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Abstract—Wireless energy transfer based on magnetic resonant
coupling is a promising technology to replenish energy to sensor
nodes in a wireless sensor network (WSN). However, charging
sensor node one at a time poses a serious scalability problem.
Recent advances in magnetic resonant coupling shows that
multiple nodes can be charged at the same time. In this paper,
we exploit this multi-node wireless energy transfer technology to
address energy issue in a WSN. We consider a wireless charging
vehicle (WCV) periodically traveling inside a WSN and charging
sensor nodes wirelessly. We propose a cellular structure that
partitions the two-dimensional plane into adjacent hexagonal
cells. The WCV visits these cells and charge sensor nodes from
the center of a cell. We pursue a formal optimization framework
by jointly optimizing traveling path, flow routing and charging
time. By employing discretization and a novel Reformulation-
Linearization Technique (RLT), we develop a provably near-
optimal solution for any desired level of accuracy.

I. INTRODUCTION

Wireless energy transfer based on magnetic resonant cou-
pling is widely regarded as a breakthrough technology in
our time [9]. By having magnetic resonant coils operating at
the same resonant frequency, Kurs et al. demonstrated that
energy could be transferred efficiently from one source coil
to one receiver coil via nonradiative electromagnetic field
(without any physical contact, i.e., wirelessly).1 What makes
such wireless energy transfer technology particularly attractive
is that it does not require line-of-sight (LOS) or any alignment
(i.e., omnidirectional), and is insensitive to the neighboring
environment. Since its inception, magnetic resonant coupling
has quickly found commercial applications (see, e.g., [12],
[15], [22]).

In [17], we first applied this technology for a wireless sensor
network (WSN) and showed that through periodic wireless
energy transfer, a WSN could remain operational forever, i.e.,
infinite lifetime. Specifically, we showed that by having a
wireless charging vehicle (WCV) visit each sensor node in
the network and charge it periodically, one can ensure that
each sensor node never runs out of energy.

An open problem in [17] is scalability. That is, as the node
density increases in a WSN, how can a WCV ensure that
each node is charged in a timely manner without running out

For correspondence, please contact Prof. Y.T. Hou, Dept. of Electrical
and Computer Engineering, 302 Whittemore Hall, MC 0111, Virginia Tech,
Blacksburg, VA 24061, USA. Email: thou@vt.edu.

1It is important to note that magnetic resonant coupling is different from
radiative energy transfer [14], [16]. The latter has much lower energy transfer
efficiency.

of energy? The technology developed in [9] was limited to
charging one node at a time and is not scalable as network
node density increases.

Kurs et al. also recognized this problem and recently de-
veloped an enhanced technology (by properly tuning coupled
resonators) that allows energy to be transferred to multiple
receiving nodes simultaneously [10]. They also showed that
the overall output efficiency of charging multiple devices
was larger than the output efficiency of charging each device
individually.

Inspired by this new advance in wireless energy transfer, in
this paper, we explore how such multi-node charging technol-
ogy can address the scalability problem in charging a WSN.
Following the setting in [17], we consider a WCV periodically
traveling inside the network and charging sensor nodes at
different stops along its traveling path. Upon completing each
trip, the WCV returns to its home service station, takes a
“vacation”, and starts out for its next trip cycle. In contrast
to [17], the WCV is now capable of charging multiple nodes
at the same time, as long as these nodes are within its charging
range. Under this setting, we ask the following fundamental
question: Can such multi-node charging technology address
the scalability problem in a dense WSN?

To answer this question, we take a formal optimization
approach in this study. Based on the charging range of a
WCV, we propose a cellular structure that partitions the two-
dimensional plane into adjacent hexagonal cells (similar to
cellular structure for cellular telecommunications). To charge
the sensor nodes in a cell, the WCV only needs to visit
the center of the cell. Based on a general energy charging
model, we formulate a joint optimization problem for traveling
path, flow routing and charging time, with the objective of
maximizing the ratio of the WCV’s vacation time (time spent
at its home service station) over the cycle time. We show
that our optimization problem is a nonlinear program (NLP)
and is NP-hard in general. By employing discretization and
a novel Reformulation-Linearization Technique (RLT), we
develop a provably near-optimal solution for any desired level
of accuracy. Using numerical results, we show that our solution
can effectively address the charging scalability problem in a
dense WSN.

The rest of this paper is organized as follows. In Section II,
we describe the mathematical model in our study. Section III
presents a formulation of our optimization problem and dis-
cusses several interesting properties associated with an optimal
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Fig. 1. An example sensor network with a mobile WCV.

solution. In Section IV, we develop a near-optimal solution.
In Section V, we present numerical results to demonstrate our
solution. Section VI concludes this paper.

II. MATHEMATICAL MODELING

A. Cellular Structure and Energy Charging Behavior

We consider a set of sensor nodes N distributed over a two-
dimensional area (see Fig. 1). Each sensor node has a battery
with a capacity of Emax and is fully charged initially. Also,
denote Emin as the minimum level of energy at a battery for it
to be operational. Each sensor node i generates sensing data
with a rate Ri (in b/s), i ∈ N . Within the sensor network,
there is a fixed base station (B), which is the sink node for all
data generated by all sensor nodes. Multi-hop data routing is
employed for forwarding all data streams to the base station.

To recharge the battery at each sensor node, a WCV is
employed. The WCV starts at the service station (S), and
travels (at speed of V m/s) to various spots inside the network
to charge sensor nodes. As discussed, the WCV can charge
multiple nodes simultaneously as long as they are within its
charging range, denoted as D. The charging range D is chosen
such that the power reception rate at a sensor node is at
least over a threshold (denoted as δ) when it is within this
range from the WCV. The power reception rate at a sensor
node i, denoted as Ui, is a distance-dependent parameter, and
decreases with the distance between itself and the WCV. When
a sensor node is more than a distance of D away from the
WCV, we assume its power reception rate is too low to make
magnetic resonant coupling work properly at a sensor node
battery.

Based on this model, we partition the two-dimensional plane
with hexagonal cells with side length of D (see Fig. 2). To
charge sensor nodes in a cell, the WCV only needs to visit the
center of a cell, as all sensor nodes within a hexagonal cell are
within a distance of D from the cell center.2 For tractability

2We ignore the “edge effect” where a sensor node residing outside the cell
but inside the circle with a radius of D can still be charged from this cell.
Note that such omission of over-charging will not affect the feasibility of our
solution.
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Fig. 2. An example sensor network with a mobile WCV. Solid dots represent
cell centers and empty circles represents sensor nodes.

in our analysis, we assume that the WCV will only visit the
center of a cell.

Under the cellular structure, denote Di the distance from
node i to its cell center. Then nodes i’s power reception rate
is Ui = μ(Di) ·UFull, where UFull is the full output power from
WCV for a single sensor node and μ(Di) is the efficiency
of wireless power transfer. Note that μ(Di) is a decreasing
function of Di and 0 ≤ μ(Di) ≤ 1.

Under this setting, we are interested in finding out how
the WCV should travel among these cell centers so that (i)
none of the sensor nodes will ever run out of energy, and
(ii) some performance objective can be optimized. In the rest
of this section, we present mathematical characterization of
the WCV’s traveling path and cycle time (Section II-B), data
flow routing and energy consumption model (Section II-C),
and energy dynamics at a sensor node (Section II-D).

B. WCV Traveling Path and Cycle Time

Denote Q the set of hexagonal cells containing at least one
sensor node (see Fig. 3). Re-index these cells in Q as k =
1, 2, · · · , |Q| and denote Nk the set of sensor nodes in the kth
hexagonal cell. Then N =

⋃
k∈QNk.

Denote τk the time span for the WCV to be present at the
center of cell k ∈ Q. Throughout τk, the WCV re-charges
all sensor nodes within this hexagonal cell simultaneously
via multi-node charging technology [10]. After τk, the WCV
leaves the current cell and travels to the next cell on its path. In
our formulation, we assume that the WCV visits a cell only
once during a cycle. Denote P = (π

0
, π

1
, . . . , π

|Q|
, π

0
) the

physical path traversed by the WCV during a cycle, which
starts from and ends at the service station (i.e., π

0
= S)

and the kth cell traversed by the WCV along path P is π
k
,

1 ≤ k ≤ |Q|. Denote D
P

the physical distance of path P and
τ
P
= D

P
/V the time spent for traveling over distance D

P
.

After the WCV visits all |Q| cells in the network, it will
return to its service station to be serviced (e.g., replacing its
battery, maintenance service, vacation) before the next trip. We
call this resting period vacation time, denoted as τ

vac
. After

this vacation, the WCV will go out for its next trip. Denote
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Fig. 3. An example sensor network with a mobile WCV. Only those cells
with sensor nodes are shown in this figure.

the time of a traveling cycle of the WCV as τ . Then this cycle
time τ can be written as

τ = τ
P
+ τ

vac
+
∑

k∈Q τk , (1)

where
∑

k∈Q τk is the total amount of time the WCV spends
for battery charging. We assume that the WCV has sufficient
energy to charge all sensor nodes before returning to its service
station.

In this setting, a number of performance objectives can be
considered. Similar to our work for single-node charging in
[17], we study how to maximize the percentage of time in a
cycle that the WCV can take vacation (i.e., τvac

τ
). In practice,

this is equivalently to minimizing the percentage of time that
the WCV is out in the field.

C. Data Flow Routing and Energy Consumption

To model multi-hop data routing, denote fij and fiB the
flow rates from sensor node i to sensor node j and the base
station B, respectively. Then we have the following flow
balance constraint at each sensor node i.

∑k �=i

k∈N fki +Ri =
∑j �=i

j∈N fij + fiB (i ∈ N ) . (2)

Although both flow routing and flow rates are part of our
optimization problem, we assume they are independent of
time.

In this paper, we use the following energy consumption
model at each sensor node [7]. To transmit a flow rate of
fij from node i to node j, the transmission power is Cij · fij ,
where Cij is the rate of energy consumption for transmitting
one unit of data rate from node i to node j, and is modeled
as

Cij = β1 + β2D
α
ij .

Dij is the distance between nodes i and j, β1 is a distance-
independent constant term, β2 is a coefficient of the distance-
dependent term and α is the path loss index. Similarly, denote
CiB as the rate of energy consumption for transmitting one
unit of data rate from node i to the base station B. Then the
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Fig. 4. The energy level of node i ∈ Nk during the first three cycles.

aggregate energy consumption rate for transmission at node i
is

∑j �=i

j∈N Cij · fij + CiB · fiB .

The energy consumption rate for reception at node i is mod-
eled as ρ

∑k �=i
k∈N fki, where ρ is the rate of energy consumption

for receiving one unit of data rate.

Denote pi as the energy consumption rate at sensor node i ∈
N , which includes energy consumption both for transmission
and reception. We have

pi = ρ
∑k �=i

k∈N fki +
∑j �=i

j∈N Cijfij + CiBfiB (i ∈ N ) . (3)

D. Energy Dynamics at a Sensor Node

In Section II-B, we discussed the behavior of WCV over
a cycle time of τ , during which the WCV starts from the
service station, travels to those cells that have sensor nodes,
and returns to the service station (see Fig. 3).

When the WCV charges sensor nodes in a cell, each node
in the same cell usually does not reach Emax at the same time.
So a node that reaches Emax before the WCV departs the cell
will be in a “saturation” state where its battery will remain at
Emax until the WCV departs this cell (see Fig. 4).

We now develop constraints to capture the saturation phe-
nomena while ensuring that the energy level of each node
never falls below Emin. Denote ei(t) as node i’s energy level
at time t. The energy curve of node i ∈ Nk in a cell k for
the first three cycles is shown in Fig. 4. For any cycle, we see
that there can be only three possible slopes: (i) a slope of −pi
when the WCV is not in node i’s cell, (ii) a slope of (Ui−pi)
when the WCV is at node i’s cell and is charging node i at
rate Ui,3 and (iii) a slope of 0 (i.e., saturation period) when
node i stays at Emax while the WCV is still charging.

Denote ak as the arrival time of the WCV at cell k in the
first cycle. Denote Dπ

0
π
1

the distance between the service
station and the first cell visited along P and Dπ

l
π
l+1

, the
distance between the lth and (l+1)th cells, respectively. Then
we have

aπk
=

k−1∑
l=0

Dπ
l
π
l+1

V
+

k−1∑
l=1

τπl
, k = 1, 2, . . . , |Q|. (4)

3Note that it is necessary to have Ui ≥ pi, i ∈ N , to achieve a feasible
solution.
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Note that ei(mτ + ak), m ∈ N, is a local minimum for
ei(t). To have ei(t) ≥ Emin for all t ≥ 0, it is sufficient to
have

ei(mτ + ak) = ei(mτ)− ak · pi ≥ Emin

for all m ∈ N, i ∈ Nk, k ∈ Q.

When m = 0, ei(ak) = ei(0)−ak ·pi = Emax −ak ·pi. For
ei(ak) ≥ Emin, we must have

Emax − ak · pi ≥ Emin (i ∈ Nk, k ∈ Q) . (5)

When m ≥ 1,

ei(mτ + ak) = ei(mτ)− ak · pi

= ei((m− 1)τ + ak + τk)

−{mτ − [(m− 1)τ + ak + τk]} · pi

−ak · pi

= ei((m− 1)τ + ak + τk)− (τ − τk) · pi

≤ Emax − (τ − τk) · pi , (6)

where the last inequality holds since ei cannot exceed Emax.
For (6), if ei(mτ + ak) ≥ Emin for all m ≥ 1, then we must
have

Emax − (τ − τk) · pi ≥ Emin (i ∈ Nk, k ∈ Q) . (7)

Now we show that once (7) holds, (5) must also hold.
Therefore, we can remove (5) in the formulation. To see this,
we have ak + τk < τ , which leads to Emax − ak · pi >
Emax − (τ − τk) · pi.

Note that (7) is a necessary condition for ei(t) ≥ Emin. The
following is a second necessary condition for ei(t) ≥ Emin.

τ · pi − Ui · τk ≤ 0 (i ∈ Nk, k ∈ Q) , (8)

which says that the amount of energy being charged to node
i ∈ Nk during the time period of τk, Ui · τk, must be greater
than or equal to the amount of energy consumed during the
cycle, τ · pi. (8) can be easily proved by showing that if τ ·
pi − Ui · τk > 0, then ei(t) will fall below Emin eventually at
some time t.

We have shown that (7) and (8) are necessary conditions
for ei(t) ≥ Emin. It turns out that they are also sufficient
conditions. We state this result in the following lemma.

Lemma 1: ei(t) ≥ Emin for all t ≥ 0, i ∈ N , if and only if
both constraints (7) and (8) are satisfied.

The “only if” part of the lemma (i.e., (7) and (8) are neces-
sary conditions) was already proved in earlier discussion. We
only need to prove the “if” part of the lemma. Recall that, to
have ei(t) ≥ Emin, it is sufficient to have ei(mτ+ak) ≥ Emin,
for m ∈ N, i ∈ N . Therefore, we can show that if (7) and (8)
hold, ei(mτ + ak) ≥ Emin, for m ∈ N, i ∈ N . We omit the
formal proof here due to space limit and refer readers to [21]
for details. The following corollary follows from the proof of
Lemma 1.

Corollary 1.1: When the WCV departs cell k, k ∈ Q, each
sensor node i ∈ Nk is fully charged to Emax.

III. PROBLEM FORMULATION AND PROPERTIES

Based on the constraints that we have discussed in Sec-
tion II, a number of optimization problems can be formulated.
One performance objective is to maximizing the ratio of τvac

τ
,

which is a measure of the percentage of time the WCV is in
vacation over its cycle time. A plausible goal is to maximize
this ratio so that the WCV can spend most percentage of
time on vacation (or equivalently, least percentage of time
in the field). Mathematically, this is also a very challenging
objective, as it involves a ratio of two variables. Therefore,
a successful solution to this optimization problem will help
pave the way to solve many other optimization problems with
simpler objectives.

We now summarize our optimization problem as follows.

max
τvac
τ

s.t. (1), (2), (3), (7) and (8)

τ, τ
P
, τ

vac
, τk, fij , fiB ≥ 0 (i, j ∈ N , i �= j)

0 ≤ pi ≤ Ui (i ∈ N )

In this problem, time intervals τ , τ
P

, τ
vac

and τk, flow rates
fij and fiB , and power consumption rate pi are optimization
variables; Ri, ρ, Cij , CiB , Ui, Emax, and Emin are constants.
Note that τ

P
can be determined once the traveling path P is

determined.

This problem is a nonlinear program (NLP), with nonlinear
objective ( τvac

τ
) and nonlinear terms (τ · pi and τk · pi) in

constraints (7) and (8). An NLP is NP-hard in general. Nev-
ertheless, we can still find several useful properties associated
with an optimal solution.

Property 1: In an optimal solution with the maximal τvac
τ
,

the WCV must move along the shortest Hamiltonian cycle
that connects the service station and the centers of cells
k ∈ Q. If the shortest Hamiltonian cycle is not unique, then
any shortest Hamiltonian cycle can achieve the same optimal
objective. Further, the WCV can follow either clockwise or
counterclockwise direction of the shortest Hamiltonian cycle,
both of which will achieve the same optimal objective.

A proof of this property can be given based on contradiction
and shares a similar idea to a proof in [17].

The shortest Hamiltonian cycle can be obtained by solving
the well known Traveling Salesman Problem (TSP) [1], [3].
Denote D

TSP
as the total path distance for the shortest

Hamiltonian cycle and τ
TSP

= D
TSP

/V . Then (1) becomes

τ −
∑

k∈Q τk − τ
vac

= τ
TSP

. (9)

For (9), we divide both sides by τ and have 1−
∑

k∈Q
τk
τ
−

τvac
τ

= τ
TSP

· 1
τ

. We define η
vac

=
τvac
τ

, which is our objective
function in the optimization problem. Similarly, we define
ηk = τk

τ
, for k ∈ Q, and h = 1

τ
, where ηk represents the

ratio of the charging time at cell k to the entire cycle time.
Then (9) is written as 1 −

∑
k∈Q ηk − η

vac
= τ

TSP
· h, or

equivalently, h =
1−

∑
k∈Q ηk−ηvac

τ
TSP

.
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Fig. 5. The energy level of an equilibrium node i ∈ Nk in the first three
cycles.

Similarly, by dividing both sides by τ , replacing τk
τ

with

ηk, and replacing 1
τ

with
1−

∑
k∈Q ηk−ηvac

τ
TSP

, (7) and (8) can be
reformulated as,

(1− ηk) · pi ≤ (Emax − Emin) ·
1−

∑
j∈Q ηj − η

vac

τ
TSP

(i ∈ Nk, k ∈ Q) , (10)

pi − Ui · ηk ≤ 0 (i ∈ Nk, k ∈ Q) .

We can rewrite (10) as

η
vac

≤ 1−
∑
j∈Q

ηj−
τ
TSP

Emax − Emin
(1−ηk)·pi (i ∈ Nk, k ∈ Q).

Now our problem is reformulated as follows.

OPT

max η
vac

s.t.
∑j �=i

j∈N fij + fiB −
∑k �=i

k∈N fki = Ri (i ∈ N )

ρ ·
∑k �=i

k∈N fki +
∑j �=i

j∈N Cij · fij + CiB · fiB − pi = 0

(i ∈ N )

η
vac

≤ 1−
∑

j∈Q ηj −
τ
TSP

Emax−Emin
(1− ηk) · pi

(i ∈ Nk, k ∈ Q) (11)

pi − Ui · ηk ≤ 0 (i ∈ Nk, k ∈ Q) (12)

fij , fiB ≥ 0, 0 ≤ pi ≤ Ui, 0 ≤ ηk, ηvac
≤ 1

(i, j ∈ N , i �= j)

In this problem, fij , fiB , pi, η
vac

, and ηk are optimization
variables; Ri, ρ, Cij , CiB , Ui, Emax, Emin and τ

TSP
are

constants. Once we obtain a solution to problem OPT, we
can recover τ , τk, and τ

vac
as follows:

τ =
τ
TSP

1−
∑

k∈Q ηk − η
vac

, (13)

τk = τ · ηk , (14)

τ
vac

= τ · η
vac

. (15)

Based on Corollary 1.1, we know that when the WCV
departs a cell k, k ∈ Q, each sensor node in this cell is
fully charged to Emax. Further, some nodes may experience
saturation state at every cycle. The following property says
that in an optimal solution, at least one sensor node in each
cell k ∈ Q will have saturation-free cycles except its initial
first cycle (see Fig. 5)

SOS of type 1

Problem OPT−D (MINLP)

Problem OPT (NLP)

Problem OPT−RLT (MILP)

RLT
(Zero performance gap)

Discretization

(     performance gap)ε

Fig. 6. A flow chart of our solution roadmap.

Property 2: In an optimal solution to OPT, there exists at
least one node in each cell k ∈ Q such that, starting from the
second cycle, the amount of energy reception at the node is
the same as that of the energy consumption in each cycle.

We call such node in Property 2 equilibrium node. Note
that the definition of equilibrium node is different from the
so-called bottleneck node in [17], which is defined as the node
whose energy level drops exactly to Emin upon WCV’s arrival.

Property 2 can be proved by contradiction. That is, suppose
that there exists an optimal solution to problem OPT that has
no equilibrium node in some cell. We can always construct a
new solution which increases the objective value, thus leading
to contradiction. The formal proof of Property 2 is given in
[21].

IV. A NEAR-OPTIMAL SOLUTION

A. Approach

Problem OPT is a nonlinear program (NLP), with bilinear
terms (ηk · pi) in constraints (11). This nonlinear (bilinear)
program is nonconvex [4], and cannot be solved by existing
off-the-shelf solvers.

In this section, we convert the NLP to a mixed-integer linear
program (MILP), which can then be solved efficiently by an
off-the-shelf solver such as CPLEX [8]. First, we discretize
variable ηk in the bilinear term ηk · pi using binary variables.
This converts problem OPT to a 0-1 mixed-integer nonlinear
program (MINLP). By exploiting the special structures of
the 0-1 MINLP, we employ a powerful technique called
Reformulation-Linearization Technique (RLT) [18] to elimi-
nate all bilinear terms. Subsequently, we have a 0-1 MILP, and
we show that this new 0-1 MILP and the 0-1 MINLP have
zero performance gap. This MILP has special ordered sets
(SOS), which can be efficiently solved by CPLEX solver [8].
We quantify performance gap (due to discretization) and prove
near-optimality of our solution. A flow chart of our solution
roadmap is shown in Fig. 6.

B. Solution Details

1) Discretization: As a first step to reformulate the NLP
to MILP, we consider the bilinear term ηk · pi. Since ηk is

14



a continuous variable within [0, 1], we discretize it by using
L+1 discrete points ηkl = l

L
, l = 0, 1, · · · , L. Then we write

ηk =
∑L

l=0 ηkl · zkl k ∈ Q, (16)∑L
l=0 zkl = 1 k ∈ Q, (17)

where zkl is a binary variable that indicates whether or not ηkl
is chosen. By (16), the term ηk · pi in (11) can be rewritten
as ηk · pi =

∑L
l=0 ηkl · zkl · pi, which remains a bilinear term

involving binary variables zkl, l = 1, 2, · · · , L. This makes
the problem a 0-1 MINLP, which is formulated as follows.

OPT-D

max η
vac

s.t.
∑j �=i

j∈N fij + fiB −
∑k �=i

k∈N fki = Ri (i ∈ N )

ρ ·
∑k �=i

k∈N fki +
∑j �=i

j∈N Cij · fij + CiB · fiB − pi = 0

(i ∈ N )

η
vac

≤ 1−
∑

j∈Q

∑L
l=0 ηjl · zjl −

τ
TSP

Emax−Emin

·(pi −
∑L

l=0 ηkl · zkl · pi) (i ∈ Nk, k ∈ Q)(18)

pi − Ui

∑L
l=0 ηkl · zkl ≤ 0 (i ∈ Nk, k ∈ Q)(19)∑L

l=0 zkl = 1 (k ∈ Q)

fij , fiB ≥ 0, 0 ≤ pi ≤ Ui, 0 ≤ η
vac

≤ 1 (i, j ∈ N , i �= j)

zkl ∈ {0, 1} (i ∈ Nk, k ∈ Q, l = 0, · · · , L) .

2) Reformulation and Linearization: To remove the non-
linear terms zkl · pi in the 0-1 MINLP, we employ a pow-
erful technique called Reformulation-Linearization Technique
(RLT) [18] as follows. Define

γikl ≡ zkl · pi, i ∈ Nk, k ∈ Q, l = 0, · · · , L. (20)

Then
∑L

l=0 ηkl ·zkl ·pi can be rewritten as
∑L

l=0 ηkl ·zkl ·pi =∑L
l=0 ηkl · γikl, i ∈ Nk, k ∈ Q.

To replace the nonlinear constraint (20), we need to add RLT
constraints, which are linear. The new linear constraints are
generated by multiplying existing linear constraints for vari-
ables zkl and pi, which are 1−

∑L

l=0 zkl = 0, zkl ≥ 0, pi ≥ 0
and Ui − pi ≥ 0. It is worth pointing out that RLT in [19]
typically refers to multiplying each pair of these constraints
(i.e., reformulation) and generating linear constraints via vari-
able substitution (i.e., linearization). For our problem, this may
produce several redundant or null constraints. To reduce such
redundancy, we exploit a special structure of our problem, i.e.,
the presence of equality constraints 1−

∑L

l=0 zkl = 0. We can
multiply these equality constraints (and zkl ≥ 0) by pi ≥ 0
and Ui − pi ≥ 0. Multiplying 1 −

∑L
l=0 zkl = 0 by pi ≥ 0

gives us
∑L

l=0 zkl · pi = pi i ∈ Nk, k ∈ Q,

which can be rewritten as

L∑
l=0

γikl = pi i ∈ Nk, k ∈ Q. (21)

Multiplying 1 −
∑L

l=0 zkl = 0 by Ui − pi ≥ 0 simply
produces constraint (21), or 1−

∑L

l=0 zkl = 0 if Ui− pi > 0,
or Ui − pi = 0, none of which is new.

Multiplying pi ≥ 0 and Ui−pi ≥ 0 by zkl ≥ 0, respectively,
we have the following RLT constraints.

0 ≤ zkl · pi ≤ Uizkl i ∈ Nk, k ∈ Q, l = 0, · · · , L,

which can be rewritten as

0 ≤ γikl ≤ Uizkl i ∈ Nk, k ∈ Q, l = 0, · · · , L. (22)

In summary, the new RLT constraints are (21) and (22).
By substituting (20) for zkl · pi, and adding the new RLT
constraints (21) and (22), we obtain the following 0-1 MILP.

OPT-RLT

max η
vac

s.t.
∑j �=i

j∈N fij + fiB −
∑k �=i

k∈N fki = Ri (i ∈ N )

ρ ·
∑k �=i

k∈N fki +
∑j �=i

j∈N Cij · fij + CiB · fiB − pi = 0

(i ∈ N )

η
vac

≤ 1−
∑

j∈Q

∑L
l=0 ηjl · zjl −

τ
TSP

Emax−Emin

·(pi −
∑L

l=0 ηkl · γikl) (i ∈ Nk, k ∈ Q) (23)

pi − Ui

∑L
l=0 ηkl · zkl ≤ 0 (i ∈ Nk, k ∈ Q)∑L

l=0 zkl = 1 (k ∈ Q)∑L

l=0 γikl − pi = 0 (i ∈ Nk, k ∈ Q)

γikl − Uizkl ≤ 0 (i ∈ Nk, k ∈ Q, l = 0, · · · , L)

fij , fiB ≥ 0, 0 ≤ pi ≤ Ui, 0 ≤ η
vac

≤ 1 (i, j ∈ N , i �= j)

γikl ≥ 0, zkl ∈ {0, 1} (i ∈ Nk, k ∈ Q, l = 0, · · · , L) .

In this problem, fij , fiB , pi, ηvac
, and γikl are continuous

variables; zkl are binary variables; Ri, ρ, Cij , CiB , Ui, ηkl,
Emax, Emin, and τ

TSP
are constants. The integer variables zkl,

l = 0, 1, · · · , L, are constrained by (17) and form a special
ordered set (SOS) of type 1 (meaning that at most one of the
variables in the set may be non-zero) [2]. It turns out that such
special type of MILP is particularly suitable for CPLEX solve
as CPLEX can use special branching strategies to improve
performance [8].

Through RLT, we have eliminated all bilinear terms in
the 0-1 MINLP and have obtained a 0-1 MILP. A natural
question to ask is how much the performance gap between the
optimal solutions under MINLP and MILP is. The following
lemma says that the performance gap between the two is
zero, thus substantiating the benefits of employing RLT in our
solution approach. By zero performance gap, we mean there
is a bijection from the feasible region of problem OPT-D to
the feasible region of problem OPT-RLT and vice versa; and
any two feasible solutions corresponding to this one-to-one
mapping achieve the same objective value.

Lemma 2: Problem OPT-RLT and problem OPT-D have
zero performance gap.

Our proof consists of two parts. (i) If a solution ψD = (fij ,
fiB, pi, η

vac
, zkl) is feasible to problem OPT-D, then the
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solution ψRLT = (fij , fiB, pi, ηvac
, zkl, γikl) is also feasible to

problem OPT-RLT, where γikl = pi · zkl. (ii) If a solution
ψRLT = (fij , fiB, pi, ηvac

, zkl, γikl) is feasible to problem
OPT-RLT, then the solution ψD = (fij , fiB, pi, ηvac

, zkl) is
also feasible to problem OPT-D. If we can prove both (i) and
(ii) are true, then there is a bijection from the feasible region
of problem OPT-D to the feasible region of problem OPT-
RLT and vice verse; and for any one-to-one solution mapping
between ψD and ψRLT , their objective values are the same. A
formal proof of Lemma 2 is given in [21].

3) Recovering a Solution to the Original Problem: By now,
we have obtained a solvable 0-1 MILP. Once we have an
optimal solution to this MILP, the question to ask is how to
recover a feasible solution to the original problem (OPT). As-
suming we have a solution ψRLT = (fij , fiB, pi, ηvac

, zkl, γikl)
that is optimal to problem OPT-RLT, by Lemma 2, the
solution ψD = (fij , fiB, pi, η

vac
, zkl) is also feasible to

problem OPT-D. Based on ψD , we can construct a solution
ψ = (fij , fiB, pi, ηvac

, ηk) to problem OPT by letting ηk =∑L

l=0 ηkl · zkl, and fij ,fiB , pi and η
vac

unchanged from ψD .
Note that ψ is a feasible solution to problem OPT since the
constraints in problem OPT are the same as those in problem
OPT-D after we replace ηk by

∑L

l=0 ηkl ·zkl. Since ψ is only a
feasible solution to problem OPT, its objective value η

vac
is a

lower bound for problem OPT. We summarize our discussion
in the following lemma.

Lemma 3: For a given optimal solution (fij , fiB, pi, ηvac
,

zkl, γikl) to problem OPT-RLT, we can construct a solution
(fij , fiB, pi, ηvac

, ηk) that is feasible to Problem OPT by
letting ηk =

∑L

l=0 ηkl ·zkl. Furthermore, ηvac
is a lower bound

for the optimal objective value of Problem OPT.

C. Proof of Near-Optimality

Recall that our original problem is OPT, which is a NLP.
We converted this NLP to a 0-1 MINLP via discretization
(problem OPT-D) and then to a 0-1 MILP via RLT (problem
OPT-RLT). We proved that problem OPT-D and problem-
RLT have zero performance gap. So the performance gap
between problems OPT and OPT-RLT could only occur during
discretization.

Quantifying Performance Gap. By solving problem OPT-
RLT, we obtain an optimal solution ψRLT to problem OPT-RLT.
Denote ψ∗ the optimal (unknown) solution to problem OPT.
Denote η

vac
the optimal objective value obtained by ψRLT and

η∗
vac

the optimal objective value obtained by ψ∗, respectively.
Naturally, the gap between η

vac
and η∗

vac
is closely related with

L, which is the number of points used in discretization. We
quantify this gap in the following lemma.

Lemma 4: For a given L, we have η∗
vac

− η
vac

≤ |Q|
L
.

In our proof, we consider two cases, depending on whether
η∗
vac

≤ |Q|
L

or η∗
vac

> |Q|
L

. The first case is trivial since η
vac

≥
0. The second case needs more elaborate effort and we refer
readers to [21] for details.

A Near-Optimal Solution Procedure
1. Given a target performance gap ε.

2. Let L =
⌈

|Q|
ε

⌉
.

3. Solve problem OPT-RLT by CPLEX with a solution ψRLT = (fij , fiB ,.
pi, ηvac , zkl, γikl).

4. Construct a feasible solution ψ = (fij , fiB , pi , ηvac , ηk) to problem
OPT via Lemma 3.

5. Recover τ, τk, τvac by (13), (14) and (15), respectively.

Fig. 7. A summary of the proposed near-optimal solution procedure.

Performance Guarantee. Lemma 4 gives an upper bound
of the performance gap between η

vac
and η∗

vac
for a given L.

The following lemma shows how to choose L so that this
performance gap is no more than ε (0 < ε � 1).

Lemma 5: For a given ε, 0 < ε � 1, if L =
⌈
|Q|
ε

⌉
, we

have η∗
vac

− η
vac

≤ ε.

Proof: By Lemma 4, we know η∗
vac

−η
vac

≤ |Q|
L

. To have

η∗
vac

− η
vac

≤ ε, it is sufficient to have |Q|
L

≤ ε, or L =
⌈
|Q|
ε

⌉
.

This completes the proof.

We summarize our near-optimal solution procedure to OPT in
Fig. 7.

V. NUMERICAL RESULTS

In this section, we present some numerical results to demon-
strate how our solution works to achieve multi-node wireless
energy transfer.

A. Simulation Settings

We assume sensor nodes are deployed over a 1000 m ×
1000 m square area. The base station is at (500, 500) (in m)
and the WCV’s home service station is assumed to be at the
origin. The traveling speed of the WCV is V = 5 m/s. The
data rate Ri, i ∈ N , from each node is randomly generated
within [1, 10] kb/s. The power consumption coefficients are
β1 = 50 nJ/b, β2 = 0.0013 pJ/(b ·m4), and ρ = 50 nJ/b [5].
The path loss index is α = 4.

For the battery at a sensor node, we choose a regular NiMH
battery and its nominal cell voltage and volume of electricity
is 1.2 V/2.5 Ah. We have Emax = 1.2 V×2.5 A×3600 sec =
10.8 kJ [11]. We let Emin = 0.05 ·Emax = 540 J. For μ(Di),
we refer to the experimental data on wireless energy transfer
efficiency in [10] (see Fig. 8). Through curve fitting, we obtain
μ(Di) = −0.0958D2

i−0.0377Di+1.0. Assuming UFull = 5 W
and δ = 1 W, we have D = 2.7 m for a cell’s side length.
We set ε = 0.1 for the numerical results.

B. Results of a 100-node Network

We first present complete results for a 100-node network.
Table I gives the location of each node and its data rate for the
100-node network. These 100 nodes are distributed in |Q| =
32 selected cells and Table II gives the location of each cell as
well as the number of sensor nodes it contains. The shortest
Hamiltonian cycle that threads all cells k ∈ Q and the service
station is found by the Concorde TSP solver [3], which is
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Fig. 8. Efficiency of energy transfer as a function of distance between a
sensor node and the WCV. This figure is based on averaging energy transfer
efficiencies for two devices in the experimental study in [10]..

TABLE I
LOCATION AND DATA RATE Ri FOR EACH NODE IN A 100-NODE

NETWORK.

Node Location Ri Node Location Ri

index (m) (Kb/s) index (m) (Kb/s)
1 (140.8,905.4) 3 51 (613.9,474.1) 9
2 (977.8,913.0) 5 52 (837.1,6.1) 2
3 (679.9,92.7) 4 53 (635.8,216.4) 4
4 (325.8,378.1) 5 54 (165.7,109.6) 7
5 (196.2,526.8) 8 55 (634.9,218.4) 1
6 (546.5,967.0) 2 56 (747.2,33.2) 7
7 (323.4,329.4) 7 57 (821.4,608.6) 5
8 (747.7,33.4) 3 58 (250.1,839.1) 10
9 (838.3,678.0) 1 59 (990.6,617.0) 6

10 (692.5,461.4) 9 60 (977.9,909.0) 4
11 (918.4,517.9) 1 61 (585.6,623.4) 5
12 (613.6,476.1) 1 62 (678.6,91.7) 1
13 (586.2,621.8) 4 63 (613.5,475.9) 1
14 (440.2,17.7) 4 64 (438.8,17.3) 2
15 (813.3,749.9) 7 65 (836.5,680.4) 10
16 (886.2,612.7) 7 66 (321.9,331.2) 3
17 (804.9,329.4) 5 67 (752.3,714.6) 9
18 (633.7,218.4) 4 68 (679.6,93.7) 8
19 (753.3,713.0) 9 69 (838.0,677.4) 6
20 (163.7,108.6) 2 70 (897.2,709.2) 2
21 (672.0,318.1) 10 71 (750.8,712.4) 3
22 (250.2,840.1) 1 72 (635.5,217.4) 7
23 (732.3,965.0) 4 73 (585.4,622.0) 6
24 (197.4,672.2) 6 74 (732.0,966.2) 3
25 (92.7,967.7) 1 75 (91.5,971.3) 2
26 (990.1,617.4) 4 76 (918.6,514.1) 2
27 (804.3,352.0) 7 77 (166.0,109.0) 8
28 (821.5,609.8) 7 78 (90.6,967.7) 10
29 (898.3,708.4) 6 79 (813.4,749.7) 1
30 (688.4,59.1) 3 80 (686.9,59.7) 10
31 (837.3,4.5) 2 81 (587.1,622.4) 2
32 (451.2,135.5) 1 82 (838.2,680.4) 4
33 (979.3,911.8) 8 83 (249.7,842.5) 3
34 (678.9,93.3) 8 84 (139.9,902.0) 7
35 (751.6,714.2) 6 85 (691.4,459.4) 3
36 (633.8,217.0) 9 86 (747.3,36.0) 5
37 (452.9,133.7) 3 87 (803.9,327.0) 7
38 (633.6,217.8) 1 88 (164.6,108.4) 3
39 (884.4,613.9) 1 89 (197.8,670.4) 5
40 (197.1,523.2) 6 90 (820.8,610.2) 3
41 (813.8,747.7) 5 91 (140.8,904.6) 9
42 (804.1,326.6) 4 92 (546.3,965.4) 4
43 (732.9,966.2) 3 93 (886.8,613.1) 8
44 (690.1,460.2) 7 94 (671.5,318.9) 8
45 (669.9,319.1) 7 95 (248.7,842.9) 4
46 (195.9,670.2) 10 96 (670.6,318.1) 7
47 (440.7,17.1) 2 97 (613.3,477.1) 9
48 (670.2,319.3) 10 98 (614.2,475.7) 5
49 (585.1,624.2) 1 99 (452.2,133.1) 7
50 (896.5,708.4) 8 100 (197.4,670.6) 4

X(m)

500

500

Y(m)

1000

1000
0

0 Service station

Base station

Mobile WCV

Fig. 9. An optimal traveling path (assuming counter clockwise direction)
for the 100-node sensor network. The 100 nodes are distributed in 32 cells,
with the center of each cell being represented as a point in the figure.

TABLE II
CELLS INDEX, LOCATION OF CELL CENTER, SENSOR NODES IN EACH

CELL, CELL TRAVELING ORDER ALONG THE PATH, AND CHARGING TIME
AT EACH CELL FOR THE 100-NODE NETWORK.

Cell Location of Sensor nodes Travel τk
index cell center (m) in the cell order (s)

1 (140.4, 904.1) 1, 84, 91 26 157
2 (452.3, 134.8) 32, 37, 99 2 314
3 (837.0, 6.2) 31, 52 6 157
4 (687.1, 60.0) 30, 80 4 157
5 (897.8, 710.1) 29, 50, 70 21 157
6 (820.8, 609.5) 28, 57, 90 17 628
7 (804.6, 352.3) 27 10 157
8 (990.9, 618.9) 26, 59 20 157
9 (91.8, 969.6) 25, 75, 78 25 157

10 (197.1, 670.3) 24, 46, 89, 100 28 2510
11 (731.7, 964.9) 23, 43, 74 23 314
12 (249.8, 841.0) 22, 58, 83, 95 27 471
13 (670.9, 317.2) 21, 45, 48, 94, 96 8 314
14 (164.7, 109.1) 20, 54, 77, 88 32 471
15 (751.9, 714.7) 19, 35, 67, 71 14 314
16 (634.5, 216.7) 18, 36 ,38, 53, 55, 72 7 157
17 (804.6, 328.9) 17, 42, 87 9 157
18 (885.6, 614.2) 16, 39, 93 18 157
19 (812.7, 749.8) 15, 41, 79 15 157
20 (440.1, 15.6) 14, 47, 64 1 157
21 (585.9, 623.5) 13, 49, 61, 73, 81 13 157
22 (614.3, 476.2) 12, 51, 63, 97, 98 12 314
23 (918.0, 516.0) 11, 76 19 157
24 (691.2, 459.9) 10, 44, 85 11 157
25 (837.0, 679.7) 9, 65, 69, 82 16 157
26 (747.9, 34.3) 8, 56, 86 5 157
27 (322.6, 331.3) 7, 66 31 2353
28 (545.4, 964.9) 6, 92 24 157
29 (197.1, 525.3) 5, 40 29 784
30 (326.7, 380.4) 4 30 157
31 (679.0, 92.8) 3, 34, 62,68 3 157
32 (978.8, 911.1) 2, 33, 60 22 314

shown in Fig. 9. For this optimal cycle, D
TSP

= 5110 m and
τ
TSP

= 1022 s. For the target performance gap ε = 0.1, we
have cycle time τ = 13.95 hours, vacation time τ

vac
= 10.26

hours, and the objective η
vac

= 73.55%.

Corollary 1.1 says that each sensor node in the network is
fully charged to Emax when the WCV departs its cell, which
is confirmed by our numerical results. Property 2 says that in
an optimal solution, there exists at least one equilibrium node
in each cell k ∈ Q. In our numerical results, we find that all
32 cells contain equilibrium nodes.
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Fig. 10. Energy cycle behavior of an equilibrium node (node 24, in solid
curve) and a non-equilibrium node (node 89, in dashed curve) in the 100-node
network.

To examine energy behavior at sensor nodes, consider
sensor nodes in cell 10. There are 4 sensor nodes in this cell,
nodes 24 and 46 are equilibrium nodes while nodes 89 and
100 are not. Fig. 10 shows the energy behavior of node 24
(solid curve) and node 89 (dashed curve). Note that node 24
does not have any saturation period except in the initial first
cycle while node 89 has saturation period in every cycle.

VI. CONCLUSION

In this paper, we exploited recent advances in multi-node
wireless energy transfer technology to charge the batteries
of sensor nodes in a WSN. Our approach was to develop a
formal optimization framework by jointly optimizing traveling
path, flow routing and charging time at each cell. By em-
ploying discretization and a novel reformulation-linearization
technique, we developed a provably near-optimal solution for
any desired level of accuracy. Using numerical results, we
demonstrated the capability of multi-node wireless energy
transfer technology in addressing the scalability problem in
a WSN.
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