
1

On Reliable Dissemination in Wireless Ad-Hoc
Networks

Roy Friedman Vadim Drabkin
Computer Science Department

Technion - Israel Institute of Technology

Haifa 32000, Israel

{dvadim,roy}@cs.technion.ac.il

Gabriel Kliot∗

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

Gabriel.Kliot@microsoft.com

Marc Segal
Computer Science Department

Technion - Israel Institute of Technology

Haifa 32000, Israel

marcs@cs.technion.ac.il

Abstract— Reliable broadcast is a basic service for many
collaborative applications as it provides reliable dissemination of
the same information to many recipients. This paper studies three
common approaches for achieving scalable reliable broadcast
in ad-hoc networks, namely probabilistic flooding, counter based
broadcast, and lazy gossip. The strength and weaknesses of each
scheme are analyzed, and a new protocol that combines these
three techniques, called RAPID, is developed.

Specifically, the analysis in this paper focuses on the trade-
offs between reliability (percentage of nodes that receive each
message), latency, and the message overhead of the protocol.
Each of these methods excel in some of these parameters, but
no single method wins in all of them. This motivates the need
for a combined protocol that benefits from all of these methods
and allows to trade between them smoothly. Interestingly, since
the RAPID protocol only relies on local computations and
probability, it is highly resilient to mobility and failures and
even selfish behavior. By adding authentication, it can even be
made malicious tolerant.

Additionally, the paper includes a detailed performance evalu-
ation by simulation. The simulations confirm that RAPID obtains
higher reliability with low latency and good communication
overhead compared with each of the individual methods.

Keywords: Reliable Broadcast, Probabilistic Broadcast, Fault
Tolerance, Ad-Hoc Networks.

I. INTRODUCTION

Wireless mobile ad-hoc networks (MANET) are formed when
an ad-hoc collection of devices equipped with wireless communi-
cation capabilities happen to be in proximity to each other [39].
When some of these devices agree to forward messages for other
devices, a multi-hop network is formed. One of the aspects of
ad-hoc networks is that they are formed without any pre-existing
infrastructure or management authority. Also, due to mobility, the
physical structure of the network is continuously evolving.

∗Work done while the author was a PhD student at the Technion.

MANETs offer a potential for a variety of new applications and
improved services for mobile users, especially as the computing
power of mobile devices becomes stronger. Example applications
include interactive distributed games, ad-hoc transactions and e-
commerce, collaborative (shared white-board and video confer-
encing) applications, and enhancing the bandwidth and reach of
cellular communication (e.g., for Wi-Fi enabled cell-phones) [18].

Broadcast is a basic service for many collaborative applications,
as it enables any device to disseminate information to all other
participants in the network. In particular, a useful broadcast
service should be both efficient and provide a good level of
reliability, meaning that most nodes in the system will receive
almost every broadcasted message.

The simplest way to obtain broadcast in a multiple hop network
is by employing flooding [38]. That is, the sender sends the
message to everyone in its transmission range. Each device that
receives a message for the first time delivers it to the application
and also forwards it to all other devices in its range. While this
form of dissemination is very robust, it is also very wasteful and
may cause contention and a large number of collisions [40].

A common alternative to flooding is to perform a constrained
flooding on top of a deterministic overlay, e.g., [25], [37], [45],
[46]. The problem with deterministic overlays is that due to
the combination of mobility and the decentralized nature of
MANETs, maintaining overlays in MANETs is a complex and
expensive task. Finally, it is hard to make overlays resilient to
malicious or even selfish behavior 1 [8].

Hence, in this work we are interested in non-overlay based
methods for reliable dissemination. Loosely speaking, the three
most common techniques for obtaining this in ad-hoc networks
are probabilistic flooding, e.g., [14], [26], in which the decision of
a node to rebroadcast depends on some locally computable proba-
bilistic mechanism, counter based approaches (and its derivatives

1By selfish we mean nodes that only send their own messages.

such as distance-based and location-based forwarding), e.g., [6],
[14], [40], [41], in which rebroadcasting a message depends on
the number of retransmissions the node hears in its neighborhood,
and lazy gossip [19], [22], in which nodes periodically gossip with
their neighbors about the ids of messages they have received and
request missing messages from them.2

Previous analysis of probabilistic flooding [14], [33] has taught
us that in order to obtain reasonable reliability level in a fixed
probability protocol, one has to set the forwarding probability to
very high values. The latter means that for very high reliability,
this scheme becomes almost as wasteful as flooding. Moreover,
as we discuss in this paper, even with very high retransmission
probability (yet, strictly smaller than 1), no node failures, and
no message loss, probabilistic flooding cannot ensure absolute
reliability.

Counter based schemes and their derivatives [6], [14], [40], [41]
can obtain high reliability level while generating much fewer mes-
sages than probabilistic schemes. Yet, as we show in this paper,
the counter based approach inherently imposes longer latencies
than probabilistic flooding and flooding. Additionally, we show
that counter based schemes cannot ensure 100% reliability either,
even when there are no node failures and no message is ever lost.

Finally, when pure pull based gossip is used alone, it requires
very large buffer spaces to ensure good reliability. Also, it either
imposes extremely long delivery latencies, or needs to be activated
very frequently, thereby generating much traffic.

Hence, we come to the conclusion that in order to obtain a
solution that can ensure reliable delivery at a reasonable cost and
with low latency, the three method should be combined. The main
question this paper addresses is how to obtain this? In other words,
when and how to orchestrate each of these three schemes in order
to obtain an effective protocol that can deliver messages reliably,
economically, and fast. We present such a protocol, called RAPID,
and discuss the rational behind it.

Specifically, RAPID has a dynamically adaptable probabilistic
facet in which a node p retransmits a message it receives for the
first time with probability β/|N(p)|, where N(p) are the set of
neighbors of p and β is a parameter. The purpose of β is to control
how many retransmissions of the same message will appear on
average in each neighborhood. We perform a formal analysis of β.
This analysis allows us to determine the value of β that yields the
most efficient use of probabilistic flooding in terms of the tradeoff
between the communication cost of the probabilistic phase and
the reliability level attained through it.

Boosting the reliability beyond what is achieved through the
probabilistic phase is obtained through a counter based facet cou-
pled with a lazy pull based gossip mechanism. The combination of
these three methods in RAPID creates a fast and highly reliable,
yet economical, dissemination protocol. Notice, again, that the
reliability of the combined protocol is ensured by the use of
the pull based gossip and counter based techniques, while the
probabilistic forwarding mechanism mainly serves to reduce the
latency, by delivering the messages fast to the majority of nodes.

The paper also includes a detailed performance study, per-
formed by simulations. It indicates that RAPID sends a small
number of messages compared to other known alternatives and
guarantees high reliability with any topology. The protocol is also
computationally very efficient, and highly resilient to mobility,

2Notice that probabilistic flooding protocols, such as GOSSIP3 [14], are
often referred to as (active) push based gossip.

i

nk

1

s p q

n

n

Fig. 1. A transmission by a node s can be received by all nodes within its
transmission range: p, n1, ...,nk

failures, and selfishness (and even some forms of malicious
behavior), due to its probabilistic nature, the reliance on local
information only, and the gossip mechanism. In particular, it does
not rely on any 2-hop neighborhood information.

Paper’s road-map: The model and basic definitions and
assumptions are described in Section II. The theoretical results of
this work and description of the three dissemination techniques
are presented in Section III. Section IV describes the RAPID
protocol. The results of the performance evaluation are given in
Section V. Section VI compares our work with related work, and
we conclude with a discussion in Section VII.

II. SYSTEM MODEL AND DEFINITIONS

We assume a collection of nodes placed in a given finite size
area. A node in the system is a device owning an omni-directional
antenna that enables wireless communication. A transmission by
a node p can be received by all nodes within a disk centered at p

whose radius depends on the transmission power, referred to in the
following as the transmission disk; the radius of the transmission
disk is called the transmission range.3 The combination of the
nodes and the transitive closure of their transmission disks forms
a wireless ad-hoc network. Nodes can physically move across
the network; new nodes may join and existing nodes may leave
the network at any time, either gracefully or by suffering a crash
failure. Nodes that crash or leave the network may rejoin it later.

We denote the transmission range of device p by rp. This means
that a node q can only receive messages sent by p if the distance
between p and q is smaller than rp. A node q is a direct neighbor
of another node p if q is located within the transmission disk of
p as illustrated in Figure 1. In the following, N(p) refers to the
set of direct neighbors of a node p. Additionally, messages can
be lost. For example, if two nodes p and q transmit a message at
the same time, and there exists a node z that is a direct neighbor
of both, then z will receive neither message, in which case we
say that there was a collision. Yet, we assume that a message is
delivered with a positive probability.

Finally, we also consider a case in which some nodes act
selfishly, i.e., they refuse to forward messages of other nodes.
Such nodes are called selfish whereas the others are called correct.
We assume that the correct nodes in the system continuously

3In practice, the transmission range does not behave exactly as a disk
due to various physical phenomena. However, for the description of the
protocol it does not matter, and on the other hand, a disk assumption greatly
simplifies the formal model. In any case, our simulation results are carried
on a simulator that simulates a real transmission range behavior including
distortions, background noise, unidirectional links, etc.

2

form a connected sub-network. More severe malicious behavior
is discussed in the Appendix.

III. COMMON RELIABLE DISSEMINATION TECHNIQUES

In this section we present the various techniques used for
dissemination in wireless ad hoc networks and discuss their
properties.

A. Probabilistic Flooding

In the probabilistic approach, whenever a node receives a mes-
sage, it applies some locally computable probabilistic mechanism
to randomly determine whether it should broadcast the message
or not [6], [14], [26]. Probabilistic protocols are appealing since
they are very simple and are inherently robust to failures and
mobility. Moreover, these protocols enable messages to advance
asynchronously, and therefore they exhibit very low latency in
delivering messages. Yet, as was empirically discovered in [14],
[26], [33], in order to obtain very high reliability levels with
pure probabilistic broadcasting, one has to set the retransmission
probability to high values. This in turn translates into a very large
number of redundant messages.

Below, we obtain the following results: We provide a model
for analyzing an upper bound on the tradeoff in probabilistic
flooding between the retransmission probability and reliability. In
other words, this analysis formally captures the tradeoff between
efficiency and reliability offered by pure probabilistic flooding.
This enables designers to decide on a forwarding probability
based on their goals w.r.t. this tradeoff.

Second, our formal analysis shows that in order to achieve a
given tradeoff point between reliability and efficiency, it is enough
that a constant number of nodes in each one hop neighborhood
will retransmit a message. Constant here means independent of
the nodes density. This means that the forwarding probability of
each node should be set in reverse proportion to the size of its
neighborhood. This probability can be expressed as β/ni , where
ni is the neighborhood size of node i and β is the required
constant of forwarders. Further, the behavior of the reliability
w.r.t. forwarding probability is concaved with a knee at values
of β between 2.5 and 3.5 (Figure 2). Setting the forwarding
probability to these values results in delivery to 80%-90% of the
nodes very quickly and very efficiently. However, for boosting
the reliability beyond these levels, it makes more sense to utilize
some complementing measures.

Finally, we show that regardless of the forwarding probability,
pure probabilistic protocols cannot ensure 100% reliability. This
again hints that probabilistic flooding should be aided by another
mechanism if one wishes to ensure extremely high levels of
reliability. We now turn to the details of the analysis.

1) Formal Analysis of Probabilistic Flooding Probability: The
theoretical analysis in this section relies on a formal graph model
of wireless ad hoc networks. The network connectivity graph
G = (V, E) of an ad hoc network is a special case of a 2-
dimensional Unit Disk graph, in which n nodes are embedded
in the surface of a 2-dimensional unit torus, and any two nodes
within Euclidean distance r of each other are connected. When
the nodes are placed uniformly at random on the surface the
graph is known as a Random Geometric Graph (RGG) [30] and
is denoted by G2(n, r). Specifically, the G2(n, r) graph is often
used to model the network connectivity graph of 2-dimensional

wireless ad hoc networks and sensor networks [13]. In our case we
assume n nodes are placed uniformly at random in the rectangular
area [a, b] and form a connected graph.

We stress here that the uniform distribution of nodes in the
space is only used in the theoretical analysis of this section, in
order to set the retransmission probability in the most efficient
way. The correctness of RAPID does not depend on this assump-
tion. If the uniformity assumption does not hold, our protocol in
Section IV will ensure reliable delivery in any case, alas possibly
with higher communication cost.

In this analysis we aim to estimate the reliability that can be
provided by probabilistic forwarding alone. Specifically, we ask
the following question: Suppose that each node in the system is
given an independent opportunity to broadcast the same message
m with probability min(1, β

nq
). How many nodes will receive the

message m? Formally, let Yp be a random variable corresponding
to the number of times that node p has received a given message.
We calculate below an upper bound on the probability that an
arbitrary node will not receive m, i.e., Pr(Yp = 0). In the analysis,
we assume that a message that was sent has a probability Q to
be successfully received by a neighboring node.

Notice that here we analyze a situation in which every node
receives a message m at least once and attempts to probabilisti-
cally rebroadcast it exactly once. Hence, another way of looking
at the analysis is as follows: Suppose we have a mixed protocol
that employs multiple techniques to ensure reliable delivery of
messages, one of which is probabilistic flooding. In this case,
what percentage of the nodes will receive each message due to
probabilistic flooding for a given forwarding probability.

Lemma 3.1: Denote by Psend the probability that a random
node rebroadcasts a message m. Then, for n ≥ 50 and c1 = 1− β

29

Psend ≥ c1β
ab

πr2(n− 1)

Proof Idea. We calculate a lower bound on Psend by condition-
ing on the number of neighbors of node q (denoted nq) and by
applying a probabilistic version of Jensen’s inequality. The full
proof is deferred to the appendix.

Claim 3.2: For any node p, the probability that p does not
receive a message m is upper bounded by e−c1βQ, for c1 =

1− β
29 .
Proof: For every two nodes p and q, let Xp,q be a 0-1

random variable indicating whether the node p receives a message
m from node the q or not. Node p can receive a message m from
q if and only if q has probabilistically decided to broadcast m,
q is a neighbor of p in G2(n, r) and m has not collided with
other messages. The first event happens with probability Psend,
the second event with probability R = πr2

ab , and the third event
with probability Q.

Let Yp be the random variable indicating the number of times
node p has received m.

Pr(Yp = 0) = Pr(Xp,1 = 0 ∩ Xp,2 = 0 ∩ . . . ∩ Xp,n = 0) =�
q∈N,q 6=p

Pr(Xp,q = 0) = Pr(Xp,q = 0)n−1 = (1−QRPsend)n−1 =

(1−QRPsend)n−1 ≤ � 1−QR
c1β

R(n− 1) � n−1

= � 1−Q c1β

(n− 1) � n−1

≤ e−c1βQ

In the last line we have used the inequality (1− x
n)n ≤ e−x.

3

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beta

N
on

 r
ec

ei
ve

 p
ro

ba
bi

lit
y

Successfull receive probability 1
Successfull receive probability 0.8
Successfull receive probability 0.6

Fig. 2. An upper bound on the probability that an arbitrary node does not
receive a message m

Corollary 3.3: c1 = 1 − β
29 ≥ 0.8 for β ≤ 6.

Figure 2 depicts an upper bound e−(1− β

29
)βQ on the value of

Pr(Yp = 0) for an arbitrary node p as a function of β and Q. It
can be seen from the figure that the probability that a given node
does not receive a message m is small for quite small values of
β. For example, for Q = 0.8, Pr(Yp = 0) is less than 0.09 for
β = 3.5. That is, if there are only β = 3.5 nodes in every one-hop
neighborhood that transmit m and Q = 0.8, approximately 91%

of all nodes will receive m.
Discussion: A broadcasting algorithm that sets the retrans-

mission probability Psend inversely proportional to a node’s
degree has a number of advantages. First, the number of trans-
missions is constant with respect to the number of nodes n and
to the nodes’ density. Formally, define by Sm the set of nodes
that retransmit a given message m. We have:

E(|S|) = nPsend ≈ n(1 −
β

29
)β

ab

πr2(n− 1)
≈

abβ

πr2
.

That is, the number of transmissions does not depend on the
overall number of nodes, but rather only on the physical size of the
network, the transmission radius and the required reliability level.
Hence, for a given physical network, there is a minimal number
of retransmissions that is required to guarantee high broadcasting
reliability, and this number is constant with respect to the number
of nodes and to the nodes’ density. In particular, such a broadcast
protocol is highly efficient in dense networks.

Second, a probabilistic broadcasting algorithm that picks nodes
uniformly at random with probability inversely proportional to
nodes’ degree can achieve high coverage of the network with
relatively few redundant messages. Most (but not all) of the
network nodes will receive almost every message while using
a relatively small retransmission set.

2) On the Impossibility of Absolute Reliability: Notice that
no pure probabilistic protocol can ensure absolute dissemina-
tion reliability. Consider an example of a node q with neigh-
bors n1, . . . , nk , each of which forwards each message they
receive with probability pni . Hence, with probability Prob =

Πi=1,...,k(1 − Pni), no node will retransmit the message and
therefore q will not receive the message. No matter how high

the probabilities Pni are (as long as they are strictly smaller than
1), Prob is non zero and can sometimes be non negligible. In
particular, even if the average density across the whole network is
high, if nodes are scattered in a somewhat random manner, there is
a likelihood that some parts of the network will have low density.
In those parts k can even be less than 2. Thus, the probability that
there will be some node q that will not receive some messages is
non-negligible in any pure probabilistic protocol.

B. Counter Based Broadcast

The shortcomings of probabilistic flooding has led to the
development of the counter-based approach [6], [14], [40], [41]
and its distance-based and location-based derivatives (and their
combinations). The idea in these schemes is that rather than
placing the randomness directly on the retransmission probability,
the randomness is placed on the timing of the rebroadcasting. That
is, every node p that receives a message m for the first time,
decides to rebroadcast the message after some random time. If
during this chosen period p hears k (the counter) retransmissions
of m, then p decides to abort its retransmission.

Interestingly, this is another way to ensure a constant number
of retransmissions in each neighborhood. But, as opposed to the
probabilistic method, the number of retransmissions is determin-
istically guaranteed by the protocol. Despite this, as we show in
Section III-B.2, even counter based approach cannot guarantee
reliable delivery of all messages on an arbitrary topology. In
fact, if we assume that the nodes are uniformly distributed in
the network, and that the random function used for setting the
retransmission time is independent of the node’s location, then we
can utilize our formal analysis from Section III-A.1 to calculate
the reliability level of a counter-based protocol for a given k.

Empirical studies have shown that counter-based schemes can
obtain high delivery ratios with relative efficiency [6], [14], [40],
[41]. Yet, these works do not include a formal analysis of this
behavior. Moreover, as we now discuss, counter-based schemes
are inherently slower than probabilistic schemes.

1) Latency: As mentioned before, the rebroadcasting time of
each node is set randomly. However, in order for the protocol to
succeed, the values should be set from a sufficiently large range
so that the number of collisions will be small, or even zero [16],
[17]. In other words, the range from which the rebroadcast timing
is chosen must be proportional to the number of nodes in each
neighborhood. For ensuring zero collisions, by using the birthday
paradox, we can deduce that the range should be roughly sl×n2

i ,
where sl is the minimal slot required for a message transmitted
by one node to be heard by any other node in its neighborhood
and ni is the size of the neighborhood of node i. For example,
routing protocols in ad hoc network usually apply a random delay
uniformly distributed between 0 and 10 milliseconds [4].

On the other hand, with probabilistic flooding as we suggest,
and assuming β ≤ 3.5, at most 3.5 nodes might retransmit
simultaneously in each neighborhood. Hence, the jitter applied
to probabilistic forwarding can be much shorter than for counter-
based schemes.

2) On the Impossibility of Absolute Reliability: We claim that
no counter-based scheme can guarantee reliable delivery of all
messages on an arbitrary topology. Consider a scenario w.r.t
Figure 1. When node s broadcasts a message m, nodes p and n1,
..., nk receive it. If some of ni nodes rebroadcasts the message
before node p, p will refrain from rebroadcasting m and therefore

4

q will not receive m. For any counter-based scheme and for any
value of the counter in p, there could be as many ni nodes as
needed, such that ni is a neighbor of s and p, but not of q. Then,
all ni nodes might rebroadcast m before p, by this satisfying the
counter in p and preventing p from rebroadcasting m.

C. Lazy Gossip

In lazy gossip [19], [22], nodes periodically gossip with their
neighbors about the ids of messages they have received. Yet, this
gossiping is performed in a deterministic manner, in the sense that
each node sends such a gossip message as a broadcast to all its
neighbors. Whenever a node q learns than one of its neighbors p

has a message that q has missed, q explicitly asks p to retransmit
this message. Here, there can be a few optimizations such as
broadcasting requests for retransmissions, etc.

Lazy gossip incurs a constant per node message overhead due
to the need to periodically gossip about messages. The overall
network overhead grows with the network density. However,
due to its deterministic nature, lazy gossip can obtain absolute
reliability.

The shortcomings of lazy gossip mainly comes from its very
high latency and the fact that for reliability, it must gossip multiple
times for each message. The latency stems from the fact that
messages are propagated only due to gossips, and these only occur
periodically. In order to keep the message overhead reasonable,
gossips might be performed once every several seconds, in which
case forwarding a message across multiple hops can take dozens
of seconds. Also, due to message loss, obtaining absolute reli-
ability involves unlimited memory consumption and unbounded
message sizes, at least in theory.

IV. THE RAPID PROTOCOL

For didactic purposes, we develop our protocol in two steps.
The basic version of our protocol appears in Figure 3 whereas
an enhanced version of the protocol that sends even fewer
messages and provides higher delivery ratio is depicted in Figure 4
(a malicious resilient version of our protocol appears in the
Appendix). In all figures we make use of two primitives. The
primitive prob bcast denotes an immediate broadcast to all
the direct neighbors of the sender with a given probability. The
primitive lazycast initiates periodic broadcasting of the given
message to the direct neighbors of the sender.

Our protocol is based on the following principles: Each node
calculates its broadcast probability according to the number of
observed neighbors at a given moment. Since in our protocol each
node needs to know the number of its one-hop neighbors, every
node periodically sends a heartbeat/hello message (unless it has
already sent another message during a predefined time interval).

The rebroadcasting probability used by RAPID is set to
min(1, β

|N(k)|
). β is a parameter of the protocol and corresponds

directly to the communication overhead. For bigger β higher
reliability level is achieved, however with larger communication
cost. As can be seen in Figure 2 (the knee in the graph), a good
tradeoff between the number of retransmissions and the reliability
level is achieved when β is set to around 3.5. We further explore
the effect of parameter β on RAPID in the simulation section.

In parallel, every node p periodically broadcasts to its neighbors
the headers of messages p received from other nodes, which is
called gossiping. This technique enables nodes who miss some

Upon send(msg) by application do
(A01) header := msg id||node id;
(A02) data msg := header||msg;
(A03) gos msg := header;
(A04) prob bcast(prob = 1, data msg, DATA);
(A05) lazycast(gos msg, GOSSIP);

Upon receive(msg, DATA or DATA REPLY) sent by pj do
(A06) if (have not received this msg before) then
(A07) Accept(pj , msg); /*forward to the application*/
(A08) prob bcast(prob = min(1, β

|N(p)|
), msg, DATA);

(A09) lazycast(gos msg, GOSSIP);
(A10) endif;

Upon receive(gos msg, GOSSIP) sent by pj : do
(A11) if (there is no msg that fits the gos msg) then
(A12) /*Ask the neighbors to send the real message*/
(A13) prob bcast(prob = min(1, β

|N(p)|
), gos msg, REQUEST);

(A14) endif;

Upon receive(gos msg, REQUEST) sent by pj do
(A15) if (I have the msg that matches gos msg) then
(A16) prob bcast(prob = min(1, β

|N(p)|
), msg, DATA REPLY);

(A17) endif;

Fig. 3. Basic RAPID (executed by node p)

messages that exist in the system to request these messages from
their neighbors. Notice that nodes only send headers of messages
they possess. Hence, the header of a message that does not
exist will not be disseminated in the network. Also, whenever
possible, gossip messages are piggybacked on other messages
in order to further reduce the generated traffic. Unlike many
other gossiping mechanisms from distributed computing [3], in
our case, gossiping is deterministic, in the sense that a gossip
message from p is broadcasted to all of p’s neighbors at once.

When examining the graph in Figure 2, it can be seen that
the reliability level obtained depends on the probability that a
transmission will not be lost. Specifically, in wireless networks,
most message losses are caused due to collisions. Hence, to reduce
the chance of collision, and thereby be able to obtain reliability
levels similar to the bottom most line of Figure 2, RAPID employs
jitter. That is, when a node decides to rebroadcast a message,
it waits for a short random time before doing so. Hence, the
small probability of rebroadcasting plus the short jitter before
rebroadcasting means that RAPID very rarely causes message
collisions. The value of jitter is discussed in Section V.

A. Basic RAPID

1) The Dissemination Task in Details: This protocol is a
combination of probabilistic flooding with lazy gossip. Hence, its
message dissemination consists of the following steps: (1) The
originator p of a message m sends m||header(m) to all nodes in
N(p) (Lines A01–A04 in Figure 3). The header part of m includes
a sequence number and the identifier of the originator. (2) The
originator p of m then starts a periodic gossip of header(m)

to all nodes in N(p) (Line A05). (3) When a node p receives
a message m for the first time, p accepts m (Lines A06–A07).
(4) p broadcasts m with probability min(1, β

|N(p)|
) (Line A08 –

our protocol was simulated with β equals to 3.5). (5) p starts a
periodic gossip of header(m) to all nodes in N(p) (Line A09).
(6) If a node p receives a message m it has already received
beforehand, then m is ignored.

5

2) Gossiping and Message Recovery in Detail: The gossiping
and message recovery part of the protocol is composed of the
following subtasks:

1) When p receives a message m, p gossips header(m) to
other nodes in N(p) (Lines A09). Note that p does not
forward gossips about messages it has not received yet. This
is done in order to make the recovery process more efficient.

2) When p receives a gossip header(m) for a message m it has
not received yet, p asks its neighbors to forward m to itself
using a REQUEST message (Lines A11–A14). Intuitively,
since p received a GOSSIP message about m, one of p’s
neighbors should have m and supply it when needed.

3) When p receives a REQUEST for a message m, yet p

has not received m, p ignores this request. Otherwise, p

broadcasts the missing message (Lines A15–A17).

One issue that needs to be taken care of is purging received
messages, in order to avoid unbounded memory requirements.
This can be done either using timeouts, or by employing a stability
detection mechanism [12], [36]. In this work, we have chosen
to use timeout based purging due to its simplicity. Clearly, in
this case there is a tradeoff in setting the timeout value: a long
timeout increases the reliability, but also increases the memory
consumption. From our experiments, it turns out that that even
with short timeouts we can reach reliability above 99.9% in most
cases.

B. Enhanced RAPID

The basic RAPID protocol has an important drawback: if all
nodes in a given neighborhood decide not to broadcast a message,
the dissemination of this message would be severely delayed, as
it will only be propagated through the gossip/request mechanism,
which is slow.

In order to deal with this drawback and improve the reliability
and the latency of RAPID, we slightly change the protocol
by adding a complementing counter-based like mechanism that
is based on having each node monitor its neighbors. That is,
whenever p initially probabilistically decides not to rebroadcast
m, but later on p does not hear any other rebroadcasting of m,
then p adds m to its casting queue. Thus, either p will hear a
retransmission of m by one of its neighbors, or p will retransmit
m. This optimization of deciding to rebroadcast m even if initially
a node p probabilistically chose not to, but later did not hear any
of its neighbors rebroadcast m helps boosting the reliability of
the protocol, by ensuring that a message will be propagated to
almost every neighborhood of the network.

1) The Dissemination task in details: The pseudo-code for the
enhanced version of RAPID is listed in Figure 4. In this code,
we use a queue called cast queue. The add method of this
queue accepts the following parameters. The sending probability,
a time parameter, the message itself and the type of the message.
The time is used in order to set a timer to expire after the
corresponding amount of time elapses. The probability and type
are stored alongside the message inside the queue.

Dissemination in Enhanced RAPID works the same as in Basic
RAPID (Section IV-A.1) except for step 4 of Section IV-A.1. In
Enhanced RAPID, whenever a node p receives a message m for
the first time, it schedules a rebroadcast of m with probability
min(1, β

|N(p)|
) to occur after some random jitter (Line B08 in

Figure 4). If a received message has never been rebroadcasted,

Upon send(msg) by application do
(B01) header := msg id||node id;
(B02) data msg := header||msg;
(B03) gos msg := header;
(B04) prob bcast(prob = 1, data msg, DATA);
(B05) lazycast(gos msg, GOSSIP);

Upon receive(msg, DATA or DATA REPLY) sent by pj do
(B06) if (have not received this msg before) then
(B07) Accept(pj , msg); /*forward it to the application*/

(B08) cast queue.add(prob = min(1, β

|N(p)|
),

time=random(0, short jitter), msg, DATA);

(B09) lazycast(gos msg, GOSSIP);
(B10) endif;

Upon receive(gos msg, GOSSIP) sent by pj : do
(B11) if (there is no message that fits the gos msg) then
(B12) /*Node asks from its neighbors to send the real message*/

(B13) cast queue.add(prob = min(1, β
|N(p)|

),

time=random(0, short jitter), gos msg, REQUEST);

(B14) endif;

Upon receive(gos msg, REQUEST) sent by pj do
(B15) if (I have the msg that matches gos msg) then

(B16) cast queue.add(prob = min(1, β

|N(p)|
),

time=random(0, short jitter), msg, DATA REPLY);

(B17) endif;

Interceptor
(B18) if (msg that appears in cast queue was received) then
(B19) if (msg.type==REQUEST or msg.type==DATA REPLY) then
(B20) cast queue.remove(msg);
(B21) endif;
(B22) endif;

Upon Expiration of timer of msg in cast queue do
(B23) cast queue.remove(msg);
(B24) pr = the probability attached to msg;
(B25) type = the message type associated with msg;
(B26) prob bcast(prob = pr, msg, type);
(B27) if (msg was not broadcasted) then
(B28) cast queue.add(prob = 1, time=long jitter, msg, type);
(B29) endif;

Fig. 4. Enhanced RAPID (lines that were modified w.r.t Figure 3 are boxed
while lines B18–B29 were added)

neither by p nor by any of its neighbors, then p decides to
rebroadcast m after all, by invoking prob broadcast with
probability 1 (Lines B27–B29).

2) Gossiping and Message Recovery in Detail: The main
difference between gossiping in Basic RAPID vs. Enhanced
RAPID is in the cancelling of REQUEST and DATA REPLY
messages. That is, in the enhanced protocol every node p monitors
its neighbors and if p planned to broadcast such a message m,
but p heard a transmission of m by its neighbor node, then p

cancels the transmission of m. This cancelling is done in order
to eliminate redundant REQUEST and DATA REPLY messages
due to the broadcast nature of wireless networks. In addition, if p

decided not to broadcast m, but it does not hear the transmission
of m by any of its neighbors, p broadcasts m. These issues are
handled in Lines B13, B15–B17, B18–B21, and B23–B29.

3) Latency of RAPID: In both RAPID and counter-based
protocols [6], [14], [40], [41], nodes wait for a certain amount of
time before they rebroadcast a message. Yet, the average waiting

6

time is much shorter in RAPID than in counter based protocols.
Notice that in Figure 4 we employ two jitter lengths, short jitter
and long jitter. The first is used to prevent collisions, while the
second is used as a corrective measure, as discussed above, and
is similar to the counter based approach. Notice that in order to
be effective, the duration of the jitter must be proportional to
the number of expected concurrent transmissions. The expected
number of concurrent transmitters competing for transmission
due to the probabilistic mechanism is quite small (β). On the
other hand, in the situations in which long jitter is used in our
protocol, and similarly in counter based protocols, all nodes in
the neighborhood might transmit concurrently. Hence, long jitter
must be long enough to accommodate for that. Consequently,
short jitter can be much shorter than long jitter. For example,
if the target is to completely eliminate collisions with high
probability, then following the birthday paradox, the length of the
jitter must be proportional to s2, where s is the expected number
of concurrent senders. Moreover, most times in RAPID the timer-
based corrective measure will not be used, so average latency is
mostly dominated by short jitter. The actual values used for both
jitters are described in Section V.

V. SIMULATIONS

In this section, we evaluate the performance of RAPID and
compare it with the performance of the counter-based protocol
of Tseng et al. [40] and with the performance of the GOSSIP3
protocol [14]. In GOSSIP3, when a node q receives a message,
it broadcasts the message to its neighbors with probability P and
with probability 1 − P it discards the message. In addition, q

broadcasts a message if initially q got a message and did not
broadcast it, but later q did not get the message from at least M

other nodes4. The reason for choosing GOSSIP3 is that it is one
of the best studied probabilistic protocols in the literature and was
found to be the best probabilistic broadcast mechanism among all
the ones explored in [14]. In our simulations we have measured
the percentage of messages delivered to all the nodes (delivery
ratio), the latency to deliver a message to varying percentages
of the nodes, the load imposed on the network (number of
transmitted messages) and the influence of mute (selfish) nodes
on the performance of our protocol.

A. Setup

We have used the JiST/SWANS simulator [42] to evaluate the
protocols. In JiST/SWANS, nodes use two-ray ground radio prop-
agation model with IEEE 802.11 MAC protocol and 54Mb/sec
throughput. Communication between nodes is by broadcast. Two
concurrent broadcasts can collide, in which case, the messages
will not be received by some of the nodes. The collision may
occur without the broadcasting node detecting the problem, a
phenomenon known as the hidden terminal problem [1]. In order
to reduce the number of collisions, we have employed a staggering
technique (Figure 4). That is, each time a node is supposed to send
a message, it delays the sending by a random period, denoted by
short jitter, which was set to 3 milliseconds. In addition, in the
TSENG protocol and in the counter based mechanism in RAPID
we have used a long jitter of 0.33 × s2 millisecond (where s is
the expected number of concurrent senders).

4GOSSIP3 was simulated with probability P = 0.65 and M=1.

��� ���
	�	��
� ������������� � �������
�
��� ��	��� �
�����
��������� � �� �
�
�����
�!�"� ���#���������

$�%'& �(���
�) � ����*+� ���", - 	
� . ���&0/�1 2 *3�
4657�
89� � �;:
��� � ��< = ����� � �;�> � �;���;=�? � �;���������"� �;� � ����� =

57�;���
� � 4 @A��8����;� ���CB������
���D�!4E��	 �0(��B��� :����F� � � ��	��&F� � = � � 8
$ ��� 8�� �
�&F�
�����
�
����� G��

H �;����� � 8FI � ��<��;���J,�� �F��� � � , � � ��KL �
�
�#��� :����> � � :�= ���"� � �9� � ���2 � � ��� � � ����� �;� � �;���
� M $�	�	�N M $�	
	 �+O ���
< ��:�= �"./0= ���#�
$
	
	�N���$
	�	PB�%;$�	�	�N�%;$
	�	��	�	�	��	��
��< � :
= �
�
	�	 � �
� � �

Fig. 5. Simulation setup

The transmission range was set to roughly 200 meters5. The
nodes were placed at uniformly random locations in a square area
of 3500x3500 m2, and unless mentioned otherwise, the results
are reported for networks of 1,000 nodes, which corresponds
to roughly 10 neighbors per node. We have also checked other
network sizes (2500x2500 m2 and 4500x4500 m2) with similar
density, but the results were qualitatively the same, regardless
of the specific network size and exact number of nodes. An
additional analysis of varying network density is presented in
Section V-B.4. The simulation setup is summarized in Figure 5

Mobility was modelled by the Random-Waypoint model [21].
In this model, each node picks a random target location and moves
there at a randomly chosen speed. The node then waits for a
random amount of time and then chooses a new location, etc. In
our case, the speed of movement ranged from 1-10 m/s. Being
aware of recent criticisms of the Random-Waypoint model [5],
we set the pause time to be 0 seconds and discarded the first
1000 seconds of simulation time.

In our simulations the number of broadcasting nodes varied
from 1 to 200 and the size of data messages was set to 512
bytes (less than one UDP/IP packet). In every simulation, every
broadcasting node sends 10 messages and then after a cool down
period the simulation is being terminated. Each data point was
generated as an average of 10 runs. Unless otherwise mentioned,
we use the default values defined in JiST/SWANS. We have used
the default Java pseudo random number generator, initialized with
the current system time in milliseconds as a seed.

In the graphs, we have used the following notation: the en-
hanced version of our probabilistic dissemination protocol from
Figure 4 is denoted RAPID; a restricted version of the enhanced
RAPID in which the gossip and the recovery mechanism were
disabled is denoted RAPID-NO-GOSSIP; the counter-based pro-
tocol of Tseng et al. [40] is denoted TSENG; GOSSIP3 is the
probabilistic protocol by Haas et al. [14]. We limited the number
of times each message is gossiped by nodes in RAPID to 1.
Additional gossip attempts slightly improve the delivery ratios
at the cost of additional messages.

B. Results

1) Broadcasting Probability - exploring β: Figures 6, 7, 8,
and 9 explore the delivery ratio, the number of transmissions

5In SWANS one can choose the transmission power which translates into
a transmission range based on power degradation and background noise.

7

and the latency (in seconds) against the broadcast probability of
nodes in RAPID. Since the broadcasting probability of node i

is expressed as β/ni , where ni is the neighborhood size of i,
increasing the value of β leads to an increase in the broadcasting
probability of i. The following discussion and simulations analyze
the influence of β values on the latency, the delivery ratio and
the number of transmissions of RAPID.

We can see in Figures 8 and 9 that when we increase β, the
latency of RAPID decreases. This is since more nodes decide to
broadcast the received message and therefore more nodes receive
messages from their neighbors by the probabilistic mechanism
and not due to the completion or recovery mechanisms. Yet, when
the value of β increases, more messages are injected into the
network, as can be seen in Figure 7. In addition, the value of β has
hardly any influence on the reliability of RAPID and even for β =

1.5, RAPID delivers all messages to more than 99% of nodes. In
this case more messages are delivered via the completion and the
recovery phases, which increases the latency, but still keeps the
reliability of RAPID as high as 99%, as can be seen in Figure 6.
Hence, the decision of whether to use RAPID with low or high
value of β can be made based on the tradeoff between the latency
and the message load for a given application. In the following
sections, we present RAPID with β = 3.5 since it gives a good
tradeoff between throughput and latency.

2) Changing the Number of Broadcasting Nodes: Figures 10
and 11 present a comparison of RAPID with other protocols in
mobile networks. Figure 10 shows the percentage of nodes that re-
ceived all messages vs. the number of nodes that initiate one new
broadcast per second. RAPID delivers a very high percentage of
messages (99.9%), even when the number of broadcasting nodes
is as high as 200. RAPID-NO-GOSSIP, GOSSIP3 and TSENG
also deliver high percentage of messages when the number of
broadcasting nodes is relatively small (about 50 nodes). Yet, when
the number of broadcasting nodes increases and more messages
are injected into the network, the percentage of messages that
RAPID-NO-GOSSIP, GOSSIP3 and TSENG deliver to all the
nodes decreases substantially. The reason for this degradation is
the fact that when the number of concurrent messages in the
system is too high, many collisions occur causing messages to be
lost. Given that RAPID-NO-GOSSIP, GOSSIP3 and TSENG only
employ a probabilistic dissemination mechanism, they cannot
recover these lost messages.

Interestingly, the gap between the reliability of RAPID-NO-
GOSSIP and TSENG and the reliability of GOSSIP3 grows as
the number of broadcasting nodes is increased. This is because
RAPID-NO-GOSSIP and TSENG generates significantly fewer
messages than GOSSIP3 and therefore there are fewer collisions.
Recall that the rebroadcasting probability of GOSSIP3 is fixed
at 0.65. Conversely, in RAPID-NO-GOSSIP, (and RAPID) the
rebroadcasting probability is set to the minimal number required
to ensure continued dissemination with high probability, de-
pending on the number of observed neighbors of each node.
Practically, with this specific network density, in our protocol
the rebroadcasting probability is close to 0.35. This can also
be observed when looking at the total number of transmissions,
which is reported in Figure 11.

We can also observe in Figure 11 that RAPID sends more
messages than RAPID-NO-GOSSIP and TSENG, in order to
overcome the collisions and message loss. Hence, the decision
of whether to use RAPID or RAPID-NO-GOSSIP (or TSENG)

can be made based on the tradeoff between reliability and load
for a given application.

Figure 12 explores the latency to deliver messages to a varying
percentage of the nodes when the number of broadcasting nodes is
100. As can be seen, GOSSIP3 is significantly faster than all other
protocols. Yet, GOSSIP3 delivers messages only to 95% of the
nodes, while RAPID delivers the messages to 99.6% of the nodes
within 0.15 seconds, which is good enough for most envisioned
applications of MANET. In the famous “no free lunch” analogy,
RAPID trades off latency (but still keeps it reasonable) for
increased reliability and reduced message overhead. As expected,
RAPID is much faster than TSENG due to the fact that the
timeout between broadcasts of nodes in RAPID is smaller than
the timeout of broadcast in TSENG as it was explained in IV-B.3
and the recovery of missing messages in RAPID is faster than the
completion protocol in TSENG. Finally, RAPID (with gossip) is
faster than RAPID-NO-GOSSIP due to the recovery protocol that
it runs in parallel to probabilistic dissemination.

3) Impact of Mobility: Figures 13 and 14 explore the impacts
of mobility. We have run simulations while varying the speed of
nodes (from 1 to 10 meters/sec) and discovered that the results
are qualitatively the same. Thus, we only present the results
when the speed of nodes was between 1 and 5 meters/sec and
when all the nodes are static. As can be seen in Figures 13
and 14, when nodes are mobile, the performance of RAPID (in
terms of delivery ratio and number of transmitted messages) is
slightly better than when all nodes are static. This is because
with mobility, the information about messages propagates faster
to all areas of the network. Additionally, when a node moves, its
chances of overhearing a message in one of the visited locations
are higher than when it stays in the same place. Finally, when
nodes move, they appear to be in more neighborhoods, which
slightly reduces the retransmission probability.

4) Network Density: Figures 15 and 16 explore the delivery
ratio and the number of transmissions against the density of the
nodes. We can see that when the number of nodes is 200 and
the network size is 2500x2500 m2 (the average density is about
4 nodes per neighborhood), RAPID with 100 broadcasting nodes
delivers all messages to 52.4% of the nodes, while GOSSIP3
delivers all messages to 38.04% of the nodes and TSENG delivers
all messages to 42.5% of the nodes. These results are explained
by the very poor network connectivity. We can also see that when
the number of nodes is 400 (the average density is about 8 nodes),
GOSSIP3 with 100 broadcasting nodes delivers all messages to
94.9% of the nodes, Tseng delivers all messages to 95.4% of the
nodes, and the delivery ratio of RAPID is above 98%.

Interestingly, this echoes the results of [32]. Moreover, we
know from Gupta and Kumar’s connectivity bound for ad hoc
networks [13] that the networks’ connectivity is ensured with high

probability when r ≥ a Q C ln(n)
n , with r being the transmission

range, a the length of the network area, C is a constant such
that C > 1

π , and n the number of nodes. Recall that in our
case, r = 200 and a = 2, 500. With these numbers, we get that
for n = 200, the network is not likely to be connected, but for
n = 400, the network is already connected. Hence, with n = 200,
no protocol can achieve high delivery ratios, yet with n = 400,
good reliability can already be obtained.

When looking at the total number of transmissions in Figure 16,
we can observe that RAPID scales much better than GOSSIP3
with the density of the network. The number of transmission

8

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100
Mobility=RandomWaypoint;#nodes=1000;#senders=100;length=3500 m

%
 r

ec
ei

ve
d

m
es

sa
ge

s

beta

RAPID
RAPID−NO−GOSSIP

Fig. 6. Message delivery ratio when all nodes
are mobile (comparing RAPID with different
values of β)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

6Mobility=RandomWaypoint;#nodes=1000;#senders=100;length=3500 m

#t
ra

ns
m

is
si

on
s

beta

RAPID
RAPID−NO−GOSSIP

Fig. 7. Network load in terms of total number
of transmissions when all nodes are mobile
(comparing RAPID with different values of β)

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Mobility=RandomWaypoint;#nodes=1000;#senders=100;length=3500 m

#l
at

en
cy

−
98

beta

RAPID−98
RAPID−NO−GOSSIP−98

Fig. 8. Latency to deliver a message to 98%
of the nodes when all nodes are mobile with
varying values of β (with 100 broadcasting
nodes)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3
#protocol=RAPID;#nodes=1000;#senders=100;length=3500 m

la
te

nc
y

% nodes

beta−1.5
beta−2.5
beta−3.5
beta−4.5
beta−5.5
beta−6.5
beta−7.5

Fig. 9. Latency to deliver a message to X% of
nodes when all nodes are mobile with varying
values of β (with 100 broadcasting nodes)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100
Mobility=RandomWaypoint;#nodes=1000;length=3500 m

%
re

ce
iv

ed
 m

es
sa

ge
s

#senders

RAPID
RAPID−NO−GOSSIP
GOSSIP3
TSENG

Fig. 10. Message delivery ratio when all nodes
are mobile

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

6Mobility=RandomWaypoint;#nodes=1000;length=3500 m

#t
ra

ns
m

is
si

on
s

#senders

RAPID
RAPID−NO−GOSSIP
GOSSIP3
TSENG

Fig. 11. Network load in terms of total number
of transmissions when all nodes are mobile

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Mobility=RandomWaypoint;#nodes=1000;#senders=100;length=3500 m

% nodes

la
te

nc
y

RAPID
RAPID−NO−GOSSIP
GOSSIP3
TSENG

Fig. 12. Latency to deliver a message to X%
of the nodes (with 100 broadcasting nodes)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100
#nodes=1000;length=3500 m

%
re

ce
iv

ed
 m

es
sa

ge
s

#senders

RAPID−STATIC
RAPID−MOBILE
GOSSIP3−STATIC
GOSSIP3−MOBILE
TSENG−STATIC
TSENG−MOBILE

Fig. 13. Message delivery ratio (compare pro-
tocols both in static and mobile environments)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

x 10
6 #nodes=1000;length=3500 m

#t
ra

ns
m

is
si

on
s

#senders

RAPID−STATIC
RAPID−MOBILE
GOSSIP3−STATIC
GOSSIP3−MOBILE
TSENG−STATIC
TSENG−MOBILE

Fig. 14. Network load in terms of total num-
ber of transmissions (compare protocols both in
static and mobile environments)

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100
Mobility=Static;#senders=100;length=2500 m

%
re

ce
iv

ed
 m

es
sa

ge
s

#nodes

RAPID
RAPID−NO−GOSSIP
GOSSIP3
TSENG

Fig. 15. Message delivery ratio with varying
density while all nodes are static

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
x 10

6 Mobility=Static;#senders=100;length=2500 m

#t
ra

ns
m

is
si

on
s

#nodes

RAPID
RAPID−NO−GOSSIP
GOSSIP3
TSENG

Fig. 16. Message overhead with varying density
while all nodes are static

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Mobility=RandomWaypoint;#nodes=1000;#senders=100;length=3500 m

la
te

nc
y

% nodes

RAPID−0
RAPID−50
RAPID−100
RAPID−200

Fig. 17. Latency to deliver a message to
X% of the modes when all nodes are mobile
with varying number of selfish nodes (with 100
broadcasting nodes)

9

Selfish Delivery ratio Message overhead
0 99.61% 4200144
50 99.57% 4071811.7
100 99.55% 4006395.7
200 98.99% 3816120.6

TABLE I

DELIVERY RATIO AND MESSAGE COUNT VS. THE NUMBER OF SELFISH

NODES (WITH 100 BROADCASTING NODES)

is almost constant (slightly increasing mainly due to the gossip
messages and increased collisions) due to the fact that RAPID
tunes its rebroadcasting probability based on the number of
observed neighbors. This validates our theoretical analysis in
Section III-A.1. RAPID achieves a slightly better delivery ratio
than RAPID-NO-GOSSIP. Yet, if the number of messages is more
important, we may use RAPID-NO-GOSSIP that sends even less
messages than RAPID (this is since RAPID-NO-GOSSIP tunes
its rebroadcast probability according to the number of observed
neighbors just like RAPID, yet it does not send gossip messages).

5) Selfish Nodes: Figure 17 explores the latency to deliver a
message to X% of the nodes when the total number of nodes
in the system is 1,000 and some nodes are selfish, i.e., refuse
to rebroadcast messages. In this graph, we use the notation
RAPID-Y to indicate that RAPID was run with Y selfish nodes.
Surprisingly, the latency does not grow with the number of selfish
nodes. This is since on one hand selfish nodes do not rebroadcast
other’s messages, but on the other hand they do not send gossip
messages and therefore cause fewer collisions. We can also see
that even when the number of selfish nodes is 200 (20% of all
nodes), RAPID delivers the messages to 98.99% of the nodes
within 0.14 seconds. We would like to point out that by fine
tuning the rate of gossips and the other timers in the system, it is
possible to reduce the quantitative latency numbers even further.

Table I presents the delivery ratio and the message overhead
in mobile networks for varying numbers of selfish nodes. We
can see that the number of selfish nodes hardly influences the
delivery ratio of RAPID, which consistently delivers more than
99% of the messages to all nodes. Interestingly, we also notice that
the message overhead becomes smaller as the number of selfish
nodes increases. One could expect that the message overhead
should increase with the number of selfish nodes. In particular,
the protocol must send more REQUEST messages for recovering
missing messages that were not rebroadcasted by selfish nodes.
However, selfish nodes do not send gossip messages. This reduces
both the number of retransmissions and the number of message
collisions. Hence, overall, this results in a reduced number of
message transmissions.

VI. RELATED WORK

A comprehensive study of broadcasting and multicasting pro-
tocols for wireless ad hoc networks can be found in [39], [44].
Here, we only discuss the most relevant protocols to our work.

The simplest probabilistic broadcast protocol is probabilistic
flooding [14], [40]. In this scheme, each node rebroadcasts a
message with a fixed probability P . Works by Haas et al. [14]
and Sasson et al. [33] study the rebroadcasting probability P with
regard to the so called phase transition phenomena. Both works
establish that the delivery distribution has a bimodal behavior with

regard to some threshold probability P, in a sense that for any
P > P almost all nodes will receive the message and for P < P

almost none. Both works show that the threshold probability P

is around 0.59 − 0.65; in [33] this is done analytically based on
percolation theory while in [14] it is obtained by simulations. It is
also noted in [14] that the threshold probability depends on nodes
density, yet without providing any theoretical means to evaluate
this dependance. We have studied the delivery distribution using
probabilistic methods in Section III. We have shown that by
making a few probabilistic assumptions, the delivery distribution
function behaves in a concave manner rather than being bimodal.
That is, nodes coverage initially grows fast with P . Then, at some
critical point, the added coverage becomes negligible with further
increase of P . Our protocol is designed with corrective measures
that compensate for situations in which the simplifying assump-
tions do not hold. A generic epidemic model for information
diffusion in MANETs has appeared in [24].

Other probabilistic approaches [14], [29], [40], [41] include
counter-based, distance-based, and location-based mechanisms.
The main idea in these schemes is that the additional space
coverage obtained by each additional broadcast decreases with
the number of broadcasts. For example, [14] presents a variant
of the probabilistic protocol in which every node monitors the
transmissions of its neighbors and rebroadcasts a message if it
has not heard M transmissions of the same message. Yet, those
protocols suffer from increased latency due to the packet delay
introduced at each hop (as explained in Section IV-B.3) and none
of them guarantees reliable dissemination of messages to all nodes
(as explained in Section IV-B).

The works in [28], [35], [47] utilize an adapted probabilistic
flooding that makes use of local density. The approaches of
those works are based on the observation that the retransmission
probability P should be adjusted relatively to the local nodes
density. In [47] this is done through counters, while in [35] the
uniform density is assumed. In [28] a local nodes density is
compared to a network-wide average nodes’ density (which is is
assumed to be known) and the retransmission probability is set to
a higher/lower value if the number of neighbors of a retransmitting
node is less/more than the network average number of neighbors.
However, those works contain little theoretical analysis of the
proposed schemes and like other counter-based or probabilistic
based schemes can also fail to provide reliability on certain
topologies. To the best of our knowledge, our work is the first
to provide a theoretical analysis of the optimal usage of nodes
density in order to set P .

The work in [6] studies three variants of the above ideas.
The first is to retransmit with probability k/ni, where k is
some constant and ni is the size of the neighborhood. The
second method is based on having each node learn its 2-hop
neighborhood and then computing the rebroadcasting probability
based on 1-hop neighborhoods intersections. The final scheme
in [6] also computes the probability according to k/n, but adds a
mechanism in which if a node suspects that some of its neighbors
did not receive the message, it rebroadcast the message regardless
of its initial decision. Unlike the work in [6], we formally analyze
the value of k. Also, we include a gossip and recovery mechanism,
whereas none of the protocols in [6] do so. Consequently, RAPID
is more reliable than any of the schemes of [6]. Moreover, RAPID
has a variant that can deal with many forms of malicious behavior
while the other protocols do not.

10

The color-based scheme has been recently proposed in [23]. In
this scheme, each node forwards a message if it can assign it a
color from a given pool, which it has not already overheard after
a random time. Using geometric analysis, they have shown that
the size of the rebroadcasting group is within a small constant
factor of the optimum. The color-based scheme is actually an
advanced type of a counter-based scheme, and thus incurs similar
latencies and does not guarantee high reliability on arbitrary
topologies. The bounds on the size of the rebroadcasting set in
homogenous dense network in [23] are similar to our analysis
in Section III-A.1. Yet, our analysis is much simpler and holds
for every probabilistic algorithm that picks nodes uniformly at
random in homogenous network, while their analysis only holds
for color-based schemes.

Some works, such as NAPS [11], use probabilistic schemes to
define which nodes can “nap” and which ones should be awake.
The probability is set s.t. node’s sleeping time is proportional to
its degree. Yet, the goal is to save energy while still maintaining
connectivity in a sensor network, whereas our goal is to dissem-
inate data to all nodes of an ad-hoc network efficiently.

A number of works have been designed to provide a reliable
dissemination of messages to all nodes. An approach called
Mistral tries to compensate for missing messages in probabilistic
dissemination by using forward error correction techniques [31].
In contrast, our approach for message recovery is based on gossip.
Also, Mistral cannot cope with malicious or selfish behavior.

The idea that a process can detect that it is missing a message
by exchanging messages with other processes previously appeared
in the MNAK layer of the Ensemble system in 1996 [15].
Additionally, randomized gossip has been used as a method of
ensuring reliable delivery of broadcast/multicast messages while
maintaining high throughput in the PBcast/Bimodal work [3] as
well as in several followup papers, e.g., [9]. In a way, the idea
in our work is an inverse of the idea at PBcast/Bimodal work.
In the PBcast/Bimodal, each node deterministically sends every
message to all the nodes and later gossips about the existing
messages with a random subset of nodes. Conversely, in RAPID
each node disseminates the messages to a random set of nodes
(chosen among its physical neighbors) and later deterministically
gossips about the existing messages with all its neighbors.

Demers et al. were the first to use gossip in the context of
replicated databases in [7]. A generic framework for presenting
gossip protocols was proposed in [19], and in particular high-
lighted the advantages of designing gossiping protocols using
a pull-push approach for higher reliability. This framework was
later extended to ad-hoc networks in [2], [10]. An example of a
protocol for ad-hoc networks that uses a pull-push approach and is
easily expressed in the above framework is [27]. Our protocol can
also be seen as a specific instantiation of pull-push dissemination.

Another protocol for reliable broadcast and manycast in ad hoc
networks called Scribble has been proposed in [43]. In Scribble,
the responsibility for dissemination initially rests with the many-
cast originator, which periodically broadcasts the message, and
is subsequently passed around to other nodes. The termination
condition in Scribble is determined by piggybacking a bit vector
for all known nodes that have received the broadcast message.
Scribble does not employ probabilistic mechanisms and thus
suffers from increased latency and is more message consuming.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have studied the three most common tech-
niques for obtaining reliable broadcast in ad-hoc networks, which
do not rely on an overlay. By analyzing these techniques, we came
to the conclusion that a protocol that combines the benefits of each
technique is needed. We have described such a protocol called
RAPID. The protocol includes a probabilistic flooding phase that
is complemented by two corrective measures, namely, counter
based forwarding and a deterministic gossip based mechanism.
The latter enable recovering messages that were not delivered
by the probabilistic dissemination process while maintaining low
communication overhead.

The probabilistic flooding part of the protocol takes advantage
of the locally observed network’s density in order to send a small
number of messages, yet one that is still sufficient to deliver the
message to most nodes. This is in accordance with our formal
analysis. This provides very rapid dissemination of the message
to most nodes in the system with low message overhead, and in
a way that is scalable in the network density.

Our measurements confirm that for non-sparse networks, our
protocol behaves very well. That is, the protocol obtains very high
delivery ratios quickly and while sending relatively few messages.

REFERENCES

[1] D. Allen. Hidden terminal problems in Wireless LAN’s. In IEEE 802.11
Working Group Papers, 1993.

[2] Z. Bar-Yossef, R. Friedman, and G. Kliot. RaWMS - Random Walk
based Lightweight Membership Service for Wireless Ad Hoc Networks.
In Proc. of the 7th ACM Intr. Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), pages 238–249, 2006.

[3] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, , and Y. Minsky.
Bimodal Multicast. ACM Transactions on Computer Systems, 17(2):41–
88, May 1999.

[4] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A
performance comparison of multi-hop wireless ad hoc network routing
protocols. In Proc. of the 4th ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pages 85–97, 1998.

[5] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad
hoc network research. Wireless Communications & Mobile Computing
(WCMC):, 2(5):483–502, 2002.

[6] J. Cartigny and D. Simplot. Border Node Retransmission Based Prob-
abilistic Broadcast Protocols in Ad-Hoc Networks. Telecommunication
Systems, 22(1–4):189–204, 2003.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In Proc. of the 6th annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 1–
12, New York, NY, USA, 1987. ACM Press.

[8] V. Drabkin, R. Friedman, and M. Segal. Efficient Byzantine Broadcast
in Wireless Ad-Hoc Networks. In Proc. of the 6th IEEE Conference on
Dependable Systems and Networks (DSN), pages 160–169, June 2005.

[9] P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov,
and A.-M. Kermarrec. Lightweight Probabilistic Broadcast. ACM
Transactions on Computing Systems, 21(4):341–374, 2003.

[10] D. Gavidia, S. Voulgaris, and M. van Steen. Epidemic-style Monitoring
in Large-Scale Sensor Networks. Technical Report IR-CS-012, Vrije
Universiteit, Netherlands, March 2005.

[11] P.B. Godfrey and D. Ratajczak. Naps: Scalable, Robust Topology
Management in Wireless Ad Hoc Networks. In IPSN, April 2004.

[12] K. Guo and I. Rhee. Message Stability Detection for Reliable Multicast.
In Proc. of IEEE INFOCOM’2000, March 2000.

[13] P. Gupta and P. Kumar. Critical Power for Asymptotic Connectivity in
Wireless Networks. In Stochastic Analysis, Control, Optimization and
Applications, Birkhauser, Boston, pages 547–566, 1998.

[14] Z. Haas, J. Halpern, and L. Li. Gossip-Based Ad Hoc Routing. In Proc.
of the 21st Conference of the IEEE Communication Society (INFOCOM),
pages 1707–1716, June 2002.

[15] M. Hayden. The Ensemble System. Technical Report TR98-1662,
Department of Computer Science, Cornell University, January 1998.

11

[16] IETF Mobile Ad hoc Networks Working Group. Jitter
considerations in Mobile Ad Hoc Networks (MANETs).
Available at http://www.ietf.org/internet-drafts/
draft-ietf-manet-jitter-04.txt.

[17] IETF Mobile Ad hoc Networks Working Group. The Optimized Link
State Routing Protocol version 2. Available at http://www.ietf.
org/internet-drafts/draft-ietf-manet-olsrv2-04.
txt.

[18] F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Broadcasting in Hybrid
Ad Hoc Networks. In Proc. 2nd Annual Conference on Wireless On
demand Network Systems and Services (WONS), 2005.

[19] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen. Gossip-based peer sampling. ACM Transactions on Computer
Systems (TOCS), 25(3):8, 2007.

[20] J. Jensen. Jensen’s inequality. http://planetmath.org/
encyclopedia/JensensInequality.html.

[21] D.B. Johnson and D.A. Maltz. Dynamic Source Routing in Ad Hoc
Wireless Networks. In Mobile Computing, volume 353. 1996.

[22] A.-M. Kermarrec and M. van Steen. Gossiping in Distributed Systems.
SIGOPS Operating Systems Review, 41(5):2–7, 2007.

[23] A. Keshavarz-Haddad, V. J. Ribeiro, and R. H. Riedi. Color-based
broadcasting for ad hoc networks. In Proc. of the 4th IEEE Int.
Symposium on Modeling and Optimization in Mobile, Ad-Hoc and
Wireless Networks (WiOpt), pages 49–58, April 2006.

[24] A. Khelil, C. Becker, J. Tian, and K. Rothermel. An Epidemic
Model for Information Diffusion in MANETs. In Proc. of the 5th
ACM International Workshop on Modeling Analysis and Simulation of
Wireless and Mobile Systems (MSWIM), pages 54–60, 2002.

[25] A. Laouiti, A. Qayyum, and L. Viennot. Multipoint Relaying: An
Efficient Technique for Flooding in Mobile Wireless Networks. In Proc.
35th IEEE Annual Hawaii International Conference on System Sciences
(HICSS), 2001.

[26] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks, 2004.

[27] J. Luo, P. Eugster, and J.-P. Hubaux. PILOT: ProbabilistIc lightweight
group communication system for mobile ad hoc networks. IEEE Trans.
on Mobile Computing, 3(2):164–179, April–June 2004.

[28] M. O. Khaoua M. B. Yassein, L. M. Mackenzie, and S. Papanastasiou.
Improving the Performance of Probabilistic Flooding in MANETs. In
Proc. of Int. Workshop on Wireless Ad-hoc Networks (IWWAN), 2005.

[29] H. Miranda, S. Leggio, L. Rodrigues, and K. Raatikainen. A Power-
Aware Broadcasting Algorithm. In In Proc. of The 17th Annual
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’06), September 2006.

[30] M. D. Penrose. Random Geometric Graphs. Oxford Press, 2003.
[31] S. Pleisch, M. Balakrishnan, K. Birman, and R. van Renesse. MISTRAL:

Efficient Flooding in Mobile Ad-hoc networks. In Proc. of the 7th ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), pages 1–12, 2006.

[32] E. Royer, P. Melliar-Smith, and L. Moser. An Analysis of the Optimum
Node Density for Ad hoc Mobile Networks. In Proc. of the IEEE
International Conference on Communications, June 2001.

[33] Y. Sasson, D. Cavin, and A. Schiper. Probabilistic Broadcast for
Flooding in Wireless Mobile Ad hoc Networks. In Proc. of the IEEE
Wireless Comm. and Networking Conference (WCNC), March 2003.

[34] B. Schneier. Applied Cryptography. Wiley, 1996.
[35] D. Scott and A. Yasinsac. Dynamic probabilistic retransmission in ad

hoc networks. In Proc. of the Int. Conference on Wireless Networks
(ICWN), pages 158–164, Las Vegas, Nevada, June 2004.

[36] K. Singh, A. Nedos, G. Gaertner, and S. Clarke. Message Stability and
Reliable Broadcasts in Mobile Ad-Hoc Networks. In Proc. of the 4th
ADHOC-NOW, pages 297–310, October 2005.

[37] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating Sets and Neighbor
Elimination Based Broadcasting Algorithms in Wireless Networks. IEEE
Trans. on Parallel and Distributed Systems, 13(1):14–25, January 2002.

[38] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996. 3rd Ed.
[39] C.K. Toh. Ad Hoc Mobile Wireless Networks. Prentice Hall, 2002.
[40] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu. The broadcast storm

problem in a mobile ad hoc network. Wireless Networks, 8(2/3):153–
167, 2002.

[41] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih. Adaptive approaches to relieving
broadcast storms in a wireless multihop mobile ad hoc networks. In
Proc. of the 21st International Conference on Distributed Computing
Systems (ICDCS), pages 481–488, 2001.

[42] Cornell University. JiST/SWANS Java in Simulation Time / Scalable
Wireless Ad Hoc Network Simulator. Available at http://jist.
ece.cornell.edu/.

[43] E. Vollset and P. Ezhilchelvan. Enabling reliable many-to-many com-
munication in ad-hoc pervasive environments. In Proc. of the 2nd Intr.
Workshop on Mobile Peer-to-Peer Computing (MP2P), 2005.

[44] B. Williams and T. Camp. Comparison of broadcasting techniques for
mobile ad hoc networks. In Proc. of the 3rd Intr. Symp. on Mobile Ad
Hoc Networking & Computing (MobiHoc), pages 194–205, 2002.

[45] C.W. Wu and Y.C. Tay. AMRIS: A Multicast Protocol for Ad-Hoc
Wireless Networks. In Proc. of the IEEE MILCOMM, Nov. 1999.

[46] J. Wu and H. Li. On Calculating Connected Dominating Sets for
Efficient Routing in Ad Hoc Wireless Networks. In Proc. of the 3rd
DialM, pages 7–14, 1999.

[47] Q. Zhang and D. P. Agrawal. Dynamic probabilistic broadcasting in
MANETs. Journal of Parallel Distributed Computing, 65(2):220–233,
2005.

APPENDIX

A. Bounding a broadcast probability Psend

Lemma 3.1 (restated) Denote by Psend the probability that a
random node rebroadcasts a message m. Then, for n ≥ 50 and
c1 = 1− β

29

Psend ≥ c1β
ab

πr2(n− 1)

Proof: According to the algorithm, Psend = min(1, β

nq
), while

nq is the number of neighbors of q. We have assumed that the network
is connected and therefore nq > 0.

Psend =

n−1R
k=1

(Psend |nq = k)Pr(nq = k) =

n−1R
k=β

β

k
Pr(nq = k) +

β−1R
k=1

1 Pr(nq = k) =

n−1R
k=1

β

k
Pr(nq = k)−

β−1R
k=1

β

k
Pr(nq = k) +

β−1R
k=1

1 Pr(nq = k).

For every two nodes p and q, let Rp,q be a 0-1 random variable
indicating whether nodes p and q are neighbors. Two nodes are
neighbors if and only if they are at distance at most r from each
other. Therefore, Pr(Rp,q = 1) = πr2

ab . For simplicity, denote
πr2

ab = R. We have:

Pr(nq = k) = S n− 1

k T Rk(1 −R)n−1−k

and

E[nq] =

n−1R
k=0

k Pr(nq = k) =

n−1R
k=0

k S n− 1

k T Rk(1−R)n−1−k = (n−1)R

We separate the sum in Psend into two components and bound
each one separately:

1) A1 = U n−1
k=1

β
k Pr(nq = k) ≥ β

(n−1)R

2) A2 = U β−1
k=1 (β

k − 1) Pr(nq = k) ≤ β
29A1, for n ≥ 50.

Preliminary 1.1: Jensen’s inequality in probabilistic set-
ting [20]: Let X be some random variable, and let f(x) be a
convex function (defined at least on a segment containing the
range of X). Then the expected value of f(X) is at least the
value of f at the mean of X:

E[f(X)] ≥ f(E[X]).

12

We can use Jensen’s inequality to bound A1, since in our case
f(nq) = β

nq
is indeed a convex function6:

A1 =

n−1R
k=1

β

k
Pr(nq = k) = E[

β

nq

] ≥
β

E[nq]
=

β

(n− 1)R

As for A2, we will show that it is very small compared to A1,
for the values of n that we consider. Formally,

A2

A1
= V β−1

k=1 S β

k
− 1 T Pr(nq = k)V n−1

k=1
β

k
Pr(nq = k)

≈ V β−1
k=1 S β

k
− 1 TV n−1

k=1
β

k

=

V β−1
k=1

β
k
− (β − 1)V n−1

k=1
β

k

= V β−1
k=1

1
k
− (1− 1/β)V n−1
k=1

1
k

≈
ln (β − 1)− 1 + 1/β

ln (n− 1)
≤

β

29

The first approximation is due to the fact that nq is binomially
distributed random variable with many trials (we assume n to
be large). As such, it has a small variance, and therefore all the
significant contributors to this sum are very close to each other,
i.e., they all lie within a small segment. We can thus say that
Pr(nq = k) are approximately equal for all k and reduce the
numerator and the denominator by Pr(nq = k). In the second
approximation we have used the formula of harmonic numbers,
i.e., Hn = U n

i=0
1
n ≈ ln n.

Finally, ln (β−1)−1+1/β
ln (n−1)

≤ β/29 holds any β and n ≥ 50.
We can now conclude the proof by substituting the two

components into Psend:

Pr(Sendq = 1) = A1 −A2 ≥ A1 −
β

29
A1 ≥

(1− β
29)β

(n− 1)R

B. Maliciousness Resilient RAPID

Due to its probabilistic nature, RAPID can be resilient to many
forms of malicious behavior. Since the decisions that every node
takes are based only on the number of its neighbors and the
transmissions it hears, the attacks that a malicious node can
perform are quite limited. We describe below how the protocol
was modified in order to overcome these attacks.

1) Malicious Tolerant RAPID in Details: We use digital sig-
natures in order to prevent a malicious node from forging others’
messages or trying to impersonate other nodes. Each device p

holds a private key kp, known only to itself, with which p can
digitally sign every message it sends [34]. We assume a malicious
node cannot forge signatures and that each device can obtain the
public key of every other device, and can thus authenticate the
sender of any signed message.

The originator p of a message m adds two signatures to m

before it broadcasts m. The first signature is calculated on the
concatenation of m, p’s node id, and m’s message id, in order
to bind between the context of the message, the node id of its
originator and the message id. The second signature is performed
on the p’s node id and the message id. The objective of the
second signature being attached to the message is to speed up the
dissemination of gossip messages in the system. That is, in our
protocol, every time a node q receives a data message m, q sends

6This is also a case of weighted arithmetic and harmonic means inequality.
That is, W n

i=1
wixiW n

i=1
wi

≥ W n
i=1

wiW n
i=1

wi
xi

.

Upon send(msg) by application do

(C01) gos msg := msg id||node id||sig(msg id||node id);

(C02) data msg := msg id||node id||msg||sig(msg id||node id||msg)

||sig(msg id||node id);

(C03) prob bcast(prob = 1, data msg, DATA);
(C04) lazycast(gos msg, GOSSIP);

Upon receive(msg, DATA or DATA REPLY) sent by pj do

(C05) if (verify signature(msg) = TRUE) then
(C06) if (have not received this msg before) then
(C07) Accept(pj , msg); /*forward it to the application*/

(C08) cast queue.add(prob = min(1, β

|trusted neighbors|
),

time=random(0, short jitter), msg, DATA);

(C09) lazycast(gos msg, GOSSIP);
(C10) endif;
(C11) else /* the message is not correct */

(C12) suspect(pj);

(C13) endif;

Upon receive(gos msg, GOSSIP) sent by pj : do

(C14) if (verify signature(gos msg) = TRUE) then
(C15) if (there is no message that fits the gos msg) then

(C16) expect(gos msg,pj);

(C17) /* Ask from the node that sent the gossip to send the real message */

(C18) send(gos msg, REQUEST, pj);

(C19) endif;
(C20) else /* the message is not correct */

(C21) suspect(pj);

(C22) endif;

Upon receive(gos msg, REQUEST, pk) sent by pj do

(C23) if (verify signature(gos msg) = TRUE) then
(C24) if (I am pk and I have the msg that matches gos msg) then

(C25) prob bcast(prob = 1, msg,DATA REPLY);

(C26) endif;
(C27) else /* the message is not correct */

(C28) suspect(pj);

(C29) endif;

Fig. 18. Maliciousness Resilient RAPID (lines that were modified w.r.t
Figure 4 are boxed)

a gossip message about m to its neighbors. However, the first
signature binds both the message header (sender id and message
id) with the message data. Thus, a node that receives a message
m cannot generate a valid gossip message for m only based on
the first signature. The second signature is the one that should be
sent with the gossip message. This enables any node that receives
m to immediately start gossiping about m, and be able to attach
a valid signature that was generated by the originator of m, to
the gossip message. Otherwise, without the second signature, a
receiver q of m would have had to wait for a separate gossip
message about m before q could have started gossiping about m.

The pseudo-code for the maliciousness resilient protocol ap-
pears in Figure 18. It introduces four new primitives: send,
verify signature, suspect and expect, and the retrans-
mission probability is being computed based on the number of
trusted neighbors (trusted neighbors). The neighbors of a node
p that p has not suspected yet of being malicious form its set
of trusted neighbors. The primitive send is a point to point
send. The primitive verify signature verifies that sig(m)

13

matches m. If it does not then m is ignored and the node
that sent it is suspected by the receiver of the message. The
primitive suspect permanently removes a node pj that was
caught forging a message from the list of trusted neighbors (i.e.,
pj sent a message with a signature that fails to authenticate).
On the other hand, expect accepts two parameters: a gossip
message and a node id pj . A node p that executes expect sets
a timer such that the given message must be received from pj

before the timer expires. If such a message is not received in time,
then pj is temporarily removed from the list of trusted neighbors
of p. We use it to temporarily suspect a node that sent a gossip
but refused to deliver the corresponding message.

As mentioned before, in the malicious resilient version of
RAPID, each node only counts its one-hop neighbors that it
has not suspected yet of being malicious. This is because if a
node is malicious, it might not execute the protocol correctly,
and in particular refuse to forward some messages even when
it should do so probabilistically. Hence, if a correct node p is
located in an area with many malicious nodes, then p’s broadcast
probability will become higher due to the fact that it will ignore
those malicious nodes in counting its neighbors. Even if malicious
nodes manage to mislead a correct node p by pretending to
be correct nodes, the worst thing that can happen is that p’s
broadcast probability will be lower. In this case, any message
m that is not sent by the probabilistic rebroadcasting mechanism
will still be forwarded to p’s neighbors either if p does not hear
a retransmission by any of its neighbors or via the gossip/request
protocol. Either way, the reliability of the protocol will not
be degraded. The only thing that can suffer is the latency of
delivering the message to all the nodes.

Also, notice that the protocol in Figure 18 uses point-to-point
requests (for missing messages) and unconditional replies (node
that was requested a message will send it to the requesting node
regardless of other nodes and other messages), rather than prob-
abilistically broadcasting requests and replies as in the previous
versions of the protocol. This is done in order to prevent attacks in
which malicious nodes “convince” some nodes not to send their
messages. For example, consider the following scenario, which
is possible with the recovery scheme of Figure 4. A malicious
node p can continuously broadcast REQUEST messages such that
its close neighbors will hear the transmission of the messages,
while the rest of its neighbors will not hear the transmissions of
those REQUEST messages. Consequently, the nearby neighbors
of p will not broadcast REQUEST messages even if they miss
some messages, since they have heard the transmissions of the
corresponding REQUEST messages by p. Hence, these neighbors
of p will never obtain messages that they failed to receive using
the probabilistic dissemination phase. A similar attack is for
a malicious node p to always rebroadcast DATA messages in
response for REQUEST messages, but to do so such that only
the close neighbors of p will receive that DATA message, and
will therefore never retransmit it themselves. In this case, the
other neighbors of p might never receive such messages. Hence,
by using point-to-point requests for missing messages, we slightly
enlarge the overhead of the protocol on one hand, but on the other
hand, we increase the reliability of the protocol.

It would have been possible to use a similar mechanism to
the one used in Enhanced RAPID in lines B13 and B16, but
that would have required an additional twist. In order to continue
using the scheme of lines B13 and B16, each node would have

had to store additional information about messages it has decided
not to broadcast due to broadcasts by its neighbors. If some node
p receives the same REQUEST (GOSSIP) message several times
and p has cancelled the rebroadcast of the corresponding DATA
(REQUEST) message, then p would have to rebroadcast the
message (with probability 1) immediately. The code in Figure 18
does not include this optimization for simplicity.

2) Resilience Against Malicious Attacks: Below we specify
a number of specific attacks, which are being overcome by
Maliciousness Resilient RAPID. Those attacks include : (1)
forwarding a message with the wrong data, (2) not forwarding
some/all messages (this is known as selfish behavior7), (3) sending
gossip messages without ever supplying the real messages in order
to confuse other nodes, (4) trying to collide others’ messages,
and (5) sending messages as point-to-point messages instead of
broadcast messages, thus causing a correct node to decide not to
rebroadcast a message, even if it is the only one among all its
neighbors that has received the message.

As mentioned above, the first attack is solved by adding
signatures. That is, the originator of a message m signs the
message with its private key and attaches this signature to the
message. Thus, every node p that receives m from q checks m’s
signature and if the signature does not match the content of m,
p will suspect q and will not accept the message. Moreover, p

will no longer count q as one of its neighbors for the purpose of
calculating the rebroadcasting probability.

The second attack is solved as follows. If a malicious node
does not rebroadcast a message m to all its neighbors, then our
protocol guarantees that in any case one of its neighbors will do
it. Hence, as long as the correct nodes form a connected sub-
network, every message will be disseminated to all of them.

The third attack is solved using a simple timeout mechanism.
When a node p receives a gossip from q about a message m that
p is missing, then in addition to sending a request for m to q, p

starts a timer. If p does not receive m from q after the timeout,
it starts suspecting q as being malicious. In this case, p stops
counting q for calculating its rebroadcasting probability.

As for the fourth attack, in our model we assumed that all
messages are delivered with a non-zero probability. Hence, by
assumption, the fourth attack is not possible. The rational behind
this is twofold: first, if malicious nodes are allowed to collide all
messages, then no protocol can ensure reliable delivery. Second,
if all nodes are battery operated, jamming the channel will drain
the battery very quickly, and hence such an attack cannot last for
too long. In particular, whenever malicious nodes are only selfish,
rather than mean, then the fourth attack does not make sense in
any case, since it hurts everyone, including themselves.

Finally, if a malicious node sends a point-to-point message
instead of rebroadcasting it, our gossip mechanism will ensure
that the message will still be propagated, yet with an increased
delay. In addition, some lower level mechanisms can be used,
such as forcing nodes to send messages and listen to messages
only on IP-multicast addresses. Moreover, it is possible to verify
that a received IP-multicast message was also sent to a MAC
destination broadcast address rather than to a point-to-point
destination address.

7Giving incentives for nodes to participate is beyond the scope of this work.
Here we only focus on overcoming selfish behavior so that it does not prevent
correct nodes from receiving messages, assuming that the correct nodes form
a connected sub-network.

14

