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ON RENEWAl THEORY, COUNTER PROBLEMS, ANU QUASI-POISSON }?'ROC}:JSS]E.‘S'L

By walter L. Smith

il. Introduction. The power and appropriatenese of renewal theory as a tool

for the solution of general problems concerning counters has been amply demonstrated
by Feller [-7_7, who considered a vériety of counter problems and reduced them to
special renewal processes. The use of what may be called "renewal-type" arguments
had certainly been used previous to Feller's work (e.g. in § 3 of Domb /"3 7) but
it was only in [-7_7 that the simplicity of the renewal approach to counter problems
was recognised and systematically aspplied. More recently, Hammersley /™8 7 was
concerned with the generalisation of a counter problem previously studied by Domb
[_2_7. This problem may be introduced, mathematically, as follows. Let fxii R
gyajg bg two independent sequences of independent non-negative random variables

which are not zero with probability one (i.e. two independent renewal processes);

the % xi§ are distributed in a negative-exponential distribution with mean h'l,
we write Ek(x) for their distribution function and say " % (= 3 xi% ) is a Poisson
process" to imply this special property of X ; the -fyi% have a distribution
fgnction B(x)g with mean bl < oo. Form the partial sums Xn = Z? Xyy and define

n. to be thé-i-ua# integer k such that X, < t, taking XO = 0 and n, = 0 if Xy > t.

t k

Then define the stochastic process

B(t)

0 if Max yl-t, y2+xl-t, y3+X2-t, cees Vp +1+Xn —t} > ¢
(1.1) v t

it

1, otherwise,

l. This research was supported in part by the United States air Force through
the Office of Scientific Research of the Air Research and Development Command.

2. All distribution functions are to be considered as continuous to the right.



Hammersley's counter problem concerns the stochastic process

N, = Z §(X), if n >0,

(1.2)

0 , otherwise.

not
We shall/elaborate the physical interpretation of the Nt process because Hammersley

has already given an adequate account of this in the paper cited /8 7. Briefly,
the % Xﬁ% are coordinates of the left-hand end-points of closed intervals of
length §yn§ placed on the real axis, Points t on the axis are either "covered"
if §(t) = 0, or "free" if P(t) = 1, and the number of left-hand closure points of
the resulting covered stretches in (O,t_] is Nt' As a matter of fact our formula-
tion differs somewhat from Hammersley's in that we suppose that a covered stretch
alvays starts at t = 0; also Hammersley supposed his intervals to lie on the circum-
ference of a circle instead of the infinite real axis. The formulation given here
is more convenient for the renewal theory approach and mekes no difference to the
asymptotic results in which we are interested.

Domb in /™2 ] considered the particular case in which B(x) = U(x - T), where
U(+) is the Heaviside unit function, i.e., the 3 yig' assume the constant value
T with probability one. This particular case was also treated by Feller /77 /.
Hammersley, essentially, considered the case in which T, the least solution of the
equation B(x) = 1, is finite; i.e. he merely supposed the éyig to be bounded.
Using special methods of considerable complexity, which at not less than one point
'depend eritically on the boundedness condition, Hammersley deduced the following

asymptotic results which hold as t —> + 0o0.
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where

2
h(z) = \B(z -~ 0) exp { =M\ S [1-38(y)_]4dy } ;
0

(¢) N, is asymptoticelly normal with the asymptotic mean and variance given in

t
(A) and (B).
Let us write Zo = 0, Zl for the leasst Xn such that ¢(Xn) =1, 22 for the second

smallest X such that ¢(Xn) = 1, and so on. Then it follows that if we write

2, =2, - Zn-l’ n >1, the sequence 78( = {znz is a renewal process. This

result is obvious physically, but the resder with no faith in intuition can derive
1t swiftly from (1.1) and (1.2); Lot us write F(-) for the distribution function
of the §zn§ , and “1’ By for the first and second mcmente of F(.), which may or
may not be infinite.

Our primsry obJect in this note 1s to show that, apart from certain minor
additions to the general theory (sdditions which we develop in § 2), the stenderd
mechinery of renewsl theory leads directly to results (A), (B) and (C) with no
recourse to unnatural boundedness conditions. In fact, once we notice that Nt is
the number of renewals in the fb’ process up to time t, (A) is merely the well-
known renewal theorem

G x, 1
(1.3) =~ e O 1f p, = 00),

first proved rigorously by Feller ['5_7, end later by meny euthors including, in

particular, Doob / 4 7, who proved (1.3) directly from the strong law of large



nmbers. Similarly (B) is an expression of the renewal theorem 6 of Smith /107,

Var Nt
(1.%) T ~ s = o , say .

The esymptotic normality result (C) is but a restetement of the central limit
theorem for renewal processes,Feller's proof [-6__7 of which is both brief and
elegant. Thus Hemmersley's results (A), (B), and (C) will be proved once the values
of By and by are determined. The menner in which renewel theory simplifies this
calculation is the subJect of § 2, In §3 3 we bdbriefly 1n&ica.te the derivation

of (A), (B) and (C) for the counter process ,Z’ . Apert from the greater generality
of the renewal spproach, this method also enables one to avold the rather fussy
discussion of differentials, and is noticeably shorter and simpler.

Results (A) and (B) asre not stated above in quite so precise a form as the
ones obtained by Hemmersley .['8__7, who showed that the ~~ sign could be repleced
by equality. Hammersley wes able to do this partly because of his assumption thst
the intervals were on the circumfersence of a circle and partly because of the
boundedness sssumption T < oo. In the general cese the ssymptotic sign is the
most that can be hoped for, but sn examination of the consequences of the assump-
tion T < o0 has led us to an interesting special renewsl process which we call a
Quasi-Poisson Process because of 1ts similarity to the Poisson process. The Quasi-
Poisson Process is discussed at some length in § 4 and 1t is shown that when
T < oo we can replace the ~J sign by equality for all sufficiently large t.

lastly we consider two methods of "censoring" & renewal process to yleld a
new renewal process. The first method is introduced at the end of § 4 and may
be called the guarentee-censor for reasons we shall there explain. General results
are obtained by renewsl theory, snd it is shown that when the renewal process is
Quasi-Poisson these become particularly simple. The second method is discussed in

§ 5 and mey be called the paralysis-censor because it corresponds to the effect



of an automatic self-paralysis mechenism in a counter, of the type described by
Hemmersley in § 3 of /'8 7. Under certain conditions, involving perticularly the
assumptlon thaet the renewal process is Quaesi-Poisson, we show that the properties
of the paralysis-process mey be very essily obteined; en operational form of solu-
tlon is offered for the study of the case in which these conditions do not hold, end
is applied to a few examples. It transpires thet, while apperently (i.e. according
to § 3 of [8_}Jproposing to study the effect of a pasralysis-censor on ’Z/ ’
Hammersley has in fact dealt with the effect of & guarentee-censor. Moreover, a
formule for the verlasnce of the number of recorded points which Hammersley gives
for this guarantee-censor case is erroneous. The correct formulae for the case of
the paralysis-censor are given in § 5 (particularly (5.4)).

We close this introduction by mentioning that Pollaczek _[9__7 has derived,
under certain anaelyticity conditions, some general formulae appropriste to the
counter problem for which &: is not necessarily a Poisson process; he has obtained
from these generasl formulae specific solutions for two special cases. Whilst our
calculations will not cover the more general circumstances envisaged by Pollaczek,
it should be clear that much of the general discussion ofvthis § , at least, does
so? Lastly we mention that en elaborate treatment of a general class of stochastic
processes derived from & Polsson process has recently been given by Takacs [12_7.

Tekace makes no use of renewal theory.

2. Renewsl Theory. Let J = it:& be & renewal process, § Tnz the
Lt

assocliated partial sums, Nt the’ Zeeet k such that Tk < %, F(t) the distribution

function of the itig , and Hys Mo the first two moments of F(t) (they may be

infinite). Write

3. DPollaczek does not give simple formulae for and 02, even for the two
speclal cases mentioned. See, however, our footnote to Example 1 in § i,



(2.1) H(t) = 8Nt ,
(¢e]

(2.2) F(s) = X o %% am(t)
0-

(2.3) ) = | & am(s) .

Then it is well-known.[-IQ_7 that H(t) satisfies the renewal equastion:
t

(2.4) (L) = F(t) + J A(t - w) aF(w)
O~

and that if Em(t) represents the distribution function of T, then

(2.5) B(t) = = Fp(t) .

Mg

An easy and well-known consequence of the last four equations are the following

relstions.
F*gsﬁ
*
l1-7F (8)

H*gsz

1+ H#(s)

it

(2.6) )

.
)

F (s)

T (-pel JE () 75 .
k=1

(2.7)

(The relations between transforms are valid provided the reel part of s is suffi-
clently large).

The following lemma represents the necessity part of a theorem, of which the



sufficiency part is the following renewal theorem (Theorem 5 of Smith /10 /):

if My < oo then as t —> o0,

(2.8) H(t) = ﬁ- + 0225 - 1) + o(1) .

1 2p1

Lemma 1. If ul < o then a necessary condition for the limit

g = 1lim {H(t)--t'—z
t=0 ]

to exist and be finite is that o < oo. When this is so, By = Ep.f(l +B).

Proof. Suppose the limit B exists snd is finite. Then by (2.6) end the
Abelien Theorem for Lsplace-StieltJes transforms (Widder [ 13_7 p. 182) we deduce

that

*
(2.9) 1lim __.EJE)__ - .._1_.. = B

8=0+ 1 - F*(é) Hp®

*
Since u, < o, 88 8 —> O+ we have 1 - F (s8) = W8 + o(s); and if we combine this

fact with (2.9) i1t is fairly easy to deduce that
¥*
(2.10) F(s) = 1-~ We + pff(uﬁ)sz + 0(52) ,

from which it follows that

(2.11) lim F*(o)'QF*és)*F*<2a)

2
2w (1 + 8) ,
8=0+ s “l

But
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* * * - 2
(2.12) E (0)-2F (s)+¥ (28) _ S {LS:x } xar(x) ,
8 .
O=
es™t 5
(2.13) > 8° S * (),
0-

where € is chosen so that for all positive y< ¢ we may have 1 -6 9 >y &, If

we allow 8 —> 0O+, (2.11) and (2.13) combine to prove that by <00. We cen deduce
the fact that My = 2u]2_(l + 8) elther from the sufficiency theorem (2.8) or use the
fact that we now know o < oo to epply dominated convergence to the integral on the

right of (2.12). If we do this we observe that

P (0)-2F (8)+F (28) e o
lim e g =j x~ ar(x) ,
8=0+ 8
o-n
= p,e .

The lemms now follows from (2.11).

Notice thet as & consequence of our results, if By = then the limit B
elther fails to exlst or 1s infinite.

We now introduce a renewsl process of a special type. Let ﬁun} , gvn% be
two independent renewal processes; the { un§ have a distribution function G(-),
and the §vn§ have E}\( ) i.e. évné is a Polsson process. If g has the con-
structional property: tn =u + v for all n, we shall say ‘Q 1s a A-type renewel
process. PFor & A-type process 3 , F(t) 1s obviously absolutely continuous, with
a frequency function f(t), say; esnd H(t) admits of & renewal density function

h(t) = H'(t). Let us define Ty = 0, and consider the function

il
O

¥ (t) iIf t < TNt+ uNt”‘ ,

1 otherwise.
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Thus, as the renewal process ‘J develops we can imagine V(t) assuming alternately
the values zero in the closed intervals _['I'n, Tn tu g __7 and unity in the inter-

vening open intervals (Tn + U It is convenient to say that t is "free"

n+1’ Tn+1) '
1f ¥(t) = 1 and "covered" otherwise. Similarly it is convenient to speek of free
or covered intervals.

Write n(t).= &y (t) for the probability that t 1s free. Then 1t is intuitively

clear that h(t) = Ax{(t). This may be proved as follows

t t t-v
(%) = j o~MEW 45y 4 5 n(v) j o MEV-) g5eu) boav
O~ (o]

O~

t
= % ?(t) +-g': S h(v) £(t-v)dv ,
)

=%h(t) >

by the integral equation for renewal density functions which 1is analogous to (2.4)

(Smith /10 7). We can now prove:

Theorem 1. For any A-type renewal process cj there exlsts the 1limit

m  n(t) = ‘X'L'
!

t=00

which 1s to be taken as zero if By = oo. If this limit 1s non-zero, so thaet

Hy < oo, &nd if

t
B = 1lim )xS n(u)-—-l—-§ du
t=00 Y % MJLl

oxists and is finite, then u, <oo &nd u, = 2p]2_(1 + ). However, if W <o and

the limit B either does not exist or is infinite, then By = 0O,



10.

’ Purthermore, if Hy < oo then

00
'g [n(u)-x%i-l—[du<oo.

Proof. The fact that f(x) is the convolution of a negative exponential fre-

quency function and G(x):

[ ¥4
f(x) = E re~Mx-2) ac(z) ,

O~

involves, as an easlly deduced consequence, the fact that f£(x) —> 0 as x—> oo.

Also, by HbBlder's inequality, for 1< p <2,

® 5

L AT

)
'd_|i-

x
- - \
£(x) £ g AP ~MP(x-2) 460, S 1P dG(z)j
o= o= 3
whers p'l + p"l = 1. Hence

%f(x)gp \{ E er‘%-p(x-z) a6(z),
o-

from which it ie easy to see that F£(x) € Lp(o, c0). The convergence of =n(t) to
( )\pl)-l is now a consequence of known theorems on the convergence of renewal density
(smith /710 7, [ 117).

The part of Theorem 1 which concerns the limit B follows directly from Lemme.

1l once it 18 noticed that

t %
’ B(t) = j h(u) du = A J’ x(u) du .
0

(o}
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. The result concerning the absolute convergence of the infinite integral is not
needed in the present treatment and is merely stated for completeness in the treat-
ment of A-type processes. It is a consequence of Corollary 8.1 of Smith [10_7.
Theorem 1, which is little more than a pulling-together of known renewael
theorems, hes obvious spplications to the counter process ,3 . We develop these
in the next section. However, its field of epplication is wider than the scope of
the present paper. It is of great use in dealing with queueing theory, in particu-

lar with the busy intervel distribution; this application will eppear elsewvhere.

3. The Counter Process. As the counter process rz develops, the function

#(t) behaves exactly like the function ¥t) in the last section. It assumes the
value zero on the closed covered intervals, énd unity on the open free intervals.
Evidently, each Z, is the sum of L the length of the n-th covered interval, snd
. A4 the length of the n~th free interval. Further, by a well-known property of the
EA.( .) distribution function, the {vn} will be distributed in accordance with
E)\( *} (since the v , Measure the distance fram the end of & closed covered interval
to the next renewal in a Poisson process). It 1s thus evident that 'Z is a A-type
renewal process. Theorem 1 shows that once n(t) is determined the calculation of
My and u, (and hence 02) is simple.
A particularly easy example is afforded by the counter process ﬁ’g for which
B(y) = U(y - 7), wvhere 0 < T< . As stated in § 1, this problem has been
tackled by Domb, Feller and Hammersley (in verious ways 4nd with verying degrees of
complexity). But it is obvious thet for this particular process n{t) = e M U(t-T),

since no free instant can ocour in [-0 R t__7 and en instant t > v is free if and only

if no X fells in [t-7, t_]. Thus we deduce at once fram Theorem 1 that

- }\-l AT
® ., " °

xe M7 (1L -2n e M )

Q
L[}
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. From (3.1) the results (A), (B) and (C) follow eesily via (1.3) end (1.4). Moreover,

we see that for this particular process (edopting the notetion used for ﬁ‘ ),

. . -87
(3.2) H(s) = Ne )gr_e___e___ ’
and so, by (2.7), we have
o0 ~ksT
L3 -
(3.3) () = ¢ (.1)k+1 )\k o kaT Lf— i
k=1 8

It follows from (3.3), by a routine interpretation of e %% as a "shift" operator and

of s ™ as the Laplace-StieltJes transform of tnU( t)/n'. s that

co k -kiT
(3 .h) F(t) - » ('l)k+l Ne (t"kT

k=1 k'
o

The right-hand-side of (3.4) is very simply related to the "tapered exponential

)k

U(t-kTt) .

function” which srose in the course of Hammersley's investigation /8 7.

For-the case of a quite general B(y) the determinetion of n(t) is herdly any
more difficult then it was in the specisl cese we have Just discussed. For it is
apparent that 1f n = k we have k "intervals" with left-hend closure points inde-~
pendently and uniformly distributed over (0, t), so that

t k
prob {¢(t) = 1¥nt - k} - B(t-0) %% f B(e) de } ,
o

whence

n(t) = ra(t)

[}

-\t k
A o}_?. 2——-—-1%2— prob §¢(t) = 1[11t = k}
k=0 '
t
A B(t-0) exp { -A S /1-3B(8) 7 p .
o]

® ;o
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. Theorem 2. For the counter-process q’g s W is finite 1f and only if

/1 -3()_Te L,(0,00). If u, is finite, 1t is given by the equation

Nbl

(3.6) Wy = @ )
and Mo is finite if and only 1if

I i -Aby
(3.7) A B(t) exp 4 -A I /1-B(e)_/ae} - e

O .
belongs to Ll(o,oo) . If u, is finite, then 02 is given by the expression

r
-Kbl @ -A.bl _

(3.8) A e 1+ 2 j [ r(t) - e T/ at )

where h(t) is given in (3.5).

‘ Proof. By Theorem 1 and (3.5) we see that Wy 1s finite if and only if

t
lim  B(t-0) exp {-\ & /1 - B(e)_7 ae
t=00 6

is not zero. The fact that B(*:) i1s non-decressing and bounded by unity shows that
wy < oo if and only if /[1-3B(8) ] ¢ L,(0,00). This in turn implies that B(oo) = 1,
end if we observe that

oo
b, = f §I—B(Q)%d9,
0

then (3.6) follows. The rest of Theorem 2 is sn immediate consequence of (3.5),

Theorem 1, and the simple relation

e o = w1+ B).



1k

. From (3.6) and (3.8), the results (A), (B) and (C) follow &s before. The pre-
sent theorem provides some insight into the way in which results (A), (B) end (C) may
fail end is clearly velid when T = co. Notice however thet if T < oo then h(t) is
constant for all t > 7 (this fact wes used by Hemmersley). We shell make use of this
remark in the next section.

The argument lesding to (3.5) may be compared with that leading to equation (5)
in /78 7.

4, Quasi-Poisson Processes. We return for this section to the discussion of

the quite general renewal process E)j of § 2, not necessarily supposing it to be of

the A-type. In /10 7 the residusl life-time at y is defined as Ty 41 - 7 (this 1s
- y

the "forwerd delay" of /1 7)end

‘ (4.1) Y(y; x) = prob {TNyH-y <x E .

When CJ heppens to be a Poisson process, a number of plessant properties hold. In
particuler, h(z) is constent for all z; and Y(y;x) 1s independent of y. In § 3 we
saw hov to construct arbitrerily meny renewal processes for which h(z) is constant

for ell z exceeding some fixed T <, and the question naturslly presents itself as
to whether Y(y;x) 1s independent of y2 7 for such processes. The next theorem answers
this question in the affirmative, and for this reason we call these special renewal

processes: Quasi-Poisson processes. We call T the index.

Note that in our discussion uil is to be interpreted as zero if Hy = 00.

Theorem 3. A necessary and sufficient condition for Y(y;x) to be independent of

y for all y > 7 is thet H(x) be linear in x for all x> T.

Proof. Evidently,from (2.1) and (1.3), if H(x) is linear for all large x then

i1t must be of the form p.ll X + 7, where y is some constant, We observe that
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v
® Yysx= (F(xey) - B+ S Jq EF(Xﬂ'-Z) - F(y-Z)% arF, (z),
=1 3

J
7w - ¥+ | R - P00t aEa),
| 0

x+y
= H(x+y) - Ky) - g F(x+y-z) dH(z),
y~0
X
we) = { f1-w@al o 5 .
5 4

(We deduced the third step in this chain of equations from the renewal equation (2.4).)
To prove the sufficiency part of the theorem we suppose y > T, so that

4, H(y+z) = uil dz. Thus (4.2) gives at once

b’
. (4.3) Y(y;x) = g f 1- F(z)} dz ,
H-l S

and shows Y(y;x) to be correctly independent of y > v . Notice that (4.3) agrees

with the known result

X
(b4 i ¥y - g {1-8 | a,

which holds for any renewsl process (this result is Theorem 4 of 7710 /).

To prove the necessity pert of the theorem we choose any y > 1 and deduce from

(4.2) and (4.4) that

(4.5) L
M

[o LAY )

il-F(x~z)§ dz=j gl-F(x-z)f dZH(y+z) .
0
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. Let & be any number such that F(a) < 1 (there must be such an & > 0). Then a straight-
forward meesure-theoretic argument based on (4.5) shows thet H(y+z) is absolutely
continuous for all 0 < z <, and possesses a derivative equal almost everywhere in
this range to pil . The arbitrariness of y completes the proof.

We notice that, if by < o, ae a consequence of Thecrem 3 the limit 8 of Lemma
1 will always exist'.» and be finite, since it will be given by H(T) - p;-l'r, and H(t) is
finite for all t and any renswal process. Thus Mo <oo. In fact, rather more is
true for a Quasi-Poisson Process, ae the next theorem shows. However, before we prove
this theorem we must first show that it is impcessible to have By = 00 for a Quasi-
Poissgon process.

Lemms 2. If se\jl iz Quasi-Pcisson, with Index T, and 1f w = oo, then

F(x) = F(0) < 1 for all finite x.

’ Proof. Let us notice first the meaning of the statement F(x) = F(0) for all
finite x. We cannot have F(0) = 1 by definition of a renewal process. Thus the ty
are zero with probebility F(0) end infinite with probebility 1 - F(0O). Such a Quasi-
Poisson process we shall cell degenerate.

Suppose there exists an x such thet F(x) > F(0). Then there exists an a, b,
both strictly positive and such that F(b) - F(a) > 0. From this fact we see that
H(nb) - H(na) > 0 for all integers n, so that H(x) camnot be constent for all suffi-
ciently large x. But if by = co and the procese is Quasi-Poisson then 1t follows
from Theorem 3 that H(x) is constant for all largs x. This contradiction proves the
lemma.,

Theorem 4. If '@ is a (non-degenerate) Quasi-Poisson process with index T,

* .
then there exists a8 > O such that the integral F (8) of {2.2) is convergent for all

Re > -5. Consequently all the moments of F(x) are finite.
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Proof. By lemme 2 we may suppose By £ 0o; and since H(x), by Theorem 3, is given

by H:_Ll x + 7 for ell x > T, we observe that

.
(4.6) 5 (s) = f o™X am(x) + 2
0 “1

*
Hence, from (2.6), F (s) is the following ratio of integral functions,

T -sx -T8
by s S e dB(x) + e
(4.7) F(s) = ———
W + s f o Sam(x) + o °

0-
Now it follows from Widder (p. 58, (13)) thet the singulerity, 1f any, of F*( s) which
is nesrest the point 8 = O in the complex s-plane must be located on the real exis
and is, in fact, where the real axis is cut by the axis of convergence of (2.2). It
cannot be in the open half-plene Rs > O; axid must be atﬁ;ero of the integral function
in the denominstor of (4.7). This zero is obviously not at & = 0 and so must be
located at some point s = -8, where & > O. This proves the theorem.

A further pleasant feature of the Polsson process, in addition to those already
referred to, is that the cumulents of the distribution of Nt are directly proportionsl
to t. An enalogous result holds for the Quasi-Poisson process, although it is not so

simple. In the following theorem we consider only the mean and variance of N .

Theorem 5. If % is a (non-degenerate)Quasi-Poisson process with index =

then for all $2> 7 ,

while for all t > 27 ,

where b is the third moment (necessarily finite) of F(*).
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Proof. We know alreedy from Theorem 3 that all t > r, H(t) = pil t + v, end,
since all the moments of F(*) are finite, we can now identify the constant y with
the limit B of Lemma 1. Next we remsrk that by equation (7.6) of /10 7,

t
(4.8) €imjf-mw e { at- oa.

It is e simple matter to verify that the right-hand-side of (%.8) is a quadratic
function of t for all t > 21, To determine the appropriate coefficients we observe

that the Laplace transform of (4.8) is

o), _2{re)f®
) Zl»F*(s)j 8 Zl-F*(s)} 2

]

5 e~st é;thiz
4]

2
24, 2
(4.9) ="g'-5+ -3'?‘-;- —5'—% —%+—'§-1)~+0(l):
s Wy 1 8 ”1 2u1 2;;1 _

' 2
where o(l) —> 0 as s —> 0+. Thus, knoving that for large t 821\1,6% is a

quadratic function of t, we may infer from (L4.9) that for t > 2v,

2u
t 2
(h.lO) g{Ni =——2— (T-S-)t—(*-*g--—'&+-*—§-l).
| 1 M B B
If we combine (4.10) with the result we have already obtained for H(t) = & N,, the
variance of N, turns out to be as announced in the theorem.
We complete our present discussion of "™uasl-Poisson processes with the following

Thecrenm 6. If giF a Quagi-Poisson process with zsro index then there exists

aAr>0and ap, 0<p <1, such thet for x > 0,

F(x) = (1~ p)(1 ~e )+p.
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Proof. Suppose H(x) = u-ll x + 7 for all x> O. Clearly 7> 0, since H(x) must

be non-negative. Then

E(s) = +y

u s
and so, by (2.6) and some elementary menipulation,

(1)t b 2
1+ (+7)ue (1+7)

*
F (s)
Inverting this Laplace-Stieltjes transform ylelds

P4

F(x) =

% <
1 § u1(l+75}
l1-6e

1+y

and this completes our proof.

A
From any renewal process g we mey derive & new process ‘Q\I 88 follows. Choose
A A
8 constent @ > 0. Define T, = 0, &nd 'I‘l as the least T such that T - T ;> ®.

Iay
Then define T2 as the second smallest Tn such that 'I'n - Tn-l > &, and so on. It 1s

A A A A g A g
evident that if t =T - T ,, then 3 b is 2 new renewal process (we

shall identify all functions etc. associated with ‘g{ by the sign A) . The process
Lé; would arise if, in studying & physical realisation of :J we refuse to count re-
newals if they are within a distence (on the timescale) & of the preceding renewal
(whether this was counted or not). More vividly, é\j would arise if the renewals
carried s "msker's guarantee" to replace without charge the renewal if it needs
replacement in less thah & time units from its momer_lt of installation. Then the
renewsl instants /'i‘n of é\j represent only those renewels in Z which cost anything,
and ,I:It will be the number of renewals sctually paid for in the period (O ,t_7.

The simplest spproach to an understending of G:‘J appears to lie in the calcula-

A
tion of H(t), end this is rendered straightforwerd by the following observation. At
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A -
most only one Tn can fall in an interval (t, t+h_/ if h _<_as end t has any non-negative

A -
value. Thus the probability that one Tn does fall in (t, t+h__/ can be equated to the

A A
expectation expression H(t+h) - H(t). Let us teke t >@. Then

t-B
A A 00 2
H(t+h) - H(t) = F(t+h) - F(t) + © § F(t+h-z) - F(t-z)5 dFk(t)
k=1
Q-
t+h-0
m .
P S %F(t+h-z) - F(a’a)} ar,(2),
=1 8o
=0
= F(t+h) - F(t) + g §F(t+h-z) - F(t-z)% aH(z)
0~
t+h-0
+ S { F(t+h-z) - F(Zﬁ)g da(z),
t-0-0
. t+h-d
(4.19) = F(t+h) + ﬁ F(t+h-z) aH(z) - FP(&B)E(t+h-3)
0

t-8
- F(t) - Y F(t-z) dH(z) + F(®) H(t-B)
0

It will be noticed that the right-hend-side of (4.11) is of the form ﬁ(t-&h) - @(t),

from which we deduce immediately that (4.11) is valid for all h > 0. If we use the
A

fact that H(®) = O we cen now deduce from (%.11) that for all t> & ,

-
F(t) + g F(t-z) ag(z) - F(&) BH(t-B) - F(B) - F(B) BH(O) + F(d) H(0)
0-

A
(k.12) H(t)

]

t
B(t) - £ F(t-2) AH(z) - F(&) - P(@) B(t-B) .

. £-%-0
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A A
Theorem 7. In the renewal process ‘3 derived from ('3 R ul is finite if and

. A
only if By is finite and F(w) < 1. Ir Wy is finite then 1t is given by

A ul
T TIE®)

(4.13)

A
and by is finite if and only if )12 is finite. If fL\E ig finite, we have
i)

_./3:\..(1--;\]:)+ 2/\ K zdF(z) .

My e L ] 2

A M
(4.1k) o° = (W)° &
My

Proof. We will use the consequence of Theorem 1 of Smith [‘10_7, that

t @
(4.15) lim F(t - 2)dH(z) = —&— J‘ F(z)dz,
t = 00 £20 1 o

where the right-hand-side of (L4.15) is to be taken as zero if by = 00

. Thus, from (4.12) end (1.3),
A
b16) Lo 1m E®) . g4y EO -P@ECE-8 _1-F@
. = > { x
Wy t=o00 t = oo 1

A
Equation (4.16) proves that part of our theorem which refers to p, and (4.13). 1If we

A
now suppose iy < oo, we observe next that by (4.12) end for 211 t 2> T,

(827) () - £ - §H(t) - E—E - F(B) 5 H(t - B) - E-L—‘-'BSZ + 82O _ piq
Hy 17/ 1 1
t
- g F(t - z)an(z).
t-&-0

From (4.17) we deduce via Lemma 1 and (4.15), that

o . . 8
B = §l-F(c'B)§ B+—“l—€il—l-3‘(m) -%l-]: 5) F(z)dz;

(4.18)
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A A
8o that B 1is finite if and only if B is finite. Hence N is finite if end only if

. A2 Al A
hy 1s finite. Also, since o= = i, (1 + 2B), and since

o &
l—f F(z)az —SE®) _ L f 2aF(z),
Hy My My

0 0

the formula (L4.14) is derivable from (%4.18) by elementery manipulations.

Corollary 7. If C@\) is Nuasi-Poisson with index T, then ﬁ is Quasi-Poisson

with index T + &.

Proof: If H(t) is linear in t for all t > T, say H(t) = “-1

1 * 7, then we

have from (4.12) that for all t > T+ &,
A 8
H(t) = W't + 7 - ugt i F(z)dz - F(@) - F(®) Z{ TR } ,
0
i.e., }/I\(t) is linear. This proves the Ccrollsry.

It should now be clear that, if by < 00, results (A), (B), end (C) will holad
for the {j process, and that (A) and (B) will be replaceable by the exact results
of Theorem 5 if c:;‘ is Quasi-Poisson.

We close this section by giving two examples.

Example 1. If o} 1is Poisson with s distribution function F(:) = E%( *), then

we find that W= h-l, 02 =2, F(B) = 1 - e”ND and Theorem 7 yields the results:
A -1 B
ul A e
A - -
02 = e }\m(l - 2)\{e NT‘))

which are identical with the equations (3.l). Reflection will show that when the
underlying g process is Poisson the process ﬁ is identical to the specisl
counter process % for which B(y) = U(y - ®&). Thus the present exsmple represents

another method of considering the example considcrsd in § 3. 4

A
L, 1In fact, 1f we teke ¥ = &/ , with genersl F(.), then % & X 1s the more
general counter process gnvisaged by Polleczek, for the case B(y) = U(y-0). Theorem
7 thus provides oY eand ¢ for & useful part of Pollaczek's wider cless of counter
processes.
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Exemple 2, Let us next suppose CJ a 7 » Where % is the counter process
. of § 3 with B(y) = U(y - 7). It should be obvious that if B< T then ’g/ = % R
and so we may imagine & > 7. For IZ we have already given the appropriate velues
of My s da and F(t) in (3.1) and (3.4)., Thus the calculation of ﬁl and ,&2 follows

easily from (4.13) and (4.14) by elementary manipulations. However, the calculation

of the integral

@
(4.19) f zdF(z),
0

wvhich 1s required by (4.14), can be simplified by the use of transforms in the follow-

ing wey. By the convolution property of Laplace-Stieltjes transforms, the Laplace-

StieltjJes transform of
t

(4.20) j (t - z)dF(z)
0

. is simply s'lF*(S), or, by (3.3) it is

00 -ksTt
(4.21) r (-1)Fhk T e_kTi'E
k=1 8 ;.‘

But we recognise (4.21) as the transform of

k_-kAT )
ktl x e (t - k0L U (6 - k1) = LeMF(t + 1) « t.

(4.22) og (-1) NETOR

k=1

From the equivalence of (4.20) snd (4.22) we therefore deduce that

B

w
(4.23) J' 2a8(z) = AT T R@ +T) - @1 - F(&)_]
0

Elementary computation based on (L4.23) then gives
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b= LM {1-F(d>)}

%

v M I E(w) | % 1 2r(g) + av@en) - 28T 1 p@) 7 %
1

Let us say that we have derilved ii from ES by application of a guarantee-
censor. Then Hemmersley in ‘§ L of ZF8_7 is actually studying the effect of a
guarahtee-censor on the counter process %j , and not, ss he apperently supposes, the
effect of pareslysis. The Justification for this contention lies in the critical
four 1lines of text Following equation (47) of_1'8_7. It is therefore to be expected
that our (4.24) will agree with Hammersley's (59) and (60). Unfortunately, while
they agree with respect to é;, they indica;e quite different values for 32. A simple
teost reveals that Hesmmersley's value for 3 must be incorrect. For if we put T = O,
thenfby & 3; , the basic Poisson process (since all the "intervels" involved in the
construction of the counter process 35 have shrunk to points). Thus we reduce our
problem to the easier one considered in Example 1 above, for which 92 is simply
ne™ NP (1-22@e D) = Gg,
1-F@®) = e-Nm, then it 1s essy to see that 52 = Ag, correctly. Hemmersley's (60)

say. If in (4.24) we put T = O and notice that for this cese

fails to pess this test, it gives a value for 92 which is quite different from Gg

and we must therefore conclude that his formule is 1ncorrect.5

5. Paralysis.6 Let Zl be the renewal process of § 2, not necesserlly Quasi-

Poisson, and let \V 2 g‘aﬁ { be en independent renewal process with assoclated

5. In comparing the results of the present wogk with those of Hammersley.[-3_7,
it 1s useful to observe that e (-a,b) = 1 - F(&), e (-a, b+l) = 1 - P(@ + T).

6. In this section we_consider the effect of the censoring procedure discussed
by Harmersley in § 3 of /8 /.
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distribution function C(-.) and moments Cys Cps - etc. Let us write E‘O = 0, A‘I“l for

~n

the least Tn which exceeds ;5 '},2 for the least Tn which exceeds 'I‘l + oWy, end, in a

A ~
general way, Tn for the lesst ‘I'n wvhich exceeds Tn-l + @, - Then 1t follows that if we

~ ~ ~ - ~
19 tn = Tn - Tn_l(n > 1), the sequence §tn% :'lf a renewal process S .

1te t, = T
write 1 = T o
We shall employ the notations E( ), El’ etc. with regard to 3 , and say J 18 derived

from 8 by & paralysis-censor.

When P) is Quasi-Poisson, @ can be particularly easy to study.

Theorem 8. If §| 1s Quasi-Poisson with index T, and if C(r) = 0, then

¥ ok 1 - F*(s) '
(5.1) | F(s) = C(s) %——ﬁzg—g ,

&nd so, forn=1, 2, ...,

n c. U
~ n, n- +1
po= Z(r) s

(5.2) n == m

where the right-hand-side of (5.2) msy be infinite.

K = pe = = -
Proof. Let N“’l + 1. Then it is evident thet t, = T (TK a)l) + @ . But,

with probability one, a)lz T . Thus § = Tn -y, the "residual lifetime" in the %j

process et W, has the distribution function

My

X
F(l) (x) = S .];_:ﬂ_zl az ,
0

which is independent of Wy . Hence t. may be considered the sum of two independent

1
rendom varisbles & and @,, with distribution functions F(l)( -) and C{.) respectively.

Equation (5.1) then follows from the two equations

©o *
¥* - 1l -
Fpy(e) = g & T aF y(x) = —;%—(ﬂ )
. (5.:3) » o-
Fi(s) = () ¥jq(s)
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From (5.3) we can find the moments of F(l)( .) by expansion as a Taylor sesries in s.

We find that the r-th moment of F(l)(-) is p.r_*_l/(r+l)u1. Hence

& (¢ + a)?

() (e NE o™

r

(n) 'J'I'+l ¢
r (r+15ul n-r

oMmp OoMB

as wee to be proved.

As an exemple of the application of Theorem 8, let us teke J = %{ , with
B(y) = U(y-7) end C{w) = U(w-&). Then the conditions of Theorem 8 are satisfied, pro-
vided > 7. In fact é% is the counter process with pesralysis appropriate to the
blood-cell counter problem considered in [P8_7. Calculations based on the values of
Uy, H, and F*(s) which are given (or implied) by equations (3.1) and (3.3) then yileld

~ (kT + &)
F*(s) = OZC:) (“l)k ()\e-}\T)k+1 8 T ®)8
0

k+1
8
whence
oo k+1 .
Fx) =2 (-1)F (e M)kl x‘k;?), U (texr-m) .
0 :
We also find that
,l:i = &7+ }\"1 e,\‘l’
1
(5.4)
o0 _ \ -).7(1_2} ?\.T)
(1 + M@)o )

~
From (5.4) the results (A), (B), and (C) follow at once. However, % 1s not s

Quasi-Poisson procese, so that (A) and (B) are not exact for all large t.



27

fnen the special conditions of Theorem 8 fail to hold the calculation of F(.),

fxl and %’2 becomes much more complicated. We conclude this note with the development
of scme operational formulae which may be used in the more difficult circumstances.
To simplify our calculations we shall assume all dlstribution functions to be abso-

lutely continuous (although we shall be quite prepared to apply our results to cases

where they are not') If C(.) = E)\( -} then we have

x ) Z )
(5.5)  f(x) = S ho A 3 f(x) + | £(x-z;) bizy) a2 { !
0 0

which simplifies after an integration by parts to the equation
X

(5.6) %(x) = f(x) - o ¥ h(x) + g fx~2z) Z_e—m h(z)_7 dz
0

. (we have also made use of the renewal integral equation comnecting f(x) and h(x)).

If we write
00
* -
£ (8) = g o °* £(x) dx ,
0

h*(s) = e ™ n(x) dax ,

o v__/—\g

for Laplace transforms, then (5.6) gives quickly

'E‘*(s) = f*(s)v - h*(s+x) + f*(s) h*(s+>\.)
(5.7) N
B () - b (8+A)
¥
1+h (8)

since f (s) = h*(s)/ [1+ h*(s)_].
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If c{x) = C'(x) were quite general, {5.5) would be replaced by

X Z
(5.8) fx) = .§ c(z) ngx) + S- f(x—zl) h(zl) dz, E dz .
0 ' 0

Let us suppose that we can represent c(x) in the form

(5.9) | c(x) = S\ PRt ag(n)
E

where E 18 some set in the complex open half-plane jﬁ A >0 and ¢(-) is some measure
defined on ¥ for which the iantegral (5.9) has a meaning. We shall suppose also thet
the Integral (5.9) is absolutely convergent at x = 0, to Justify the changing of the

order of certain multiple integrations. Thus we have from (5.9) that

fl

§d¢(>\)

B

(5.10) 1

and we may infer from (5.7) and the linearity of (5.8) in c¢(x) that in the "general"

case
(5.11) Ps) = B (s) - ﬁ:(s)
1 + h(s)
where
(5.12) P(e) - f b (s g o

E

We congider some illustrative exsmples of the use of (5.11).

Exemple 1. If

o)
c*(s) = r e °F o(x) dx ,
0
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then under certain conditions, for some y > O,

-y+ico
(5.13) c(x) = 5%; g &% <F(s) ds
-y=-100

*
(This inversion will be valid, in particular, if ¢ (s) is analytic in j% g > - % for
*
some & > 0 and if ¢ (s) vanishes sufficiently rapidly at co for the integral to be
absolutely convergent). If we put s = - A in (5.12) we deduce a representation

(5.9) for c(x) in which E is the line joining 7 - ioco to 7 + ioco and

*
(5.14) apg(n = %;é:%l dx
Hence
rioo %
(5.15) B'(s) = oy B (eth) e (-h) g
7=1i00

Fxemple 2. As a special case and & check on the lest example, let us suppose

that iJ 1s Quesi-Poisson with index v. Then (c.f. (4.6)),

n*(s) = T(s) + &s

by B

¥* -
where I (8) is sn integral function which is O(e” "°) in the half-plane gi 8 <O0.

Let us suppose that c(x) =g (x-&); where & > v and 5(x) is the Dirac delts function.

* -
Thus ¢ (8) = e ws’ and (5.15) reduces to
y+ico _
x 1 M o~ T{(8+N) oS
h (8) = == _Y %I(s+>\)+ an .
2ri y 100 ul(s+k) A

The integrand of thils contour integral 1s meromorphic, having only two poles (both
single); one is at A = 0 and the other at A = -8, which may be supposed in the half
plane 5{ A < 0. The integral may be evslusted by contour integration in a familiar

way by allowing y —> 0+ (and providing sn indentation at 0), and by then adding to
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the contour ah infinitely lerge semi-circle Joining -i co to +1 oo in the half-plane

R

" 8 £0. We deduce that

% * - T8 -0 % -88
R(s) =T (8) + 24 - =5 = h(s) -7
1 1 1

*
If we insert this determination of h (s) into (5.10) we discover that

* -8 1 ol l“f*( )
T(s) = %l—s—- %——mh - % = o %-—-—-—ulss )

in agreement with Theorem 8.

Example 3. Suppose that we can represent c(x) in the form

(5.16) c(x) = che'w"x ,
v

where the summation may be finite, or infinite, where the xv are complex numbers
such that 8{ Ay > 0, and where Z[cvl < 0o. Clearly (5.16) could (but will not) be
represented in the form of ( 5.9), and we infer that

Cc

- _ —_! *
h(s)-—Z‘.)\ h(s+)\v).
vy
Thus o
* v o_*
h(s) -£—nh (s+hv)
i v )‘v
f (s) = ™ )
1+ h (8)

*
and provided an snalytic form for h (s) 1s known, the calculation of the lower
*
moments of f (s) follows from a stralghtforwsrd expansion as a power series in s.
*
It is epparent that these moments will involve the derivatives of h (s) at the

points A v

As a closing remark, let us notice that (5.11) cen be thrown into the following

rather more vivid form
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