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ABSTRACT

This paper summarizes a research effort which addresses some of the current
problems in interfacing systems theory and reliability. Reliability is roughly the
probability that a system will perform according to specifications for a given amount
of time. The reliability of a system depends on the structure of its components.
Systems theory and control theory deal with the response characteristics of a system,
which depend on the system dynamics. This report defines the concepts necessary to
unify the structural and the dynamic properties of a system. The result is a
definition of what constitutes a reliable system, from the viewpoint of systems
theory, and a methodology which can be used to determine if a given design allows a
reliable control system design.
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1. Introduction

A methodology which allows a comparison between alternate designs, based on

both the expected system reliability and the expected system performance, is

presented. Although the mathematics is restricted to linear systems with quadratic

cost criteria and structural dynamics which can be represented by Markov chains,

the concept of what constitutes a reliable control system design is applicable to a

broad class of systems.

This work demonstrates the classification of a system design as reliable or

unreliable, based on the existence of a steady-state switching gain and finite cost for

that design. If this gain does not exist with finite cost, then the system design cannot

be stabilized; hence, it is unreliable. The only recourse in such a case is to use more

reliable components and/or more redudancy. Reliability of a system design can

therefore be determined by a test for convergence of a set of coupled Riccati-like

equations as the final time goes to infinity.

The reliability of a system is the probability that the system will perform

according to specifications for a given amount of time. In a system-theoretic context,

the specification which a system must meet is stability; also, since stability is a long-

term attribute of a system, the amount of time for which the system must remain

stable is taken to be infinite. The following definitions of system reliability are used

in this paper:

Definition 1: A system (implying the hardware configuration, or mathematical

model of that configuration, and its associated control and estimation structure) has

reliability r where r is the probability that the system will be stable for all time.

Definition 2: A system is said to be reliable if r = 1.

Definition 3: A system design, or configuration, is reliable if it is stabilizable with

probability one.



These definitions of reliability depend on the definition of stability, and for

systems which can have more than one mode of operation, stability is not always

easily determined. In this paper, stability will mean cost-stability, which is the

property that the accumulated cost of system operation is bounded with probability

one. (The definition of cost is deferred.)

A few remarks are now in order. First, the system referenced in the definitions

has no specified mathematical form. The definitions are applicable for systems

which have jump discontinuities in their dynamics due to failures, or gradual

degradations. Second, the definition of stability must account for random structural

changes due to failures, reconfigurations, and repairs. A structural model must

exist; it is the structural dynamics which determine the probability space over which

the expected behavior of the system is determined. Finally, these definitions divide

system designs into two classes: A system design is either reliable (stabilizable with

respect to an appropriate definition of stability), or it is not. This research is focused

on the development of a methodology which can be used to determine if a system

design is stabilizable. A system's reliability depends on three elements: The system

dynamics, the system structure, and the structural dynamics. The proposed

methodology is influenced by all three elements.



2. Previous Work

Several authors have studies the optimal control of systems with randomly

varying structure. Most notable among these is Wonham [1], where the solution to

the continuous time linear regulator problem with randomly jumping parameters is

developed. This solution is similar to the discrete time switching gain solution

presented in Section 3. Wonham also proves an existence result for the steady-state

optimal solution to the control of systems with randomly varying structure; however,

the conclusion is only sufficient; it is not necessary. Similar results were obtained in

Beard [2] for the existence of a stabilizing gain, where the structures were of a highly

specific form; these results were necessary and sufficient algebraic conditions, but

cannot be readily generalized to less specific classes of systems. Additional work on

the control problem for this class of systems has been done by Sworder [3], Ratner &

Luenberger [4], Bar-Shalom & Sivan [5], Willner [6] and Pierce & Sworder [7]. The

dual problem of state estimation with a system with random parameter variations

over a finite set was studied in Chang & Athans [8].

Some of the preliminary results on which this research was based were

presented in unpublished form at the 1977 Joint Automatic Control Conference in

San Francisco by Birdwell, and published for the 1977 Conference on Decision and

Control Theory in New Orleans by Birdwell & Athans [9]. A survey of the results

was presented without proofs in [10]. This paper is based on the results in Birdwell

[1 1 ]



3. Model of System Structure

Models of the structural and the system dynamics will now be presented and

used in the sequel to demonstrate the concepts outlined in the introduction.

Component failures, repairs, and reconflgurations are modeled by a Markov chain.

Only catastrophic changes in the system structure are considered; degradations are

not modeled. The hazard rate is assumed to be constant, resulting in an exponential

failure distribution. In the discrete-time case, to which the sequel is confined

exclusively, the hazard rate becomes the probability of failure (or repair of

reconfiguration) between time t and time t + 1.

It is now necessary to define precisely the modes of operation and their dynamic

transitions. The terms system configuration and system structure will be used.

Definition 4: System Structure: A possible mode of operation for a given system; the

components, their interconnections, and the information flow in the system at a

given time.

Definition 5: System Configuration: The original design of the system, accounting

for all modeled modes of operation, and the Markov chain governing the

configuration, or structural, dynamics (transitions among the various structures).

In this paper, structures are referenced by the set of non-negative integers

I= {O,1,2, - ,L} (3.1)

Consider the system

t+l -= t -Bk(t)ut (3.2)

where

x (3.3)
-t (3.3)



A eRnxn
(3.5)

and, for each k, an element of an indexing set I

keI={0,1,2, - · ,L}
(3.6)

Bk £Rnxm

(3.7)

Bk C {i}i E I
(3.8)

and

B. ; B. foralli, j e I,i j
-I -J (3.9)

The index k(t) is a random variable taking values in I which is governed by a Markov

chain, and

t+i =Pnt
(3.10)

_teR
L+

1

(3.11)

where ni,t is the probability of k(t) = i, given no on-line information about k(t), and

no is the initial distribution over I.

It is assumed that the following sequence of evens occurs at each time t:

1) xt is observed exactly



2) then Bk(t-1) switches to Bk(t)

3) then ut is applied.

Consider the structure set {(k_}keI indexed by I. Define the structural trajectory

X-T to be a sequence of elements k(t) in I which select a specific structure .k(t) at time

t,

xT =(k(O),k(* · ,k(T-1))
(3.12)

The structural trajectory xT is a random variable with probability of occurance

generated from the Markov equation (3.10).

T-1

P(X T) = [ Pk(t); k(t+ 1)k(o),O
t=O

(3.13)

where the control interval is

{0,1,2, · ,T-1,T}

(3.14)

for the finite time problem with terminal time T. Then for a given state and control

trajectory (xt, ut)T-lo generated by (3.2) and XT from a sequence of controls (ut)T-l'1

the cost index is to be the standard quadratic cost criterion

T-1 T-I

JT XT' at'-t) t=O t Qxt +
=T QXT

t=(

(3.15)



4. Problem Statement

The objective is to choose a feedback control law, which may depend on any past

information about xt or ut, mapping xt into ut

_:t Rn -R m

(4.1)

(4.2)

such that the expected value of the cost function JT from equation (3.15)

JT = E[JTIn|

(4.3)

is minimized over all possible mapping It at D*t.

Normally, a control law of the form (4.2) must provide both a control and an

estimation function in this type of problem; hence the label dual control is used.

Here, the structure of the problem allows the exact determination of k(t-1) from xt,

xt-1 for almost all values of ut-1. This result is stated in the following lemma:

Lemma 1: For the set {Bk} k £ I, where the Bk's are distinct, the set

xk, t+ 1 = A xt + Bk ut } kdI has distinct members for almost all values

of ut.

Proof: See Appendix.

Ignoring the set of controls of measure zero for which the members of



{k,t+l} k=O

(4.3)

are not distinct, then for (almost) any control which the optimal algorithm selects,

the resulting state xt+ 1 can be compared with the members of the set (4.3) for an

exact match (of which there is only one with probability 1), and k(t) is identified as

the generator of that matching member Ek, t + 1.

This approach is essentially identical to assuming that the structure of the

system is perfectly observable. Assuming perfect observability does eliminate any

concern about the possibility of encountering a surface of zero measure and causing

the control loop to malfunction. However, in a practical application, neither the

assumption of perfect state observation nor of perfect structure observation is valid,

and in fact the implementer is forced to consider structure identification strategies

and the dual effect of control actions on the observation process.

The optimal control law u* = t (xt) can be calculated with the assumption

that k(t-1) is known, since this is the case with probability one if no measurement

noise is present. Thus, this solution will be labeled the switching gain solution,

since, for each time, t, L + 1 optimal solutions are calculated apriori, and one

solution is chosen on-line based on the past measurements xt, xt-1 and ut-1, which

yield perfect knowledge of k(t-1).



5. The Optimal Solution

Dynamic programming is used to derive the optimal solution. It is shown in

the Appendix that at each time t, the optimal expected cost-to-go, given the system

structure k(t-1), is

v* (t, k(t-1), t) = X Sk tXt

(5.1)

where the Sk,t are determined by a set of L + 1 coupled Riccati-like equations (one

for each possible configuration):

Skt- PikSi,t+ 
k,t

i=O

| *> PikB B. 

(5.2)

The optimal control, given k(t - 1) = k, is

Ukt= R + . Pik BT-i , t+ 1Bii
i=O

L

T S. A xtPik-Bi S -,t + 1 -
i=O

(5.3)



Writing

Uk,t =Gk,tX t

(5.4)

then

Gk t -R + E Pik -B-isi, t + 1B--]
i=O

L

i=O

(5.5)

Thus, u*t = c*t(_t) is a switching gain linear control law which depends on k(t-1).

The variable k(t-1) is determined by

k(t-1) = i iff x = Axt_ t + B.i t_ 1

(5.6)

Note that the Si,t's and the optimal gains Gk,t can be computed off-line and

stored. Then at each time t, the proper gain is selected on-line from k(t-1), using

equation (5.6), as in Figure 1.

This solution is quite complex relative to the structure of the usual linear

quadratic solution. Each of the Riccati-like equations (5.2) involves the same

complexity as the Riccati equation for the linear quadratic solution. In addition,

there is the on-line complexity arising from the implementation of gain scheduling.

Conditions for the existence of a steady-state solution to equations (5.2) can be

developed using the properties of the structural dynamics, as in Chizeck [12]. The

steady-state solution would have the advantage that only one set of gains need be

stored on-line, instead of requiring a set of gains to be stored for each time t. The



possibility of limit cycle solutions in the switching gain computations is excluded by

the following lemma:

Lemma 2: If the optimal expected cost-to-go at time t is bounded for all t, then

equation (5.2) converges.

Proof: See Appendix.
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Figure 1 The switching gain control law.

Figure 1: The switching gain control law.



Before we proceed to give necessary and sufficient conditions for the existence of a

steady-state solution to equation (5.2), we must define the structure of the Markov chain.

The states I can be divided into closed communicating classes C1, ... , Cr and a group of

transient states T. Let n(Ci) denote the number of elements in Ci.

Lemma 3: The recursive equations (5.2) converge if and only if there exist feedback control

matrices Gk(t) and there exist positive definite matrices Hi, i e I, such that

t=l

(· -1H BG._+ BTGT t - 1
+. E (t-+ B.G. (( B G+ + B)(A + A+ B.Gk-j -k - -

keT

k ej

(5.7)

Proof: See Appendix.

This lemma is a restatement of the equivalence of Theorem 1 statements i) and iii), but

with a different proof explicitly involving the Markov chain's structure. Although

necessary and sufficient conditions for the existence of a bounded solution in terms of the

system dynamics are unknown, the following lemma supplies sufficient conditions on the

matrices A, B and P.



Lemma 4: The optimal expected cost is bounded for all t if there exist feedback control laws

Fk, k e I, such that

1. For every state k in C1, ..., Cr:

If Pkk < 1, then

(1 -Pkk Pkk ) .Pkk A -B Fk t maxi A-BF c<
t=lt1 j

(5.8)

where 11 A II is the maximum singular value of the matrix A.

If Pkk = 1, then

E 1A -B k lt <
t=l

(5.9)

2. For every transient state k in T, let

p(k)= 1 - Z Pkj

jeT

(5.10)

Let p = min p(k). Then
k.s T

-(1 _ ) |max 11A- BkF Fl} < ®

(5.11)

Proof: See Appendix.



Note that the sufficiency conditions in Lemma 4 allow the system to have structures for

which no stabilizing control gain can be designed. However, the overall system can be

considered reliable if the time spent in these structures is sufficiently small, as indicated by

the tradeoffs between the singular values of the closed-loop matrices and the self-return

probabilities Pkk.



6. Implications of the Solution

The existence of a steady-state solution to the switching gain problem establishes a

division of system designs into those which are inherently reliable and those which are

unreliable. Even though conditions to test for the existence of the steady-state solution are

unavailable, software can be used with iteration for the test.

As mentioned earlier, cost stability is the appropriate definition of stability for this

problem.

Definition 6: (Cost stability). The set of constant gains {_i}i £ I stabilizes the system (3.2)

using the control law

ut = Gk t

(6.1)

where k is determined by Equation (5.6) if and only if the scalar random variable

r T
T -Qx + u t Ru < oo

t=O

(6.2)

with probability one.

If the infinite time horizon control problem is defined as the minimization of

J = limJT

T-, oo

(6.3)

then the steady-state values of the gains calculated by Equations (5.2) and (5.5) provide the

minimizing control law for Equation (6.3); furthermore, the Sk, t converge if and only if a

solution to Equation (6.3) exists.



In addition, the existence of a cost stabilizing set of gains {Gi} i e I is equivalent to the

existence of the infinite time horizon solution. These results are summarized in the

following theorem.

Theorem 1: The following statements are equivalent:

i) Equation (5.2) converges to steady-state values _k as T -, (or t - - for fixed T).

ii) The steady-state set of gains {G* } k e I from Equation (5.5) cost stabilizes the

system described by Equations (3.2) and (6.1).

iii) A set of gains fk} k c I exists for which JT is bounded.

Proof: See Appendix.



7. Example

In this Section, a two-dimensional example is presented with three different

switching gain solutions to illustrate the switching gain computational

methodology. The computer routines which are used in the calculation of the

switching gain solution are documented in [11].

The example is a two-dimensional system with four structural states

corresponding to the failure modes of two actuators. In this example, failure of an

actuator is modeled as an actuator gain of zero. Thus, the four structures are: I)

Both actuators working (Bo); ii) One actuator failed (B1 and B2), and DI) Both

actuators failed (B 3). The system is controllable in all structures except for the

structure represented by B 3 .

Although this example exhibits a very simple structure which models only

actuator failure and self-repair, note that the Markov chain formulation does not

restrict the configurations of actuators in any structural state. Therefore, this

methodology can be used to model and control systems with arbitrary failure, repair,

replacement, and reconfiguration structures. Neither is there any restriction that

failure and repair/reconfiguration be accomplished within a single structural

transition. Therefore, actuator degradation can be modeled as a sequence of discrete

failures. The same technique can be applied to repair/reconfiguration modeling.

Actuator failures and repairs are assumed to be independent events with

probabilities of failure and repair, per unit time, of pf and Pr, respectively, for both

actuators. Note that only exponential failure/repair distributions can be

represented.

The matrices Q and R are the quadratic weighting matrices for the state xt and

the control ut, respectively. The matrix P is the Markov transition 'matrix, which is



calculated from knowledge of the system configuration dynamics, represented

graphically in Figure 2.

There are three cases in the example. Each case assumes a different failure

rate and repair rate for the actuators. Case i) has a high probability of failure and a

low probability of repair, relative to Cases ii) and iii). The switching gain solution is

not convergent for Case i); the gains themselves converge, but the expectecd costs do

not. Only configuration state 0 is stabilized with its corresponding gain, Go.

Cases ii) and iii) both assume more reliable actuators than does Case i). Both

Cases ii) and iii) have convervent switching gain solutions. Therefore, both Cases ii)

and iii) represent reliable configuration designs, while Case i) is unreliable. This

difference is due entirely to the different component reliabilities. Equivalently,

Cases ii) and iii) are stabilized by the switching gain solution, while Case i) is not.

Note that in this Example, stabilizability is not equivalent to stability in each

configuration state, or robustness. For this example, no robust gain exists because

the system is uncontrollable from configuration state 3.

Case ii) is interesting in that neither the cost nor the gain matrix depends on

the structural state. This occurs when all the columns of the Markov transition

matrix P are equal. In this case, the on-line implementation is simplified; no

switching or detection of structural transitions is required.



System and Cost Matrices

2.71828 0.0

0.0 .36788

= 1.71828 1.71828 1 [0.0 1.71828
B= BIl

-o -. 63212 .63212 0.0 .63212

1.71828 0.0 0.0 .

-. 63212 0.0 0.0

[14. 8. I I 0.0



Markov Transition Matrix

2 21-2pf +pf (1 Pf)Pr (1Pf)Pr

pf(1 -f) 2 1 -f-Pr +PfPr PrPf Pr(1 -p)

P=

Pf(l -_pf)2 Prpf 1 -PfPr+PfPr Pr (1 

Pf (-Pr)pf (1-Pr)Pf 1-2Pr+Pr 2

The system dynamics are

-X-t+ 1 = -Axt + -Bk(t) ut ; xt = [xl,t x2,tT

k(t) e {0,1,2,3}

The cost, which is to be minimized, is

J=E Xt Q+uT Rut -

Case i)

.49[

.21 nl

f'·3 .' - L .21 i

.09 



The coupled Riccati equations are non-convergent, but the gains converge:

-.9636 0

Go I -.9134 0

, -. 9234 0

G1 = -. 8699 0

= .8094 0
G2 =

= 1.020 0

r-.9636 0 1

-3= L-.9134 J

Stability tests:

Configuration Stable

0 (BO) yes

1 (B1) no

2(B-) no

3 (B3) no

Case ii)

.81 n

.09 H

pf .1; Pr = .9 n 0
2

.01

L -A n3



The coupled Riccati equations coverge:

-. 8890 .04222
G.i =

-. 7752 - .9914

for i = 0,1,2,3

r25.57 8.611

8.611 6.398

Stability tests:

Configuration Stable

0 (Bo) yes

1 (B) no

2(B2) no

3 (B3) no

.9799 -0

.009999 n

pf =. 1 ; pr 9
H 

Prf ' 9; -- 9 .009999 n2

.0001020



The coupled Riccati equations coverge:

l-=.7558 .1270

o - L-.8073 -. 1786

15.88 8.105

I 8.105 6.137

-. 7060 .1186

--. 8441 -1.723

16.06 8.074

1 - .8.074 8.143

-. 8375 .1090

2 _ ~-.7543 -. 1669

16.31 8.199

-2 = 8.199 6.158

-. 7863 .1023
G3 =

- .7926 -. 1619

16.54 8.170

~S3 8.170 6.162 i



Stability tests:

Configuration Stable

O (Bo) yes

1 _B1) no

2 (B2) no

3 (B3) no



8. Conclusions

The concepts which allow component reliability to influence control system

design in a consistent manner have been defined. When specialized to linear

systems with quadratic cost functions, an optimal control problem can be defined.

The resulting control law depends on the system structure, the structural dynamics,

and the system dynamics. The solution to the optimal control problem defines the

boundary between reliable (stabilizable) designs and unreliable designs.

In closing, we also note that the restriction that all structural changes occur in

the actuator matrix can be easily removed. In this case, a structural state is

completely defined by Ak and Bk, rather than by Bk alone. The results in this paper

are directly extendible to this case. Many of the details are available in [12].



9. Appendix

Al. Proof of Lemma 1.

Assume Ek, t+ 1 = xe, t+ 1 for k : f. Then (Bk - Be)ut-1 = 0, which implies ut-1 is

in the null space ofBk - Be, N(Bk - Be). Now, dimension(N(Bk - Be)) < m because the

Bk's are distinct. Therefore,

dimension( U N(B k- Be)) < m
k,e

kSQ (Al.1)

Therefore the set UN(Bk - Be) has measure zero in R m. Q.E.D.
k,Q

kfR

A.2 Optimal Solution for Deterministic Problem.

For the system described in Section 3, from dynamic programming, the optimal

cost-to-go at time t is given by

V (x, k(t-1), t) = min Ek(t) t x + ut Ru

Ut = (xt)

+ V* (xt , k(t), t+ 1) I xt

(A2.1)

Assume

V (xt, k(t-1),t ) = T Sktx

(A2.2)

This assumption will be verified by induction.

Then



T FT TS x =min x Q +uRu

Yt = ~t xt)
L

+ Pik - At + Bit)sit+ 1 (Axt Bi-t ) }
i=O

(A2.3)

and

(A2.3) = min + ut-R t

L

+T-A TS Ax ±u B. S. B. u
+ Pik T-A T -it+iAt -utB--it+lBi-it

i=O

-t ATSi,t+ lBi t + i TSi, t+l A t

(A2.4)

Differentiating the r.h.s. of (A2.4) w.r.t. ut and setting it equal to zero:

L

0 =2Rqt+ 2 T5 BSiu + 2 BT S. A x
t= Pik i =-1 -. 1 t+l -

i=0

(A2.5)

or

Lk (t- 1),t - I Piki it+l-lii=O

ik1 -1 t+ -(A2.6)
i=O

(A2.6)

is the optimal u*, given k(t-1).
-t )

Since no noise is present in the system, k(t-1) is obtained from xt and xt-1, along with

Ut-l, as



k(t-1) = i iff t = A _1 + 1 (A2.7)
t t1 it1 (A2.7)

Substituting (A2.6) into (A2.4), and eliminating xt because the equation must be

true for all xt, and the matrix equation is symmetric, on simplification we obtain

equation (5.2), which verifies assumption (A2.2) by induction, along with the initial

condition

-k, T 

(A2.8)

A3. Proof of Lemma 2.

Consider the optimization of the cost-to-go given k(t-1) at time t with final time

T. This optimal cost-to-go is simply

VT (t' k(t- 1), t)

(A3.1)

where T denotes the final time. For the process with final time T + 1, the optimal

cost-to-go is

VT + 1 (t,' k(t- 1), t)

E X TQX + T Ru +x T 1QX k(t- 1)
t=t

(A3.2)

Since this optimal sequence is not necessarily optimal for the problem with final

time T, it must not incur less cost over {t,...,T}.



V+ 1 (_' k(t- 1), t)

2 VT (x, k(t- 1), t)

+ EUTRU T +xTXT+1 X k(t- 1) 

(A3.3)

Since the expectation term of equation (A3.3) is non-negative,

T+ 1 (xt, k(t- 1), t) VT (Ixt, k(t - 1), t)

(A3.4)

Now, note that

VT (xt, k(t- 1), t) = XS x

(A3.5)

and that equation (5.2) depends only on the number of iterations (T-t) for the

calculation of Si, tT, and therefore,

v T (xt, k(t- 1), t - 1) = VT+ 1(' k(t - 1), t)

(A3.6)

Therefore, {Sit-o is an increasing sequence in that

S. - S. t0

(A3.7)

Since, by hypothesis, VT is bounded over t, the Si,t converge.

A4. Proof of Lemma 3.

Equation (5.7) implies that the gains Gk result in a finite cost-to-go, expressed

as an average of the matrices Mi. Hence, the optimal cost is also finite, and bounded,



so equation (5.2) converges. Similarly, if equation (5.2) converges, selecting Hk = Sk

and Gk according to equation (5.5) satisfies equation (5.7).

A5. Proof of Lemma 4.

Assume that the control gains Fk are used. Let t be the time of first exit from

state k. Assume to is finite with probability 1. Otherwise, Pkk = 1 and equation

(5.9) applies. Then, equation (5.8) establishes that

IIx II - cllx 11
0

(A5.1)

Let

Ts= maxllQ + F. RF.II
_ -j --J

(A5.2)

Then, the cost incured while in state k is bounded above by

cs II x 2

1 -Pkk

(A5.3)

Consider now the new state at to, and denote the time of first exit tl. By similar

reasoning, we construct the sequence to, ... , n, ...

Let C(k) be the communicating class of state k, and

q = max pi

jeC(k)

(A5.4)

The overall average cost incurred can be partitioned in terms of tile costs incurred

between transits Ti, ti + 1, as



E[ (Rut+ Text

t=0

1 -1 2-1

=E | T (a R~) + E (a t ++
t=O t=-

(A5.5)

CS;Ix 112 c 
_< -+--E -I 2x| +
1 -q 1-q 1

(A5.6)

and equation (5.8) implies

csllx 112
(A5.6) ' - (1 +c+c 2

+ )
1 -q

(A5.7)

which is finite since c < 1.

If Pkk = 1, equation (5.9) establishes that, from structure k at time to,

E{ i TT Iu+B F +
{t (- t -t | I kA Bk k t < 

t=t t=t
o o0

(A5.8)

Hence, equations (5.8) and (5.9) establish that, for any initial state k(to), x(to) in a

closed communicating class, the cost-to-go is finite. To show the overall cost is finite,

we must establish that from any initial transient state, the cost incurred until a

closed communicating class is reached is finite.

Let l(k) denote the time of first exit from T starting at k E T. The expected cost

incurred while in T is



E t -k(t) RFk(t) Qt x, k(o) = k
t=O

_ sE t 11 12 X o, k(o)= k
t=o

-sllx II2E E max IIA + BkF.jI k(o)= k
t=o

jeT (A5.9)

But, from the definition ofp,

Prob {t > n } < (1 _ )n 

(A5.10)

Hence,

t=o

s Ix 112 (1-p )t max lLA +B F_[ <-
t= 1 kc T

jET (A5.11)

by equation (5.11). Hence, the gains Fj result in finite expected cost for all initial

states. The optimal expected cost-to-go will be bounded in t by this cost.

A6. Proof of Theorem 1.

i) = ii):

Suppose {GI}k c I were not cost stablizing. Then for some set M of non-zero measure

of structural trajectories (k(O), k(1), ... ), JT i, on that set is not bounded. But

T |M J (m) dp(m)-Mm asT - o

(A6.1)



therefore, M must be of measure zero.

ii) = iii): The steady-state gains {Gk} k £ I satisfy iii).

iii) = i): By assumption, there exists a B such that

JT({Gk} kI) < BforallT

(A6.2)

Since

T< T (k keI < BforallT,

(A6.3)

Statement i) is implied by Lemma 2.



10. References

1. W. M. Wonham, "Random Differential Equations in Control Theory," From
Probabilistic Methods in Applied Mathematics, vol. II. A. T. Bharucha-Reid,
ed. New York: Academic Press, 1970.

2. R. V. Beard, "Failure Accommodation in Linear Systems Through Self-
Reorganization," Ph.D. Thesis, Dept. of Aero., M.I.T., Cambridge, MA., Feb.
1971.

3. D. D. Sworder, "Fedback Control of a Class of Linear Systems with Jump
Parameters," IEEE Trans. on Auto. Control, vol. AC-14, no. 1, pp. 9-14, Feb.
1969.

4. R. S. Ratner, and D. G. Luenberger, "Performance-Adaptive Renewal Policies
for Linear Systems," IEEE Trans. on Auto. Control vol. AC-14, no. 4, pp. 344-
351, Aug. 1969.

5. Y. Bar-Shalom, and R. Sivan, "On the Optimal Control of Discrete-Time Linear
Systems with Random Parameters," IEEE Trans. on Auto. Control, vol. AC-14,
no. 1, pp. 3-8, Feb. 1969.

6. D. Willner, "Observation and Control of Partially Unknown Systems," Rept.
No. ESL-R-496, Electronic Systems Laboratory, M.I.T., Cambridge, MA., Sept.
1971.

7. D. Pierce, and D. D. Sworder, "Bayes and Minimax Controllers for a Linear
System with Stochastic Jump Parameters," IEEE Trans. on Auto. Control, vol.
AC-16, no. 4, pp. 300-307, Aug. 1971.

8. C. B. Chang, and M. Athans, "Hypothesis Testing and State Estimation for
Discrete Systems with Finite-valued Switching Parameters," Rept. No. ESL-P-
758, Electronic Systems Laboratory, M.I.T., Cambridge, MA., June 1977.

9. J. D. Birdwell, and M. Athans, "On the Relationship Between Reliability and
Linear Quadratic Optimal Control," Proc. 1977 IEEE Conference on Decision
and Control Theory, pp. 129-134, Dec. 1977.

10. J. D. Birdwell, D. A. Castanon, and M. Athans, "On Reliable Control System
Designs with and without Feedback Reconfigurations," Proc. 1978 IEEE
Conference on Decision and Control Theory, pp. 419-426, Dec. 1978.

11. J. D. Birdwell, "On Reliable Control System Designs," Rept. No. ESL-TH-821,
Electronic Systems Laboratory, M.I.T., Cambridge, MA., May 1978.

12. H. J. Chizeck, "Fault Tolerant Optimal Control," Ph.D. Thesis, Dept. of Elec.
Engr., M.I.T., Cambridge, MA., Aug. 1982.


