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It is shown that, on the basis of the principle of maximum entropy, statistical thermody
namics can be constructed in as general and unambiguous manner for relativistic system as 
for non-relativistic systems. 

§ 1. Introduction 

Since H. Ote) criticized the traditional form of relativistic thermodynamics,2) 

a large number of mutually contradicting papers3) have been published concerning 

this old subject. Most of them are based on phenomenological arguments of 

classical thermodynamics. Thus, one starts with the second law which relates 
the change of entropy with the heat supplied. In relativistic thermodynamics, 

however, the concept of mechanical work and therefore the concept of heat, de

fined as the energy change subtracted by the mechanical work, are not self-evident. 

This is why we have such controversy. 
No ambiguity can arise, on the other hand, if one properly applies statistical 

mechanics to relativistic systems. There are two possible ways of deriving 
thermodynamics. One is similar to the usual derivation of the Maxwell distri

bution as a particular solution of the Boltzmann kinetic equation. Thus, Balescu4
) 

has tried to derive thermodynamics from the relativistic kinetic theory developed 
by himself and Kotera. 5

) 

If we restrict ourselves to systems in thermal equilibrium, however, we can 
apply the much more general method of Gibbs. Thus, the system in equilibrium, 

whether it is relativistic or not, is characterized by the variational principle that 

the entropy expressed in terms of the phase space distribution function in the 

classical case, or in terms of the statistical operator (density matrix) in the 
quantum case shall be maximum under appropriate subsidiary conditions. This 
principle of maximum entropy is, of course, equivalent to the ergodic theorem 
and all thermodynamical relations should be derived from it without going into 

the detail of kinetic theory. 
The idea that relativistic thermodynamics should be based on this principle 

of maximum entropy has been proposed by a number of authors; by B¢r~,6) 
Sourian,7) and Landsberg8

) in classical language and by Eberly and Kujawski9
) 

in quantum language. In the present note, by summarizing the basic concepts 
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and adding a few thermodynamical arguments, it will be shown that statistical 

thermodynamics can be constructed on the basis of the principle of maximum 

entropy in as general and unambiguous a manner for relativistic systems as for 

non-relativistic systems. 

§ 2. The basic formulation 

For the sake of logical completeness we start with a brief description of 
the principle of maximum entropy, although much of the content of this section 
can be found in preceeding papers. 6

)-g) Let 'us take a system of quantized fields; 

the relativistic interaction between particles should be described as field and in 

quantum theory particles may also be regarded as field. Throughout the present 

note, we adopt the Heisenberg picture. 
Then, our system of quantized fields, interacting with each other in general, 

is described by a set of line,ar operators rPa (x), each of which is defined at each 

point x", = (x, it) of the space-time world and operates on state vectors of a 
Hilbert space. Note that we take c = 1 and h = 1. Operators rPa (x) obey the 
field equations, while the statistical distribution of the system is represented by 

the statistical operator p, which is independent of x",. The average of any 
dynamical variable A is given by the well-known formula 

<A)=Tr(pA). (2 ·1) 

When we go over from one inertial frame of reference to another by an 
inhomogeneous Lorentz transformation, our system of fields is described by a 
new set of operators, which are obtained from old operators by a unitary trans

formation of the Hilbert space of state vectors. In particular, when the trans

formation is infinitesimal, the generating operators are the energy-momentum 
vector P", and the angular momentum tensor M",v. On the other hand, in the 
Heisenberg picture, the statistical operator p remains invariant, so that the average 

(2 ·1) exhibits the same covariant property as the dynamical variable A under 

the Lorentz transformation. 
Now, let us restrict ourselves to systems in thermal equilibrium. Then we 

have the variational principle that the entropy defined by 

s= -Tr(p log p) (2·2) 

shall be maximum. The principle is equivalent to the ergodic theorem, on which 

statistical thermodynamics of non-relativistic systems is constructed. There is 
no reason why we should doubt its validity for relativistic systems once we 
admit the establishment of thermal equilibrium. 

Since the entropy (2·2) is obviously invariant, -we may apply the principle 

of maximum entropy in any inertial frame of reference. Note, however, that we 
have a number of subsidiary conditions, which are usually covariant. Depending 
on subsidiary conditions we impose on p, we obtain various' equilibrium distri-
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butions which are practically equivalent to each other. 

For example, the microcanonical distribution is obtained by imposing the 

subsidiary condition 

Tr(pI(P/)) =1. (2·3) 

Here P/ IS a c-number vector and I is the projection operator defined by 

I(P/) ~ ~ (~~~ expli~#(P#-P/)J. (2·4) 
-co 

In addition to (2·3), we have the normalization 

Tr(p) = 1 (2·5) 

which should always be satisfied. Then the entropy IS maximum for 

p=exp(-S) ·I(P/). (2·6) 

The entropy is determined as a function of P/ by inserting (2·6) into (2·5). 
Thus, P/ is the macroscopic energy-momentum. 

Mathematically it is more convenient to introduce the canonical distribution 
by imposing the subsidiary condition 

Tr(pPI") =P/. (2·7) 

With use of Langrange multipliers SJ and fil"' we thus obtain 

Since p is invariant, SJ is a scalar and fi I" is a vector. Inserting (2·8) into 

(2,5),' we have SJ as a function of fil"' and from (2·7) 

P '- 8SJ 
I" -8fi~:' 

On the other hand, inserting (2 ·8) into (2·2), we get 

S = - SJ- fiI"P/, 

From (2·9) and (2 ·10), 

§ 3. The choice of thermodynamic variables 

(2·9) 

(2 ·10) 

(2 ·11) 

Now, in order for the canonical distribution (2·8) to be bounded, the vector 

fil" should be time-like. Hence there exists an inertial frame Ko, in which fi I" 
= (0,0, 0, iTo-I) . We denote the fourth component of PI" in this frame by iH. 
Then 

p=exp[SJ- (H/To)] (3 ·1) 
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which is the usual canonical distribution. Thus, our system is at rest, in the 

macroscopic sense, with respect to this frame K o, its proper temperature is equal 

to To>O, and its rest energy is given by 

Eo=Tr(pH) . (3·2) 

In the inertial frame K, in which the frame Ko is movmg with the velocity 

v, 

{3 I" = (To (1 : v2y/2 ' To (1~';2Y/2) . (3·3) 

Clearly v is the velocity of the macroscopic translation of our system as a whole. 

In accordance with (3·3), we now write P/ = (G, iE), where G is the 

macroscopic momentum and E is the macroscopic energy. Then (2 ·11) can 

be written as 

(3·4) 

Here TG IS the Planck temperature defined by 

TG=To(1-v2y/2. (3·5) 

We may also take E, v as thermodynamic variables. For simplicity, let us 

assume that our system as a whole is isolated. Then 

E=Eo[I--v2J-l/2, (3·6) 

G=Eov[l-v2J-l/2=Ev, (3·7) 

where Eo IS the rest energy (3·2). We can rewrite (3·4) as 

,TvdS = dE - d[l- V 2J-l/2. (3·8) 

Here Tv is the Ott temperature 1) defined by 

1 (BS) [1-- V
2
J1/2 

~--~-- - ---- - . 
7 v 8Ev To 

(3 ·9) 

Finally, SInce the entropy is invariant, we may calculate it by the use of 

(3 ·1). Then S is a function of the rest energy Eo. The variable ~!) might seem 

to be redundant. We should notice, however, that the change of Eo is restricted 

through the energy-momentum conservation law. It is then convenient to regard 

S as a function of Eo and v, of which we have 

(3 ·10) 

as we can check by expressing dE in (3·8) in terms of Eo and v. 
Thus, as far as thermodynamical identities are concerned, it is a matter of 

choice of thermodynamic' variables whichever temperature we use. 
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§ 4. 'Thermal contact 

In non-relativistic statistical thermodynamics, the concepts of temperature, 
heat, and heat reservoir are introduced by considering the thermal contact of 

two macroscopic systems. Let us extend these concepts to relativistic systems. 
Suppose that we have a system consisting of two macroscopic subsystems 

without mutual interaction. Each subsystem is therefore in its own state of 
equilibrium. Suppose then that we introduce some weak interaction, through 

which the two subsystems start to exchange energy-momentum with each other. 

The entire system will eventually reach a new state of equilibrium. We assume 

that all parameters other than energy-momentum are kept constant in each sub

system. According to the principle of maximum entropy, the total entropy, which 

is the sum Sa + So of entropies of subsystems, cannot decrease 

(4·1) 

In addition to this second law, we have the first law 111 the covariant form 

ilEa + ilEb = 0 , 

ilGa + ilGb = 0 . 

(4·2) 

(4·3) 

We assume that the change of energy-momentum IS small, so that by the use 

of (3·4) we rewrite (4·1) as 

(4·4) 

The equality sign holds when the entire system is in thermal equilibrium from 

the outset, so that our process is reversible. In general, ilEa and ilGa are in

dependent of each other, so that we obtain the conditions for complete equilibrium 

(4·5) 

Now, in non-relativistic thermodynamics, the sign of' the temperature dif
ference indicates the direction of heat flow when two systems are brought irito 

thermal contact. We cannot draw such a conclusion from (4·4), unless we 

specify the process of exchanging energy-momentum in more detail. In other 

words, (4·4) covers a much wider range of processes than those which we call 

thermal contact in non-relativistic thermodynamics. So, let us explicitly state 
that by thermal contact we mean the process in which each of the two subsystems 
in contact does not change its macroscopic velocity 

(4·6) 

Note that this condition is a Lorentz-invariant concept. Note also that under 

(4·6) the momentum conservation law (4·3) takes the form vailEa + voilEb = 0 

and in conjunction with (4·2) results in 

(4·7) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/41/6/1450/1916898 by guest on 16 August 2022



On Relativistic Statistical Thermodynamics 

Thus one of the two conditions (4·5) is already satisfied; the two subsystems 
have one and the same rest frame of reference before and after the process. 
To the observer in this frame, the process is nothing else but the usual heat 
flow through thermal contact. He will at once write down the second law as 

(~ __ 1 ),dEoa>O. 
Toa TOb -

(4·8) 

On the other hand, by the use of (3·8), we can rewrite (4 ·1) under (4·6) as 

(4·9) 

Thus the direction of energy flow looks determined by the sign of the difference 
in Ott temperatures. One might be tempted to regard this as one of new re
lativistic conclusions. Actually the second law written in the form (4·9) does 
not contain any more information than the classical second law (4·8).' Thus, 

under the condition (4·7), Tva~Tvb is equivalent to Toa~Tob. Under (4·8), 
we can even use Planck temperatures because Taa~ Tab is also equivalent to 

Toa?:;, T Ob . 
Now, the difference of Planck temperatures will determine the direction of 

energy flow, if the exchange of momentum is forbidden with respect to a certain 
inertial frame of reference 

(4 ·10) 

In non-relativistic thermodynamics, this is equivalent to (4·6), but not so In re
lativistic theory. First of all, in contrast to (4·6), the condition (4·10) is not 
a Lorentz-invariant concept. Furthermore, unless the two subsystems are comov'" 
ing from the outset, at least one of them should change its macroscopic velocity 
through the energy. change under (4· 10) . In other words, the energy change 
in this case is not entirely connected with random motion. 

As an example of (4 ·10), let us take a gedanken experiment proposed by Ott. l
) 

Suppose that a small body a is moving in a big cavity with the velocity v re
lative to the cavity wall b. The wall emits two photons simultaneously, which 
have opposite momenta with respect to the rest frame Kb of the wall. The body 
a absorbs the photons and is thereby decelerated. In order for the energy to 
flow from b to a in this manner, we should have Taa <Tab, i.e. 

(4-11) 

Ottl) interpreted this as saying Toa<Tvb , but this is only a matter of taste. 
To see the unrealistic nature of (4 ·10), consider the reverse process, In 

which two photons are emitted by a and absorbed by b. To satisfy (4 -10), 
these two photons should have opposite momenta with respect to Kq. The as
sumption is rather unrealistic, 
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§ 5. Significance of the Ott temperature 

We have defined the familiar concept of thermal contact in a Lorentz-invariant 

manner. We define the heat transferred through the thermal contact by ilEa 
which appears in (4·9). Under (4·6), it obeys the Ott transformation 

(5 ·1) 

In addition to the heat flow between comoving systems, another obvious 
concept.is the adiabatic, reversible change of the macroscopic velocity of a system. 

This is the macroscopic acceleration of the system as a whole without changing 
its rest energy Eo. As we see from (3 ·10), the entropy then remains constant. 

Now, in relativistic thermodynamics, we often need to compare temperatures 
of two systems in relative motion with each other. The basic role is then played 

by the Ott cycle/) which consists of the following four processes: 1° adiabatic, 
reversible acceleration of a system from a certain velocity va' to another velocity 

v, 2° reversible heat transfer from a heat reservoir A moving with the same 

velocity v, 3° adiabatic, reversible deceleration from v to va, 4° reversible heat 

transfer to a reservoir C moving with the velocity va, and the system returns 
to its original state. Obviously, the changes in the rest energy of the system' 

during processes 2° and 4° have the same magnitude and opposite signs, so that we 

call them ± ilEoa. From the second law, we see that the proper temperatures 

of, the two reservoirs should be equal to each other: 

The heat absorbed from the reservoir A is given by (5 ·1) and the difference 

(5 ·2) 

should be the mechanical work done by external force. 

Now, let us suppose that after completing one Ott cycle we apply the Carnot 
cycle to extract the heat ilEoa (1- V02)-1/2 from' the reservoir, C and to supply 

another amount of heat, ilEob (1- V02)-1/2 to the third reservoir D, which is moving 

with the same velocity va. 

(5 ·3) 

should be the mechanical work done by external force. Finally, let us suppose, 
that by the Ott cycle again, but in the reverse direction this time we extract 
the heat ilEob (1- V02)-1/2 from the reservoir D and supply the heat 

(5·4.) 

to the fourth reservoir B which has the same proper temperature as D, but IS 

moving with a different velocity v' .. The mechanical work done by external 
force is given by 

W" = ilE (1- V t2 )-1/2 - A E (1- V 2)-1/2 . . .. Ob tJ Ob a . ' (5·5) 
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We choose LlEob such that the net mechanical work W + W' + W" vanishes. Then 

LlEoa (1- V 2)-1/2 = LlEob (1- V'2)-1/2. (5·6) 

The second law applied to the Carnot cycle gives us the well known relation 
(Toa/Tob) = (LlEoa/ LlEob ). Hence 

(5·7) 

Thus, when two systems have the same Ott temperature, it is possible to 
transfer energy from one to the other reversibly without the expenditure of 
mechanical work. This is the real significance of the Ott temperature.· The 
proof de~cribed above is due to Ote) and we regard it as his most important 
contribution to our understanding relativistic thermodynamics. 

§ 6. Black body radiation 

As a simple example of the formalism described In § 2, we take a system 
of free, neutral, scalar particles with the vanishing rest mass. This is a simpler 
version of the problem of black body radiation, which was discussed by Arzelies, 
Gamba, Kibble,3) and in particular by Eberly and Kujawski.g

) We only add a 

few remarks. 
Suppose that our system is enclosed in a finite volume, so that we write 

(v·k-k) 
{3f£Pf£ = ~ T~(-l- J)Jjin (k). 

The occupation number n (k) and its average are scalars. 
bution (2 ·S) gives us 

(6·1) 

The canonical distri-

(6 ·2) 

This is the Planck distribution with the temperature To and the Doppler shifted 
frequency, in accordance with what one expects intuitively. From the anisotropy 
of this distribution/oJ one might be able to determine earth's velocity relative to 
the 3°K cosmic radiation, for example. 

From the standard field theoretic expression for the energy-momentum tensor 
. Tf£v, we see that 

<Tn) = ~ d 3k (k;c2/k) <n (k» , 

<T44 ) = - ) d 3kk<n (k» , 

<T14) = i) d 3kk;c<n (k» . 

(6·3) 

The integral over k can easily be performed by inserting. (6 . 2) into (6·3). 
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The same result can, of course, be obtained by applying the Lorentz transfonna

tion to the expression which we obtain in the rest frame: 

<Tl1 ) =~aT04(=po), 

- <T44 ) = aT04 (=80)' 

The factor a is one half of the usual Stefan-Boltzmann constant. 

Po, So, we have the well-known expressions 

<Tl1 ) = (Po + V280) (1- v 2)-1, 

- <T44 ) = (so + v 2po) (1- v 2)-I, 

- i<T14 ) = (so + Po) v (1- V
2
)-1. 

Now, the macroscopIC energy-momentum is given by 

P/[O"] = ~<Tpv)dO"v, 
(j 

(6 ·4) 

In terms of 

(6·5) 

(6 ·6) 

where 0" is a three dimensional hypersurface and dO" p is its surface element vector 

parallel to the normal. Since our system is enclosed in a finite volume, in which 

<Tpv) is uniform, the integral (6·6) does depend on the surface 0". For instance, 
for the observer in the rest frame K o, it is natural to take the hyperplane 0"(0) 

whose normal is parallel to the time-axis of the frame Ko. Then (6·6) gives 

us the rest energy 

Eo= Voco, (6 ·7) 

where Vo is the proper volume. 
Let us now go over to the frame K, in which the frame Ko is moving with 

the velocity v. The energy-momentum (6·6) obeys the usual Lorentz transfor
mation (3·6) and (3·7), only when we take the same hyperplane 0"(0) to define 

the energy-momentum by (6 ·6). Indeed, in the frame K, we have 

where dVo is the element of the proper volume. In conjunction with (6·5), we 

can easily check that (6·6) gives us (3·6) and (3·7). Therefore, our thermo
dynamical arguments giyen in the preceding sections can be applied, provided 
that we stick to 0"(0) in (6·6). 

On the other hand, to the observer in the frame K, it is more natural to 
define the energy-momentum with reference to the hyperplane 0",(1) whose normal 
is parallel to the time-axis of the frame K itself. Then, the fourth component 

of (6·6) gives us the energy 

(6 ·8) 

Here V = Vo (1- V
2
)1/2 is the Lorentz-contracted volume. The difference between 
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E* and E = Eo (1- V 2)-1/2 is the integral (6·6) 
taken over the hyperplane (;<2) which is defined in 

Fig. 1: 

(6·9) 

The physical significance is made clear by 

considering the change of the difference, when 

To and Po are varied, Yo, v being kept constant. 
~-------x Then, from (3·6), (6·4), and (6·8), we have 

Fig. 1. (6 ·10) 

As was explicitly calculated by M¢ller,3) the expression on the right is equal to 

the mechanical work done by external force which is applied to keep the proper 
volume constant. When the pressure 1)0 is varying with time, forces acting upon 

opposite faces of the container do not balance each other in the frame K, even 

if they do in the rest frame Ko. That is why we have the mechanical work 

(6 ·10). Thus, when we regard E* as the energy observed in the frame K, as 

we usually do, we should also take this mechanical work into account. Then 

the heat is given by dE and there is no need of modifying our previous argu
ments. We may as well deal solely with E without introducing E*. Then E 
is a sort of heat function, or enthalpy, whose change directly gives us the heat. 
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