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1. INTRODUCTION

The investigations of Dirac (1936) on relativistic wave equations for
particles with arbitrary spin have recently been followed up by one of us
(Fierz, 1939, referred to as (A)) It was there found possible to set up a
scheme of second quantization in the absence of an external field, and to

derive expressions for the current vector and the energy-momentum tensor.

These considerations will be extended in the present paper to the case when
there is an external electromagnetic field, but we shall in the first instance
disregard the second quantization and confine ourselves to a c-number
theory.

The difficulty of this problem is illustrated by the fact that the most
immediate method of taking into account the effect of the electromagnetic
field, proposed by Dirac (1936), leads to inconsistent equations as soon as
the spin is greater than 1. To make this clear we consider Dirac’s equations
for a particle of spin 3/2, which in the force-free case run as follows:

b7

KaZﬁ = paﬁb/l;y = p/fﬁbgya

kbif = piral = phrad
Y e } (l)

Vol. 173. A. 14



212 M. Fierz and W. Pauli

where al; = a}, and b;",/’ = bf:‘" are symmetrical spinors. Dirac attempted to
take the external electromagnetic field into account by replacing the spinor
Pa; by I1,; which arises from it by substituting —i9/0x, —eg;/he for
—10/0x). (¢ being the electromagnetic potentials). The /7, are then non-
commuting operators satisfying the relations (cf. Appendix)

IT, 1T —ITP [T, = 8,7 fi2 + 0,0 f,7, (2-1)

where f,; and f;; are the two symmetrical spinors (f,* = f;* = 0) associated
with the antisymmetrical field tensor f;;. By contracting this relation it

follows that
I, I8 — TP 1T, ; = 2f, 0.

On the other hand, just as in the force-free case, we have

I I1°8 + ITPR IT, , = — 21126 F, (2:2)
and so IT, I1°F = — 1128 F + f A (2-3)

From Dirac’s proposed equations

b3t = IPrah, = I3, (3-1)

however, it would follow that
Haﬁflﬁ”aﬁg — K[Iapbzy - KzaZﬂ,
and so from (2-3) —-Hzazﬂ +f¢"a}?0 = x"a;’/,.

Since the right-hand side is symmetrical in « and f it follows that the sub-
sidiary condition

-faaa’%.o' == f/)‘"a‘za"

or f7al, =0, (3-3)

o

must be satisfied by the spinor field a;; but this cannot in general be
satisfied simultaneously with the other equations.

One might at first hope to avoid this objection by replacing (3-1), (3-2)
by the weaker conditions
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2xb3f = fldl‘aﬁp e I[/"'/‘a;‘;p. (4:1)

2kaly = I1,,b3° + I1,,b%F. (4-2)
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It is to be remarked, however, that even in the force-free case such a
system no longer leads to a wave equation of second order. (A closer dis-
cussion shows that these equations describe, besides particles of spin 3/2
and rest-mass «, also particles of spin 1/2 and rest-mass 2«). And further,
the expression for the total charge turns out to be no longer positive definite,
and this makes quantization consistent with the exclusion principle im-
possible (for quantization consistent with Bose statistics the total energy is,
on the other hand, not positive for the case of half-integral spins).

This modification was therefore abandoned and the equations (1) were
retained for the force-free case. The problem then arose, besides replacing
the p,; by the 11, ;, of adding to these equations extra terms, depending on
the field strengths, in such a way that they remained self-consistent in the
presence of an external field.

A completely analogous problem arises for integral spins. For instance,
the field equations for spin 2, involving according to (A) a symmetrical
tensor A, whose trace > 4,; vanishes, are

i

DAik = K2‘4l'k’ (5'])
0A g _ 2
= =0 (5-2)

The second set of conditions is indispensable if the total energy is to be
positive definite. In fact if they were omitted those waves with only com-
ponents of the type A,; would give rise to negative values of the total
energy. On the other hand, the equations which arise from (5-1), (5-2) when
d/0z,, is replaced by 0/0x; —ie¢p,/he are not compatible, for the operators

17?2 = ¥ 11} and 11, are not commutative (/7,, = —i¢/0x;, — ey /he).
k

We shall not attack the problem of deriving such additional terms to make
the equations compatible directly but solve it by an artifice. This consists
in introducing auxiliary tensors or spinors of lower rank than the original
ones (for spin 3/2 they will be simple spinors ¢, and d; for spin 2 a scalar (')
and deriving all equations from a variation principle without having to
introduce extra conditions. By suitably choosing the numerical coefficients
in the Lagrange function it will follow from the field equations (derived from
the variation) that in the absence of an external field the auxiliary quantities
vanish and the additional conditions (5-2) or (1) are satisfied automatically
(cf. § 2, equations (10), (11)).

That such a procedure is reasonable seems to be shown by the fact that,
for vanishing rest-mass, our equations for the case of spin 2 go over into those

I4-2
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of the relativity theory of weak gravitational fields (i.e. g,, = 0,,+7 .
neglecting terms of order higher than the first in y,,); the “gauge-trans-
formations™ are identical with the changes induced in y,, by infinitesimal
co-ordinate transformations (§ 6).

Although the following only deals in detail with the interaction of the
particles and an external electromagnetic field, the interaction with other
particles which can be absorbed and emitted could be formulated analo-
gously. For instance, the interaction with a new scalar field i could be
introduced by extra terms in the Lagrange function which arise from those
in the Lagrangian of the following pages containing a factor k2 by replace-
ment of k% by ¢/. On the other hand, it is important that a one-to-one corre-
spondence should be possible between the states (eigenfunctions) with the
external field and without. This is equivalent to saying that the number of
conditions which the field and auxiliary variables (and their time-derivatives
for integral spins) must satisfy at a definite time is not diminished by the
presence of an external field. Otherwise, as is illustrated in Appendix I by
a special example with particles of spin 1, singularities occur when the
external field is made to vanish slowly. In the main text, however, this
requirement of the continued existence of subsidiary conditions in an
external field is always fulfilled.

This requirement also seems important for the second quantization of the
fields, a topic not treated in detail here. It enables one, namely, starting
from the commutation rules of (A), to make an expansion of the com-
mutation brackets of all field quantities in powers of the charge e. It is
to be remarked that with particles of spin greater than 1 the charge-densities
at different points no longer commute. A closer study of this circumstance,
which strongly distinguishes the spin values of 0, 1/2, 1 (cf. A, Introduction)
is to be desired.

As may be seen from our last section (§ 8), our aim was not so much to set
up the most general possible relativistic equations for particles of higher
spin but rather to show that, in the present state of the theory, the existence
of elementary particles of spin higher than 1 cannot be excluded, although
the theory for such particles is considerably more complicated than for
smaller spin values. In this connexion it may be mentioned that we have
been unable to generalize the field-equations which in the notation of (A)
correspond to k #1, or the current-vectors 8@ for which ¢ > 1 (cf. (A), I, IT, III
and (5:6)).
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I. SPIN 2

2, DERIVATION OF THE FORCE-FREE EQUATIONS FROM
A VARIATION PRINCIPLE

As an example of the theory of a wave-field corresponding to particles
of spin higher than 1 in interaction with other fields let us first consider the
theory for spin 2.

As was shown in (A) such a field is described in the absence of external
fields by a'symmetrical tensor 4;, of second rank, whose trace is zero,
satisfying the wave equation

DAik = KzA.‘jk, (5'1)
and for which the additional condition

04y
vy

0 (5-2)

is fulfilled. In this the indices 7, k run from 1 to 4. (z;) stands for (z, v, z, ict)
and (J=V2—-(1/c?) 02/dt®. Summation over indices occurring twice is to be
understood. It can be shown that the total energy of the field is positive
only if the extra condition (5-2) is satisfied, i.e. if the vector 04, /dz; does
not vanish it describes particles of negative energy. If one introduces
external fields, this must be done in such a manner that after they have been
shut off the condition (5-2) is again fulfilled, so that no new particles of
negative energy should be created.

In order to discover a correct generalization of equations (5-1), (5-2) for
external forces we shall look for a variation principle

8 LdQ = 0,

from which (5-1) and (5-2) can be derived. At this point it is useful to intro-
duce an auxiliary scalar field C, on which L will be taken to depend and
which is to be varied independently of 4. The introduction of C'is an artifice
which enables one to derive the additional condition (5-2) from the Lagrange
function by variation. For simplicity let us assume that 4, and C are

“real” fields, i.e.
Ai?c= Alk; C* = C.

(Here the tensor AJ _; conjugate to the temsor A ; is equal to
(=) A, where n is the number of times 4 appears among the indices
i, k, ...,1, and the bar denotes the complex conjugate. “Real” tensors are
those for which 4% =4, ;)
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For the function L we make the following choice:

040, , 34ndAu  \ aca, , 2000 24,00

6
omy o o By R " 38x,8x,+ ox, oz, ®)

L e KzA.‘-kAik +

A, is of course symmetrical and fulfils the trace condition 4;; = 0, a fact
which must be remembered when performing the variation. By varying
A and C we obtain the following equations:

-2 . o ‘azArk azAri el azAra &
iedamdEdn “llax,axi ox,0x, ° *ox,0z,
0%C
~mar, H0a0C =0, (71)
0%4,,
201 _ ISP .9
2a,k%*C — 2a,(1C 57 axk 0. (7-2)

Let us now determine the three constants a,, a,, @3 in such a way that
0A;/0x; and C vanish as a consequence of (7-1) and (7-2). For this we
differentiate (7-1) with respect to z; and obtain

o2 O Ma, , [oP4u, ) Py aC

[
o, = o llD o, +28x ox azk gk oz, (8)
If we now put @, = — 2, the right-hand side will only contain derivatives of
the scalars C and 224, /0x, 0x;, which latter we shall denote by A for brevity:
Ay _
0x; 0z;,

The equation (8) then becomes

oA 04 04 ,oC
B= e — 4+ 30 —. 8’
ox; oxk+ o, (89
This equation means that the vector 04, /dx; is the gradient of a scalar,
and can therefore describe only particles of spin zero.
Now let us differentiate (8) with respect to ; and obtain together with

(7-2) the two equations
2x%4 +04 - 3000 =0, (9)
— A +2a,k2C —2a,[1C = 0. (7-2')

This is a linear, homogeneous system of equations for 4 and €. We now
choose @, and @, in such a manner that the operator determinant of the
system shall never vanish; 4 and C will then vanish, and thus according to
(8) also 04 /0x,.
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One obtains the following expression for the determinant
40, K% + 2K%(a, — 2a4)00 — (2a5+ 3OO, (10)
If we put as;=—3, 20;=a,=-—%,

then the determinant has the value —3«%, and since « is supposed to be
different from zero, it will never be zero. We therefore have

0Ay _

2 = O

7 R

We are thus led to the Lagrange function

04y 04y 04,04, 3002C  94,,2C

L= ragdut om, ox; 0z, o=z, i zoz_gﬁﬁ oz, ox;’ (11)
and the corresponding field equations
224 5, — 2004 ;5 + 2 %”;"i + éa:sié:k — 30 aa;:?a:s
—ai%,—‘+i6}kl30 =0, (12:1)
—%KZC-{-%C—_;“:% =0, (12-2)

from which one can derive equations (5-1) and (5-2), and also the equation
C=0.

As we are interested in the influence of external forces on the field 4,
it will be useful to use a notation in which the time is separated from the
other co-ordinates. We shall therefore discuss equations (12-1), (12-2) from
this point of view.

The field in the example considered belongs to the spin value f = 2, and
therefore gives 2f+ 1 = 5 states for a given direction and frequency. The
differential equations for the fields 4, and C are of second order. At a given
time, therefore, one can prescribe the values of 5 components of 4, and their
time-derivatives at all points of space. Since the field 4;, has altogether
(f+1)2 = 9 components, there remain, together with the one component of
(', 5 components and their first time-derivatives which cannot be given at
will. That is to say, there must be 10 subsidiary conditions,* containing

* We would like to point out that we use the term ‘“‘additional conditions™ in
the sense of equations not following from a variation principle giving the main
equations (§2, §4), whereas the term “‘subsidiary conditions’ refers to equations

derived from the variation but which have the effect of reducing the number of
degrees of freedom.
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perhaps higher space-derivatives, but only first derivatives with respect to
time, from which, if 5 components of 4, and their time-derivatives are
given, one can calculate the remaining ten quantities. These conditions
can be derived from equations (12:1) and (12-2).

In the above-defined sense the following equations are to be regarded as
subsidiary conditions:

C =0, (13:1)
aC

el .2
= (13-2)

Let us further consider (12-1) for :%# 4, &k = 4. To be able to write the
equation conveniently in this form we introduce Greek indices «, 4, ...,
which run only from 1 to 3. We then get
i?rA 5 0%4 4, " 0*4,,
oy ™" "ow,0m, ~ Oms0x,

9. 0u 00

9 e — = (), == 2 S ) D
0x,0x, 0%,0%, i SR8l 8 (L)

2k%4 ,,— 2

These constitute three more conditions, since the second time-derivatives
of A _, have dropped out. By adding the (4, 4)-component of (12-1) and (12-2)
we get a sixth condition:

024, 4,, *C

224 gy — 2 —— :
AT T Sa0n, o

—3k2C =0. (13-6)

Differentiating (12-1) with respect to x; we obtain

04, %4, 30
0,2 ik It TR NaoeN ==
= ox, i oxy 0, 0x, 40, Sl

Combining this with (12-2) we obtain

04, 30C
(rpasnded o _ -
ox; 20w, 0. (13:7)...(13-10)

The above equation holds for £ =1, ..., 4. We have therefore found 10 sub-
sidiary conditions.

3. INTRODUCTION OF INTERACTIONS

The theory as presented up till now is equivalent to the theory in (A).
By adding suitable terms to the Lagrangian we can introduce interactions
with other fields. One must take care, however, that the subsidiary con-
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ditions are not impaired. This would mean that the dimensionality of the
manifold of states was altered by “switching on” the forces, and it turns
out that these new states give rise to singularities when the field is ““switched
off’, as we shall illustrate by means of an example in the Appendix. We shall
here consider the effect of an electromagnetic field.

In this case we must naturally assume that the fields 4, and C are com-
plex. Let ¢, be the four-potential of the electromagnetic field, e the charge
of the particles. Then we have

. 0 e
Q'Hk=a_x’(—h_c¢k!
te (0 0,
T

We take the following form for L:
L =A% Ay + TN Ay I} Al — 20T A T A+ for Ay A
+ M{ITL A, T C* + ITX AR IT, O} — §x2 O*C - JII, CITF C*.  (14)
The term f; A4, A% (proportional to the field strengths) has been added
because then the derivation of the subsidiary conditions is particularly

simple, but it is not necessary. The Lagrange function can also be brought
into another form by partial integration, namely,

L = kAR Ay + HIL Ay~ I Ay} {ITF A, — ITF ARy — IT, A, ITF A3,
— §k2C*C + M{IT A, 1T C* + IT} A% 1T, C} — §IT,CIT C*.
Performing the variations with respect to 4}, and C* one obtains the
equations
2% A g+ 201 Ay — 20T I1, Ay + 1T TT, Ay — 36, 1T, 1T, A,
+ oA+ fig A i+ LI A+ IT I} C — 30, I1°C = 0, (15°1)
—3x2C - 3I13C + 11 1T, A,, = 0. (15-2)
We shall now show that again 10 subsidiary conditions follow from these
equations. We obtain three such conditions from (15-1) by putting i#4
k= 4:
2624 oy + 2113 A o — 211, 115 Ay — 21T, 11, Ay — 21T, IT5 A 5,
+farApg+fipA g+ LT, C+f, C = 0. (16:3)...(16:5)
(s b= 0,287 oy =11 258 1)
Adding the (4, 4)-component of (15-1) to (15-2) gives another:
2x%A 44+ 2115 Ay + 211,115 A, ,— IT2 C — §x2C = 0. (16-6)
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Applying the operator 17, to (15-1) and using (15-2) gives four more:

1
262 A g+ 3f g IL A g+~ gfaAtk 3T, Ay — lgfrkArf

— 3121, C + 3. IT,C +—%0_0 (167) ... (16-10)
(k=1,2,3,4).

Applying 17, to these equations once more gives

21T, T, A .._-x21720+3aaf 3 3gf"~ 1,4,

10 10 . 30
= Yufudu+ I af”Aw‘”k:a%‘Aﬂ = 0

12
M alu O I f"~c 0.
Using (15-2) we obtain from this the subsidiary condition

3x‘0+2af"H,A,-k—g%‘HkAik i
Z, 8 1 0%,

—3fuSfruda —lgﬁl‘cnzc"“%fmﬁko 0. (16:1)
The tenth condition is found by differentiating (16-1) with respect to the
time. One then obtains an expression containing the second time-derivative
of C, 4,,, 4,,and 4, but these can be eliminated with the help of equations
(15-1), (15-2) and the time-derivatives of (16:3)—(16-6). We shall not give
these rather confusing calculations but content ourselves with the know-
ledge that the 10 subsidiary conditions exist.
The expression for the electric charge-current vector is obtained by
forming the derivatives of L with respect to the four-potential. One finds

¢ os
8 = E['{Blk:’u“!fl BliinAut + ARIT, Ay + Ay IT7 A7,
—HO*IT A, + CITF AN+ A% IT.C + A IT C*}
+ 3{C*II,.C + C I C*},
where By,=i(Il, Ay—11;4,,). For the force-free case, when /I, becomes
— 10/ 0xy,, this takes on the form given in (A). If one omits from L the term
proportional to the field strengths one obtains an expression which is different
from the above even in the force-free case, namely,
5, =& [4304a_ 4 244
% = She Aa 0z, 4 oxy |
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This shows that the expression for the current in the limiting case of no
forces is not unique, a point which incidentally arises already for the case
of spin 1.

II. SPIN 3/2
4. THEORY WITH NO FORCES

In (A) it was shown that a force-free wave field corresponding to particles
of spin 3/2 was described by spinors

aj, = agp bf,,"ﬁ 5 bgi'
which go into one another by reflexion. They satisfy the equations
phrai, + p""/’agy = 2kb3F,  Popbf? +ppbLY = 2xal,, (17-1)
together with the conditions

dﬂaﬁy =0, deb;-ﬁ = O, (17.2)
1 0
e k — —— i r o —] v ) 3
where Pip = Tip; 5y with 0%, = (a%, o?, 0%, il)4

(cf. also the explanations in the Appendix. We only wish to point out here
that off is the Hermitian conjugate of —o%;). The second order wave
equation for af, and b;"/’ follows from these equations.

The additional conditions (17-2) mean that no particles of spin 1/2 are to
be present. Fields which contain particles of spin 1/2 as well as of spin 3/2
have no longer a definite form for the total charges in the c-number theory
and so cannot be quantized in accordance with the exclusion principle. On
the other hand the latter.is physically necessary in order that the energy
should be positive in the g-number theory (cf. (A)). Equations (17-1) and
(17-2) can, as in the previous case, be derived from a variation principle if
one introduces auxiliary variables ¢, and d*. A suitable choice of the con-
stants in L again causes the quantities c,, d%, p,/aj,, p;” bf}‘jf (which belong to
the spin value 1) to vanish as a consequence of the field equations in the
force-free case. One has to choose for L the following:

L = c{a*tsb5" + b al} — (a*yp/? a5, + 6% po b}
+{a*Yy pﬂydd - b*;ﬂ P74, + conjugate}

+ 8{d*ep,yd +c* p*P e g} + br{d*ec, +dPc* ). (18)
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Variation gives the equations

2Kbiﬁ_pﬁp“$p_pdpa£p +pﬂ7dé+p""dﬂ £ O’} (19-1)
2Ka‘Zﬁ—paﬁbgr—pﬂﬁbgy+p7ﬂca+p7¢cﬁ =)
—pﬂ‘)"aZﬁ+ 3paﬁ‘dﬁ+ GKca = 0!} (19.2)
—p? b3 + 3p¥he, + 6kd® = 0.

One can now deduce from these equations that ¢, and d* vanish, as well as
that (17-2) is valid. To do this let us apply p” to the first of equations (19-1)
and p*? to the first of equations (19-2), remembering that

Papp? = 8,0, popt, =e,,0.
One finds 2xp‘/ﬂb§ﬂ -p"f"p"ﬂagp - 3Dd°'f i O,} (20)
—p“PpYﬂagp + 300d* + GKp"ﬁCﬂ = 0.
By subtraction it follows that
2c{p? yb3f — 3pihe,} = 0.
Comparing this with the second of equations (19-2) we see that
d%=10.

Similarly one shows that the reflected quantity c, vanishes. Equations
(17-2) then follow from (19-2). Equations (19-1) take the form

xb;lﬁ = pﬂpa; P,}

from which follows the wave equation for aj, and b;'ﬂ.

5. INTRODUCTION OF FORCES

One can now again introduce electromagnetic forces by replacing p,; by
11,4, where I1,,; is the spinor corresponding to the /7, already defined. One
then has the following equations:

2Kb;ﬂ—ﬂﬂﬂaﬁf—ﬂdpa§p.+ H{,da‘+nf,dﬂ = o,} (211)
2xaly—II,;b%° — I15,03° + 1T ye .+ IT7 ,cp = O,
—I1%.a7 =
17 7.a-z.,,+ 3H¢_,,dﬂ+6xc,., = 0,} (21-2)
— IT7 ;b3 + 3I1% ¢, + 6kd? = 0.

Eight subsidiary conditions must follow from these equations, which in the
force-free case must lead to the vanishing of ¢, d%, and the validity of (17-2).
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As the equations (21-1), (21-2) are of first order in the time derivatives the
subsidiary conditions must not contain any time derivatives at all. Applying
IT7; to (21-1), IT** to (21-2) we find, analogously to the previous case,

2KIT7 ybllé — Y(IT7 4 110 + ITe 4 TP a3, — I 4 1130 0B, + f 2 dF — BI1%d* = 0,
— 130 IT7 b, + 3f 2 dP — 3IT2d% + 6k110%¢, = 0,
where we have substituted
I, IT78 — IT 5 IT9F = 8,7 f 2 + 8,2 £,

1%, f* being the symmetrical spinors corresponding to the electromagnetic
field strengths.
Subtracting the two equations we obtain

2T ybhé — 2f read ,— 2f 2 dP — 6xITPic, = 0. (22)

If we now compare this with the second of equations (21-2) we find
bxd® ! ddﬂ_lypd 9
K -Efﬂ = ;cf Wy p- (23)
Similarly the reflected equation follows:
1 1 S
6KC¢—Ef¢ﬂCﬁ = ;f?ﬁbzp' (24)

This gives four subsidiary conditions. To be able to find four more we must
separate time and space derivatives in (21-1), (21:2). For this we consider
these equations in a co-ordinate system in which the time co-ordinate is
fixed and therefore only require invariance under rotations of space. The
spinor s% is then equivalent to s,, and /7%, is equivalent to /7, where
3
[It!ﬂ = E Gﬁﬂnk.

k=1
When written in this form the equations contain /7, explicitly as well. The
first equations in (21-1), (21-2) become

2kbh —Hﬂl'aa_w,—in,;aa_ 7,/,—Ua‘l”aﬂ,),p—1'17411.',,'.,,“

+ 115, d, +ieg, Myd, + I, d,+i6,, Mdy = 0,  (25)

af, y

—ITPra, z+illie#7a, o5+ 311 ,Pd,+ 3illd, + bke, = 0. (26)

We now multiply (25) by €#” and obtain
2Kbaﬂ'p—Hﬂpaa,pﬂ—Hapaﬂ.ﬂp—‘in‘aﬂ_ﬂp
+11/d,+3illd, +11,/d, = 0. (27)
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Forming the difference of (27) and (26) we obtain

2kb 5 F+ 11PPa, 5, + 11, .0, Po+11Fa,

+11/d,—211,Pdy— 6ke, = 0. (28)

a, fp

Similarly for the reflected equation we find

2Kk, 8+ ITPPD, 4+ 1T, ,by Pr+ ITP7H,,

+ITfe, — 211 fey—bkd,, = 0. (29)

a, fip

Equations (28) and (29) constitute 4 more subsidiary conditions. As a

consequence of these 8 conditions the dimensionality of the states is un-

altered by a field, and we can develop the theory in powers of the charge.
In conclusion we give the current-charge density vector

Sap = OG0y + b5 07y,
+{a*,; ,d# +b*; ., "+ conjugate} — 3{dFd;+ clc,}.
For the force-free case this reduces to the expression which was denoted by
s in (A).
III. REST-MASS ZERO

6. SpIN 2

One can set k equal to zero in the formulae derived above for 4, and €
and so obtain a theory for zero rest-mass. The equations then run

(A, P4, . P4,| &C

—2DA¢A+2 +181kDC = 0, (30'1)

\ox,0x; ' 0x,0x, ° “*ox,ox,| ox,dx,
04
300~ ——% =0, -2
i 0z, 0y, (30:2)

It no longer follows from these equations that C' and ¢4, /0x; vanish.
Nevertheless, there are four identities which follow from them. For if we
differentiate (30-1) with respect to x;, (30-2) with respect to 2, we obtain
in either case

a0 o o*4,

AR :77 A’j ~
ox;,  0x; 0, 0%,

30 =0, (k=1,2,3,4). (31)

Thus by subtracting the two we get identically zero for each value of k.
As a result of these identities it is possible to construct quantities A%, C°
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from an arbitrary vector field f;, which satisfy the field equations identically.

Let us write
ofi , ch
0 =V Wik g WL
A4 = 8x,‘+ ox; bu oz,
; (32)
Al
o,

One can easily verify that the Lagrange function to which (11) reduces on
setting x equal to zero is altered by the “‘gauge transformation”

Ajp = Ay + A%,
k k k} (33)

C'=C+0C",

only to the extent of a complete differential.
The formulation in (A) is the same as the one here if one chooses the
gauge in such a way that
04y _

ox 0,

i
which is analogous to the Lorentz condition for the electromagnetic poten-
tials. This condition restricts the gauge transformations to the group dis-
cussed in (A). The present scheme is identical with Einstein’s “ first approxi-
mation” of the gravitational equations.

Einstein (1916) considers the equations for the gravitational field in the
cases when the deviations from a Euclidean metric are small quantities of
the first order. We write

Jixr = O +Yars Y =7
Now let us write Vi = Ap+305C; v=0C.

We obtain the following differential equations for y,,:

Y ., M . Yk 44 | Ml o)
F e E&xk+ 0%, 0%, L o, 0, ® 28,-,,{!:])/— ox,0x,] 0, ‘ e
_ Y _ J
S it

These equations are the same as those that Einstein gave for space con-
taining no matter.

The gauge transformation (33) occurs in the gravitational theory as an
infinitesimal co-ordinate transformation. When interactions with matter
occur and it is no longer sufficient to restrict oneself to the linear terms the
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gauge group is altered. This keeps the dimensionality of the possible trans-
formations unchanged; four functions of position always remain arbitrary.
It is well known that the existence of an energy-momentum tensor is
closely connected with the invariance of the gravitational theory under
these transformations. Similarly, the gauge invariance of Maxwell’s theory
is connected with the conservation of charge.

7. SPIN 3/2

Setting k equal to zero in the equations for spin 3/2 gives

—phas,—p¥raf, + 9/ d¢ +pt,df = 0, .
—pupbg?_pﬁﬁbgi'*}ﬂ'ﬂca +p7 5 = 0;} (33)
—pPyaly+3pdh = 0,
—p7ﬂb§ﬂ+ 3pihc, = 0_} (36)

From these equations there follow four, or if we follow the procedure of
Majorana (1937) and impose reality conditions on the field quantities, two
identities. For, differentiating (35) with p,?, (36) with p= we find in both
cases ) .

—phrprad, +30d4 =0 (f=1,2),
and similarly for the reflected equations. One can therefore find solutions
with the help of spinor fields of first rank f,, g%, which satisfy the equations
identically. Let us write

GOZ/! =pay'fﬂ+Pﬂ7fa; dw} =Pﬁafa;}

b = p gl + .l ¢ = ppag®.
The effect of the transformation a'l, = a®;+al, ... on the Lagrange
function is again to add a complete differential.

Whereas the theory for the spin value 2 has an important generalization
for force fields, namely the gravitational theory, we here have no such
connexion with a known theory. To get a generalization of the theory
with interactions, one would first of all have to find a physical interpretation
of the gauge group, and of the conservation theorem connected with this
group.

8. (GENERAL CASE OF ARBITRARY SPIN

To set up a theory with forces for particles of arbitrary spin one again
first looks for a variation principle from which the equations of (A) can be
derived. The forces can then be introduced by suitable modifications of the
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Lagrange function. For instance, the effect of an electromagnetic field can
be described by replacing —19/6z;, by IT;. In generalizing the method which
we have already used for the spin values 2 and 3/2 we must again introduce
auxiliary fields, which, in the force-free case, vanish as a consequence of the
field equations. To illustrate the method it will be sufficient to discuss the
case of integral spin.

We start from a tensor 4}, ,, of rank f, symmetrical in all its indices
and whose trace 4}; , vanishes. Let us further introduce auxiliary fields
of rank f—2,..., 8, ..., 1, 0 which are likewise all symmetrical and of zero
trace; there may be several fields with the same rank, which we shall dis-
tinguish by an index ¢. The general field occurring in the Lagrange function
we shall thus denote by 4%, ;, 4, k, ..., I being tensor indices, with respect
to which the field is symmetrical, and ¢ distinguishes the different fields of
rank s. The index s takes the values 0, 1, ..., f— 2, f. In general with a field 4*
of rank s one can associate s+1 kinds of particles, i.e. those of spin s,
8—1, ..., 1,0. The Lagrangian must be so constructed that in the end only
those of spin f occur. Or we can say that as a consequence of the field
equations all the fields corresponding to particles of spinf—1, ..., 1, 0 vanish.
For L we choose the following:

28, DAY, | 045%! 245!
0% Ox; ° Om O

L= > K2AY, A% +af
8

2A4%, DA% AT
g,ir k... As+1,r 8 {r L { miki...
+ 5o 2k gy age SR OTRELY | (a1)

where af, aj', ag’", a§" are constants which must be so chosen that particles
of spin & do not occur. In order to get the requisite number of constants we
introduce auxiliary fields whose number is given by the following table:

Number of Corresponding

Number of particles of number of

fields of spin 8 to be constants at

8 rank 8 removed our disposal
f-1 0 1 1
-2 1 2 2
f-3 1 3 3
f-4 1 4 4
f—5 2 6 7
f—6 3 9 14

—-n n—3 In—2)(n—3)+3 2(n—3)2—n+2

One sees from the table that in this way there are more constants than are
necessary. One can therefore construct the Lagrange function in many ways

Vol. 173. A, 15
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such that the same force-free theory follows asin (A). We have not yet been
able to find any simple way of avoiding this ambiguity. In particular, it is
impossible to manage with only one field of each rank, for one would then
obtain n particles of spin f —n and for n > 5 only 4 constants to remove them.

A completely analogous procedure also works for half-integral spin. The
only difference lies in the fact that the Lagrangian contains derivatives of
first order only, leading to a slight difference in the number of constants. It is
to be remarked that already for 5/2 one must introduce two fields corre-
sponding to spin 1/2. As the method is otherwise the same as for integral
spin there is no need to go into the details.

APPENDIX

(1) Forms of Lagrangian leading to singular solutions

As we have already stressed, if one wants to modify the Lagrange function
of the field for particles of spin > 1 in a manner corresponding to the inter-
action with other fields, one must take care that the number of restrictive
conditions is not diminished. For then the switching on of the forces would
create new particles whose corresponding particular solutions of the
equations become singular when the field is switched off again.

As an example of this we shall give an inadmissible form of interaction of
particles of spin 1 with a scalar field y». Let us write

04,\* (04,\* 04,\2
. k] hicg 3 (0 i i G
ik Al+(axk) (axf) +¢( axi) ' \28)
The field equations are
4, ., é 04,
S ox; 0x;, i A"_Ef_xk(w ax,.)' 99)
0A4. :
From these follows ads =0 (1// 2—Af)
ox; ox;

When 3/ = 0 this is a subsidiary condition for 4; which is, however, removed
by the interaction.

To study the character of the new solutions arising from the interaction
with  let us make the assumption that 4, and { depend only on the time.
Then we have

ey Ay 2 (2
oxld Hoxr Ky Oy oz, (W oz, ]’
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The equation for 4, is of interest since it contains 1. It runs

0 oA
W = 1
K34, = 3:34('// a%). (40)

Let us suppose that i changes so slowly that 0iyr/cx, can be neglected. We

have then approximately
K? 024,

g i oxg*’
The waves A, therefore correspond to a mass «/,/{. This mass is imaginary
for negative y; for y = 0it becomes infinite. One therefore obtains strongly
singular solutions in the limit 1y — 0. Equation (40) can be solved explicitly
if one takes for i the form

+e % a>0.

o
I

One finds A= S% Zy (2K [onfifr),

where  denotes the imaginary part, and Z, is a Bessel function of first
order. A, diverges exponentially as iy approaches zero from negative
values.

(2) Rules for spinor calculus

In the following we shall collect a few definitions and rules of spinor
calculus which have been used in the previous pages.
(1) Spinor indices are raised and lowered according to the following rule:

V= —v% v =0, (1)
The scalar product of two spinors is accordingly
YV, Ur = — VU, = Uy Uy — Vol;. (2)
This can be expressed in terms of the invariant spinor
€3 =—€y =€2=—el=1, ¢€;=¢€,=0.
v* = ey, v, = vhey,,
v u* = €y, uy = —e*Pu, vy

Thus to raise a suffix one applies €2/ on the left, to lower, on the right.

The transition from spinors to four-dimensional tensors is done by
means of the matrices o’ﬁﬂ, where k runs from 1 to 4, @ and f from 1 to 2.
They are defined by

01 0—1 10 : . [*0 ,
S (1 0)" ol = (z'o ) o= (0—1)’ T (0 t) £
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(This differs from the notation of v. d. Waerden (1932), who uses o* = I.
The above is more convenient here as we are using the imaginary co-ordinate
x, = ict.) From (1) it follows that

oky = —ghi2 gk — _ghll
oky = ok 22, oky = ok i1
As the trace of o* vanishes for k = 1, 2, 3 we have the following rule:
o5 =—ok; fork=1,2,3,
obhdb = Oap
The o* satisfy the commutation rules
o—{;ﬂax.ﬂf_;.o-éﬂak.ﬁ — 28,0, } )
0’{2,90"'7d+0'2'90'k’7& = —28,‘18# .

One puts a four-vector a; in correspondence with a spinor a;, with the
help of the 0%, as follows:
Qap = W08y (5)

Conversely we have Q3505 % = —2a,. (6)

The four-vector a; can also be an operator, for instance —i9/0x;. If the
components of a; commute with one another,

a;a—a,a; =0,
then it follows from (4) that

adﬂaﬂf = _a26‘d7"’} -

@07 = —ady?,

where a? = kﬁ]l ay = —da; 0%,

In particular for the spinor ~ pz, = %ai;ka'f: s (8)
it follows from (7) that PappP? = 8,70, (9)

4 2

where O= o

Again, if I, = %%—,&q&k, (10)
then we have I L —1T1T, = ;66 (gfk’ aaﬁf) =fu- (11)
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As the components of I7,, do not commute with one another we have,
from (4) | ;
1,17 = ok, 7 IT,, I,

= Yok, PH{ITIT + IT 1T, + fr}

= —II*8,7 +f,7, (12)
where 0550 fra = 8527 + 857 f
LU e (13)

is the spinor corresponding to the field strengths (cf. Uhlenbeck and Laporte
1931), with the property that

faa= u’d=0'

Besides the commutation rules (4) the 0%, also satisfy the relations

n[vj»

a/? 73 = 2(0340 b Y a) = 2€;5€55- (14)

Let us now consider the tensor b, of second rank corresponding to the
symmetrical spinor
bsp,ys = Bjs,y0 = bap,ay-

It follows at once from (14) that its trace vanishes,

bkk = 0.

SUMMARY

The force-free theory of particles with arbitrary spin values already
published by one of the authors is generalized to the relativistic wave
equations of such particles in an electromagnetic field, with a preliminary
restriction to the c-number theory. The spin values 3/2 and 2 are treated in
detail, and for the general case it is merely proved that consistent wave
equations exist. The consistency of the system of field equations is attained
by deriving them from a Lagrange function containing suitable additional
terms which depend on new auxiliary quantities. All the differential
equations of the field are derived by variation of the action integral and
the vanishing of the auxiliary quantities in the absence of an external field
is made to follow as a consequence of them.

In the special case of zero rest-mass there exist identities between the
equations, which are now invariant under a group of transformations which
is the generalization of the group of gauge transformations in Maxwell’s
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theory. In the particular case of spin 2, rest-mass zero, the equations agree
in the force-free case with Einstein’s equations for gravitational waves in
general relativity in first approximation; the corresponding group of trans-
formations arises from the infinitesimal co-ordinate transformations.

REFERENCES

Dirac 1936 Proc. Roy. Soc. A, 155, 447.
Einstein 1916 S.B. preuss. Akad. Wiss. (Math. Phys.), p. 688.
— 1918 S.B. preuss. Akad. Wiss. (Math. Phys.), p. 154.
Fierz 1939 Helv. Phys. Acta, 12, 3 (referred to as (A)).
Majorana 1937 Nuovo Cim. 14, 171.
Uhlenbeck and Laporte 1931 Phys. Rev. 37, 1380.
v. d. Waerden 1932 Die gruppentheoretische Methode in der Quantenmechanik,
p. 83. Berlin: Springer.

Defect lattices in some ternary alloys
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In the work on ternary alloys with which the authors have been asso-
ciated (Bradley, Goldschmidt. Lipson and Taylor 1937), the most out-
standing feature has been the large range of composition over which the
/ (body-centred cubic) structure exists. This was not unexpected in the
system Fe-Ni-Al (Bradley and Taylor 1938), where FeAl and NiAl both
have this structure and thus may be expected to be isomorphous; but
CuAl has quite a different’ structure, and it was therefore surprising to
find the f phase-fields extending towards this composition in the systems
Cu-Ni-Al (Bradley and Lipson 1938) and Fe-Cu-Al (Bradley and Gold-
schmidt 1939).

These extensive phase-fields provide an opportunity for a more detailed
examination of the phenomenon of the occurrence of defect lattices which
takes place in the Ni-Al system (Bradley and Taylor 1937). In the g



