, then 7' < 4 and consequently 8 < ¥ (i)
Thus by (4) we obtain that

{6) yu(-UfEﬂ: B < o and fed; for some n' £ n}) < &/4

for all (LEA;'.
We have by (5) that card A = y{n) < m, hence by induetion hypo-
thesis, if 4, is infinite, we may choose a set A, = A, with cardA;
= card A, such that

(7 ta{U {Bp: ey’ B # a}) < e/4

it A is infinite. Again it A, is finite, let .1, be a singleton subset of ;.
Finally put ¥ = {J 4, Then the A, s are pairwise disjoint {since
n<y

the A;,"s are) and by (3), eard]” = supy(y) =m. Thus by (0} and (7},

for all aed,’,

LT

I satisfies (#*) and hence the conelusion of Lemma 1.1(a). Q.BE.D.

We pass now to the

Proof of the Proposition. We first deal with functions f: I" - I”.
ay that such a fonction respects the ordering it f(3) < o for all 2 < ©
and f(r) < & for all & with o < @ < 0. (» denofes the first infinite ordinal,
and is identified with the set of finite ordinals.) Evidently f(#) =z is
a function respecting the ordering. We denote the graph of f: =TI
by G (i.e., G = {[z, f(2)): & < a,)). Given f and g, we say that ¢y NG,
is small, if there is a § < g, such that for all g, flz) = gls) =2 < 8.
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We next observe that

(A) if @ is a family of functions respecting the ordering with card ¥ = m s
then there iy a funetion y respecting the ordering such that &, n @
is small for all fe,

To see this, let @ —~ f, be a surjective correspondence of I' into % (nof

necessarily one-one). Now fix y < o, and let § = supf,(y). If ¥ is finite
25

then #i 13 finite, and if y is infinite then since f, I‘GHngLH the ordering for

all 2, f.(y) << 7 for all 2 <y, and thus =7 Now we defina gly) = pr

§ then serves as the desived function.

Now by Zorn’s Lemma, there exists a non-empty tamily ¢ of funetions
from I" into 7', maximal with respect to the property: all members of @
respect the ordering and Gy N @, is small for all f £ ¢ in ¥, By (A), we
have that card¥ > m. i

Finally, we obse_ligﬁthat there is a bijective correspondence g: [
XI' = I" such that ¢lx, y) < max{%, 7} if either = or y is infinite, and
¢z, y) is finife if x and y are both finite. (For each infinite cardinal
n <, let ¢, be a bijective correspondence between {te, y): @, yel” with
max{Z, §} —n} and {gel: & =n}. Let ®o be a bijective correspondence
between © X o and w. Then ¢ = | ¢, U ¢, is the desired correspondence. }

<

Then & = {p(@y): f«¥} satisfies the conclusion of fhe Proposition.
Certainly for all <@, card@, —mnt and since @ i& one-one, q(@) has car-
dinality m; mereover card # = card¥? > m. Finally fix f # ¢ in #. Then
there is a g with 0 < f< g, _such that f(z) = g(z) = » < #. Letting
v m.su‘p{.zp(a:,f(m)): e<fl,y<f<m it § is infinite and 5 is finite
ifAis fu.a.lte (by the definition of ¢ and the fact that S respects the ordering).
Hence if zep(@) ne(G,), then ¢ = @z, f(=) for some z < A, and fhus
2y < oy, QED.

SECTION 3

In this section we formalize the notion of relatively digjoint families
of measures. This notion is of course implicit in mueh of the preceding
work in Banach space theory (c.f. e.g., [7], [9], [10], [16], and [18]).
It seems 0 uy that one motivation for erystalizing this cbneepﬁ is the
notational ease this provides in itg applications, o

Throughout this section (£, 2) shall always I y
1 8 denote a set B 4
a o-algebra X of subsets of T;‘ ’ T omete w e & and

5 D.efinition. Let (_E, ), & family F = {4,: acl’} c ca(ll, X), and
s & With 0 < ¢ << 6 be given. F is said to be (8, e)-relatively disjoimt it F
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is bounded (i.e. supllp, < o0) and if there exists a family {#,: ael’}
wel”
of disjoint members of I such that for ail wel),

(8) lud (B > 8 and Y ipd(By) <o

é
¥ is said to be relatively disjoint if F is (o, e)-relatively disjoint for some
g 6 with 0 << e < 6.

If F is a subset of LME, X, u) for some measure space (B, X, u),
then # ig said to be relatively disjoint provided the associated family
of measures {»: dv = fdu for some feF} has this property. Finally, we
shall refer to denumerably infinite relatively disjoint families as relati-
vely disjoint sequences.

Some of our motivation for explicitly formudating this nofion stems
from the first result of this section. Variations of it have appeared el-
sewhere (c.f. [9]) and its proof is essentially known. We first recall the

Detinition. Given a set I', let ¢, = 74 for all el We call {e,: ael’}
the wnit-vectors-basis of cy(l') (vesp. of I(I")). Given a Banach space X
and a subset & of X, we say that K is equivalent to the unit-vectors-basis of
¢ (I (vesp. of (1)) provided there exists an isomorphism T' from e ()
(resp. from (1)) info X such that {Te,: ael} = K.

(The reader should also note that we use “span” to mean “closed
linear span’™.)

PropPosITION 3.1. Given (B, Z2), let {n,: ael'} be a relatively disjoint
family in ca(E, X). Then {p,;: acl'} is equivalent to the unit-vectors-basis
of ') and the span of {u, ael'} is complemenled in ca(H, X).

Proof. Choose 0 < z< & such that the g,’s are (9, )-relatively
disjoint, and choose {E,: aeI'} a family of disjoint members of I such
that (8) holds for all <. Choose for each «, a Z-weasureable function
¢, supported on #,, such that fe.dp, = lul(B) with Je ) = 1.
Now let n scalars Ay, ..., 2, and = distinet members g, ..., ¢, of I'be
given, Then for each 4,

U("‘“id (Elf'uﬂj)
7
Hence since the (pai’H disjointly supported,

= [ Ew.,id(gimu,-)% » a; I — _B_J 1451 D) iy (B,

i#§

t

W

o

2 10— DI | (Bey)-

i#t

s
.22 Pkl
Fl
z(0—e) Y1l

Since sup |u.] < oo, this proves that {u,: ael'} is equivalent to the unit-
ael"

vectors-basis of I'(I").
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Now let W Dbe the span of the w’s, Z the span of {u,|B,: ccf,
U: W —»Z the inverible operator defined by U{(X A u) = X2 pu K

and R the projection of ca (¥, ) onto Z defined by

oy

Rig) = ([ g.dp) lu(B)) " g, B, for all peeath, ¥).
sl

Then if ueW, a simple computation shows that &~ Ryl
< ¢/ ]| Upll, which implies that K| T is an isomorphisim mapping W onto Z,
Then ¢ = (R| W)™'R is o projection from ca(H, X) onto W. Q.E.D,

Remark. We know of no subspace of %, isomorphic to I, which is
not spanned by a relatively-disjoint sequence.

Applying Lemma 1.1 to families of countably additive weasures
on a diserete set, we obtain easily

Prorosrrion 3.2. Given (¥,2X), let F = {n,: uel'} be o bounded
infinite subsel of ca(ll, X) such that there exist @ 6 >0 and o family
{E.: ael'} of disjoint members of 2 with |u,| (B,) > 6 for all ael’. Then
Jor all e > 0, there ewists o I = I' with card!" = cardI” such that (8) holds
Jor all ael™ (where the B's of (8) run through I"). Thus ¥ contains  veluti-
vely disjoint family F' with cardF = card F'.

Proof. ¥or each ael’), define g, on all subsets of 7' Ly (L)
=ﬁ§ lal (Bp) for all D < I Then {i,: «cl'} and (B, = {u}: well} satisty

the hypotheses of Lemma 1.1, aud 3.2 now follows immediately upon
applying the coneclusion of 1.1. ’

We shall now give applications of the above tiwo propositions; later
wo shall formalize the notion of strongly relatively disjoint families and
give applications of the full strength of 1.1 (i.e. of Lemma 1.1¢a)).

Our first application generalizes a theorem of Kothe [10], and yields
a8 @ corollary a generalization of Tiemma 1.1 of [22]. This result gives the
wealcest possible conditions that a subset of I*(I) contain a family equiv-
alent to the unit-vectors-basis of (/7).

T.HEOREM 3.3. Let K be a bounded infinite subset of (I, such that
ﬁw.re o 6>0 with [ky—k = 38 for all %, Ry by, Rue K. Then theve
exists & subset K* of K, such that K* is relatively-disjoint and card K*
= card I, (Consequently by 3.1, letting m = card K* the span of K* is
tsomorplic to I, and complemented in M.

Proof. We firet observe that it 4 ¢ I iy wueh thab card A <7 cand A
then there exists a keX and a finite subset a = I ~ A, with k|| = S/t-lf
IJ:-Ldeed sinee diml'(4) < ecard K, we car choose distinet Ly, and kye K
with {i(ky— ko) [ Alf< 6/8 (dim is defined immediately following the pr(;of).
Thus thgre is a finite set « = I~ 4 with [I(Fy— %20) | al] - 5, so for
one of 4 = 1oor 2, |&lal=58> 6/4. Now, for each finite subset « of
T, choose if possible a k(a) <K such that We{u)|all = 8/4. Liet Iy be the
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family of all finite subset « of I' for which such a %(a) exists, and let F
be a maximal family of disjoint members of I'.

I exists by Zorn’s Liemma, and our first observation shows that
card F' = card K (since if card# < card A, then ecard | F <C cardX).
Hence by Proposition 3.2, K, = {k(a): «eF} contains a relatively
disjoint family K* with card K" = card K, = card K. Q.E.D.

Given a Banach space X, by dimX we mean the least eardinal nu-
mber corresponding to a spanning subset of X. It is a well-known and
simple consequence of Zorn’s Temma that given X and given §<C1, there
exists a subset K of Sy with dimX = cardXK and |k,— k.l = 0 for all
Ty # ko &y, Bye . We thus obtain immediately the following result of
Kéthe:

COROLLARY. Let a set T be given, and let A be a closed subspace of 1'{T).
Then there evists a dlosed subspace B < A with B complemented in 1(I)
and B »~ I}, where m = dim 4.

Remark. By the decomposition method of [18] {c.f. also Proposition
1.4 of [22]), it follows that every complemented subspace of I'(F) is iso-
morphic to I' (1) for some . This result is due to Petezyiski for countable
7" [187, and to Kothe for general I' [10].

Our next result generalizes Lemma 1.1 of [22]; it is another simple
consequence of Theorem 3.3. (An application of the result is mentioned
in the first remark following 1.5 above.)

CoroOLLARY. Let A ¢ X be Banach spaces, I" a set, m an infinite car-
dinal number, and T: X — TP (I) an operator be given, satisfying the follow-
ing: there exists @ 0> 0 and o bounded subset I of A with cardK =m
such that [Tk, —Tky)|z= 8  for all ky, bye K with by # k.

Then A contains a subspace ¥ isomorphie to I, and complemented in X,
such that TIY is an isomorphism.

Proof. Choose K* = K with cardX™ =m and TK* a velatively
disjoint family in (") (this is possible by 3.3). Then by 3.1, and well-
known properfies of the unit-vectors-basis of 11, letting ¥ be the span
of K*, there is a projection P from M) onto T(Y), T11 is an isornorphism,
and T{Y) is isomorphic to 2. Then ¥ ~ I, and (T'] ¥)"".PT is a projection
from X onto Y. Q.E.D.

Our next result generalizes Theorem 5 of [2], and yields some rather
weal sufficient conditions that a subset of a Banach space contain a subset
equivalent to the unit-vectors-basis of ¢,(I") for some I.

THROREM 3.4, Let o Banach space B and an infinite set I' be given,
and let {b,: aely =« B and K > 0 be such that bl =1 for all ael’ and

(9) | _i Abe,

< Hsup|dy
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for any positive integer m, scalars A, ..., 4,, end n distinct members
Quy ooy ty Of I :

Then there exists a subsel I' of I' with card!” = card[", such that
{by: ael} is equivalent to the wnit-vectors-basis of cy(I").

Proof. The argument is similar to that of Proposition 1.2. For each
ael’, choose bieB” with [B}ll=1=0(b,). Now define the scalar-valued
function f, on I" by f.(f) = b’:(bﬁ) for all B¢l Then f,(e) = 1, and by (9)
foel(") with ||f.l; < K. Hence by Proposition 3.2, there exists & /" = I
with cardl™ =eard I' such that {f,: ael¥} ig (1, %)-relatively disjoint.
Then {b,: wel™} iz equivalent to the mnit-veetors-basis of ¢, (I"). Q.I.D.

Bemarks. 1. Theorem 3.4 may be reformulated as follows: Let B
and I'" be as in the staiement of 3.4, and let T: ¢y(I") ~» B be an operator such
that it {||[Te,|l: yel'} >0, where {e,: yel'} is the unit-vectors-basis of ey(I").
Then there ewists ¢ I < I' with cardI™ = cardl” such that Tlcy(I") is an
isomorphism.

2. It is proved in Theorem 5 of [2] that if I" is countable and B, I,
and {b,: «el’} satisfy the hypotheses of 3.4, then the span of the b’
contains a subspace isomorphic to ¢;. Thus 3.4 contains some new infor-
mation for countable I" also.

The following result i3 an application of 3.5; it is motivated by the
theorem stated after Corollary 1.7 above. (The notation 4 | B is defined
preceding 1.7.)

Proposrrion 3.5. Let I' be an infindte set and let A be a closed subspace
of T°(I") such that there is no B = I°(I) with B ~ ¢(I") and A | B. Then
(I is a continuous Linear image of A. If card I’ is mot a limit of a sequence
of emaller cardinals, then 1°(I) is dsometric to a subspace of A.

We do not know if the hypotheses of 3.4 imply that 4 contains an
isomorph of ¥*(I"), with no restriction on card/" (It is proved in [13]
that this holds if I" is countable.)

Proof. Let A be a sef with cardA = cardl” and let {I',: aeA} be
a family of disjoint subsets of I" with card/|, = cardl" for all a. Liet ¢ bo
fixed with 0 < ¢<( § and let B, be the set of all ued gmeh that there
exigty & @,el”(F,) satisfying

(%} fpall =1 and

flpe—afl =z e for all med.

Then eard B, < card I'. Indeed, for each aeB, , choose ¢, <™ (I",) satisfying
(*¥). Then let m: I°(I) —I®(I)/A be the quotient map. Now guppose
that cardB, = cardl’. Then {p,: aeB,} is isometrically-equivalent to
the unit-vectors-basis of e,(I"), and by (%), tnf{|mg,||: aeB,}=e>0. Hence
by Theorem 3.4, there exists a subset I” of B, with card]™ = card]’
such that letéing B be the span of {p,: ael”}, »|B iz an isomorphism.
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Then B | A and of course B iz isometric to ¢ ("), which contradicts our
hypotheses.

Thus sinee eard By < card !, there exists an ae such that a¢By,.
Then letting P be the camonical projection of I*°(I") onto (1), P(4)
= I®(I,). For P hag norm one, and given ¢eI™({,) with {p] = 1, there
exists an aed with Jae—eg < %, whence |Pa—e¢fj< 4. The comple-
teness of A and a standard iteration argument then show that there
exists an @,¢A with Pa, = ¢. IHence (]} is a continuous linear image
of 4.

Finally, if eardl" is not the limit of a sequemce of smaller cardinals,
card { ) By, < eard [l

n=2

Sinece A4 is cloged, this implies that I*°(7,) < 4, and of course I™([7,) is
isometrie to (). Q.B.D.

Remark. Let I be an infinite get and 4 be a Banach space. It is
an easy consequence of known resuls that the following three assertions
are equivalent:

1. There exists an operator I: 4 —1°(I") with dense range.

2. A contains a subspace isomorphic to Im where m = cardl.

3. There exists a surjective operator TI': A —I°(I).

Indeed, it follows easily from a result of Hewitt [8], that Lum is
isometric to a subspace of I°(F), where cardl” =m (ef. the proof of
(d) = (f) of Theorem 5.1 of [22]). But then by a result of Pelezyniski
(Lemmsa 4.2 of [16]), (1) = (2) since 2™ i3 not a limit of a sequence of
smaller cardinals (ef. the Remark immediately following 4.2 of [16]).
Since dim I®(I"y == 2%, it follows easily that I*°(I"} is isometric to a quotient
space of Bu, and hence sinee I¥(I"} iz injective, it is a continuous linear
image of any space confaining Lm, whence (2} = (3).

We pass finally to a formalization of the notion underlying the proof
of Proposition 1.2.

Definition. Given a compact Hausdorff space § and a bounded
seb F = {u,: ael} ¢ M(8) = C{8), we say that F is strongly relatively
disjoint if there exist a family {B,: a<l"} of disjoint open sets and & § > 0
with & <C §, such that for all ael,

(-5
whence there exisfs an wed with ag¢ 1) By,
n=D

(10) wl(E) > 6 and lm(ﬂg By < =

We may view our argument for 1.2 as an application of sirongly
relatively digjoint families as follows: Let B, I', and T satisfy the hypo-
theses of 1.2. Identifying (") with C(gI"), owr first part of the proof
of 1.2 applies Lemma 1.1 to show that 7% (Sz) contains a strongly relati-
vely disjoint family I -with eardl™ = cardl. A simple modification of
the proof of 1.2 then shows
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PROPOSITION 3.6. Let m = X, Let 8 be an m-Slonien compact Hans-
doiff space, B & Banmach space, and T: C(8) -8B an operator such that
there exisis ¢ I' = 8pv with card ! < m such thai T is a strowgly veladi-
wely disjoint family. Then there ts a subspace A of C(8) isomelric to I°(I)
such that T|A is an tsomorphism.

Proof. For each yel), we define w,¢ M(8) by [pde, = y(Ty} for
all peC(S). Our hypotheses imply that we may choose O < &< § and
{B,: eel} a family of digjoint clopen subsets of § satisfying (10) for
all ael.

Now choose & with & < 8’ < 8, and for each u<f', choose ¢, continuouy
on S, supported on B,, of sup norm one, and sabisfying

[ pdpaz 0.

Now put F = \J B, and let A denofe the set of all fe(/(S) which are

wel'

supported on F and sueh that for all ael’, fl.B, = c,p, for some constant ¢,.

Sinee § is m-Stonian, F is open and every bounded continuous function

on | F, extends to a continuous funetion supported on F (c.f. Theorewm
ael®

(11)

14.25, page 208 of [6]). Thus A is isometrie to I®(J). Bub fixing feA
and ael

[ Fau 11 Bl = o

# ?ﬁaﬁ

by (10) and (11). Hence |If] =
isomorphism. Q.E.D.

Tl = | ffau+
", i

(6'—€) |flleos pProving that T|A is an

Proposition 3.6 permits us to give a different proof of a somewhat
stronger vesult than Corollary 1.4. We firgh recall the following

THEOREM OF GROTHENDIECK (Théoréme 2, page 146 of [7]). Let 8
be a compact Hausdorff space and let K be a bounded non-weakly conditionally
compact subset of M (S). Then there extists a § > 0, a sequence (u,) of members
of K, and a sequence (I,) of disjoint open subsets of § such that for oll n,
[l (By) > 8.

Now 1.1, the argument of the preeeding proposition, and the Theorem
of Grothendieck yield

Trworry 3.7. Let S be a compact Housdorff space, B a Banach space,
and T': C(8) - B a non-weakly compact operalor. Then there ewisis o sub-
space 4 of O(8) isometric to ¢, such that T A is an isomorphism. Moreover
if 8is o-Stowian, then A may be chosen tsometric to 1° and such T| 4 is on
igomorphism. Finally, if 8 48 an F-spoce, then 1™ 1s o continuous linear
image of B.

Remark. The first assertion is due to Pelezyfigki (Theovem 1 of [177).
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Proof. Tt follows immediately from the Theorem of Grothendieck
and Proposition 1.2 that there exist a countable infinite I' ¢ 85, a family
{E,: ael} of disjoint open subsets of 8, and 0 < £ < § such that defining
the x,’s as in the proof of 3.6, (8) holds for all ael” We then choose &’
and the functions ¢, exaectly as in the proof of 3.6. Then letting A4 be the
closed linear span of the ¢.’s we have that A is isometric to ¢, and 7|4
is an isomorphism.

If § iy in addition o-Stonian, then the F,’s may be chosen to be
clopen, whenee by Lemma 1.1(a), T%(Sz) contains a strongly relatively
disjoint sequence. Hence by Proposition 3.6, there exists an 4 < C(8)
isometric to I°° such that 7'|4 is an isomorphism.

Finally if S is an F-space, it follows since I' is countable that there
ix a closed Stonian subset K of S such that |u,|(~ K) = 0 for all yel,
(Let K == |_) Supp u,; then K is a closed subset of an F-space and hence

el

an F-space, and I sabisfies the C.C.C. Hence K is Stonian by the Pro-
position preceding 1.6 above.) It then follows as in the proof of 3.6 that
there exists a subspace 4 of O(K), isometric to I, such that

suplffd,ua 2 (8" — &)l

Then put A, = {feG(8): flE <4}, put B, = {p<B: y(b) =0 for
all yel'}, and let z: B — BB, be the quotient map. We then have by
(12) that for all fed,,

11Kl < (5’—5)‘13111? (T < (8"~ )" |<Tf ]

(12) for all fed.

Then defining ¢: vT(4,) = 4 by ¢(zTf)=fIK for all fed,, we have
that ¢ is a well-defined surjective linear map with g < (8’ )", Since
I® is injective there exists an operator ¢: B/B; —~A exfending ¢, whence
#7 maps B onte an isomorph of I*. Q.E.D.

Remarks. 1. As we noted following 1.4, using a result in [12] and
assuming the eonfinmum hypothesis, the second assertion of 3.7 holds
if we assume there that 8 is an F-space. Without assuming the confinumum
hypothesis, however, we do not know if for every F-space 8, ¢(8) contains
an isomorph of I,

2. An immediate consequence of 3.7 iy that if the Banach space X
is a non-reflexive continnons linear image of C'(§) for some F-space S,
then I is a continuous linear image of X (Theorem 6 of {21]). This result
has application to quasi-complementation problems (c.f. [23] and The-
orem 9 of [21]).

We have used the results of the present paper in the above argument.
Actually, the proofs of 3.6 and 3.7 are alveady implicit in the proof of
Theorem 2 of [21], which uses Lemma 1 of [21]. In reality, however,
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thig argument may be given by using results established prior to Lemma 1
of [21] to prove the following

ProPOSITION, Let § be a compact Fausdorff space and let I be a bounded
symametric (weK = —peK) convex subset of M (8) such thai K is mot weakly
compact, Then E contains o strongly velatively disjoint sequence.

Proof. There exists a K, c K such that K, is a convex symmetric
subset of L'{x) for some finite measure u, with &, non-weakly compact.
Then by the proofs of two vesults of Kadee and Peloryiiski (’[‘h(m omq 2
and 6 of [9]), there exist a sequence (u,) of elements of Ky a 80, and
o sequence (B,) of disjoint Borel sets such that

§ = hmilﬂn“ = liml,un[ (En) .

Then by a variation of the Theorem of Grothendieck {c.f. Lemma 1 of
[16]) there exist a subsequence (v,) of the u,'s and a sequence (0,) of
disjoint open sets such that |»,] (0,) > 36 for all n. Hence automatically

[ € U 0;) < 6 for all n sufficiently laxge, ie., {r,;: n> N} is strougly

relatlvely disjoint, for some N.

Remark. It is easily seen that neither the assumption of convexity
nor the assumption of symmetry may be omitted in general. Indeed,
let K, be the convex huil of {&,—d:»=1,2,...} in M[0,1]
= (10,17 and let K, = {£{8;p—60): = =1,2,...}. (§, denotes the
measure of norm one assigning mass one to the point ). Then for i =1
and 2, K; is not weakly sequentially compact yet confaing no strongly
relatively disjoint sequence; K, is convex, K, is symumetric.

As our lagt result, we restate Lemma 1 of [21] in terms of the concepts
introduced in this section.

TeeEoREM. Let K be o bounde& non-weakly conditionally compact
subset of B. Then if B = M(8) for some compact F-space 8, K conlains
a strongly relalively disjoint sequence. If B = ca(#, X) for some (I, X),
K contains o relatively disjoint sequence. Finally if B = M (8) for some
arbitrary compact Housdorff space S, then K contains a relatively disjoint
sequence (u,) such that the disjoint sets B, satisfying (8) may be chosen open
for all a.

This theorem follows immediately from the proof of Lemma 1 of [21.]
(e.f. the paragraph following Thecrem 6 of [21]). In the present work,
this follows immediately from 1.1, the fact that F-spaces satisfying the
C.C.C,, are Stonian, and the Theorem of Grothendieck (or its simpler
analogue for the case when B =ca(¥, ) (cf. Theoremn 4, page 305
of [51)).

From the Theorem and Proposition 3.1, we obtain immediately
the result of Kadee and Pelezyriski [9] that every non-reflexive subspace
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of I' contains a complemented subspace isomorphic to I'. We also obtain
the result of Grothendieck [7]: If (1,) is a bounded sequence im M (S)
= ((8)" and it § is o-Stonian (resp. § is arbitrary), then ¥ (A,(F)) is
a convergent sequence of scalars for every clopen set F (resp. for every
open set ) then (4,) is weakly convergent (c¢.f. the final argument in
Section 1).

This result of Grothendieck in turn implies the Lemms of Phillips
[20] from which all these results stem.
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Minimal sublinear functionals *
by
8. SIMONS (Santa Barbara, Calif.)

0. INTROD UCTION

Tn Section 1 we consider a class & of sublinear functionals on a real
Linear space I and show that # contains elements minimal with respect
to the pointwise ordering on R¥. The general existence theorem is Theorem
15 and involves the definition of a “boundary™ for # in Nobation 13.

In Section 2 we give conditions for an element of & to dominate
a unigue minimal element of #.

In Section 3 we give a Shilov theorem for sublinear functionals on E.

Under certain condibions (Theorem 12, Notation 23 and Lemma
27(b)) the minimal elements of # coincide with the Inear elements of #.
In Section 6 we deduce various forms of the Fahn-Banach theorem and
generalizations of results of Kelley and Sikorski (see Remark 29).

In Section 7 we deduce, with a number of improvements over the
known results, Shilov theorems and conditions for the existence and
uniqueness of balayages defined by a cone in ¢ (X) (X compach Hausdorff)
(see Remark 32). There is also a short diseussion of the Chogquet boundary
of a subspace of ¥(X) (see Remark 35).

Tn Section 8 we suppose that X is a compact convex set in a Haus-
dortt locally convex space and deduce, with & number of improvements,
results of Milman, Bauer and Choquet—Meyer (see Remark 38) as well as
the Choquet—Bishop-delecuw theorem.

We use mainly linear space techniques — the only places where any
measure theory is mentioned are Theorem 30(g), Theorem 33(a) and
Theorem 36 (&). In Section 9 we apply owr results to a “non- % (X) ” gitnation,
replacing € (X) by the set of continuous affine functions on a compact
convex set (in a Hausdorff locally convex space).

In SBection 10 we make some further observations about the umi-
gueness problem.
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