
On Repeated Games with General Information Function 1) 

By S. ZAMXR 2) 

Abstract: For a class of repeated two-person zero-sum games with incomplete information it was 
proved by AUMANN and MASCnLER that lim v. exists, v. being the value of the game with n repetitions. 
If the players know at each stage the moves done by both players at all previous stages, AUMANN 
and MASCHLER could prove that the error term 6. = I v. - lim v.[ satisfies 6. < c/V~ for some c > 0. 
It was then shown by ZAMm that this bound is the lowest possible. In this paper it is shown that if 
previous moves are not always announced,  6. may be of higher order of magnitude e.g. 6. >_ c/n a/3 
for some c > 0. New upper bounds for 6. are given for two classes of games. 

1. Introduction 

The class of games considered in this paper are those discussed by AUMANN 
and MASCHLER [-1968]. They can be described as follows: 

Let A 1 . . . . .  Ak; (k > 2) be I x m matrices of real numbers viewed as two-person 
zero-sum games. Let H 1 ... . .  H k, be l • m matrices whose elements are symbols 
(e.g. letters, digits, pairs of digits, etc.). The matrices {A*lv = 1,...,k} will be 
called the payoff  matrices and their elements will be denoted by ai~; i = 1, ...,l; 
j = 1 ... . .  m; v = 1,...,k. The matrices {HVlv = 1 ... . .  k} will be called the in- 
formation matrices and their elements will be denoted by h,~. For each p in the 
simplex P = {p = (pl .. . . .  pk)[pV > 0, V = 1 .. . . .  k, ~ ]  pV = 1} and for each positive 
integer n, consider the game F,(p) played as follows: Chance chooses one of the 
k games {A *} assigning to A * the probability pV. Player I is then informed of 
chance's choice but player II is not. The game chosen by chance is then played 
n times. If at a certain stage the player played pure strategies i andj  respectively, then 
player I is credited and player II is debited by a~j and in addition hrj is announced 
by the referee, where v is the index of the game chosen by chance. Neither the 
payoffs nor the moves are told explicitly. The only way for the players to learn 
something about the moves or the payoffs is through the information hi~ announced 
after each play (Player I however has the big advantage of knowing v). The payoff 
in F,(p) is defined to be the sum of the payoffs of the n individual plays of the game 
chosen by chance, divided by n. Both players of course know the rules of F,(p) 
described above. We shall describe the specifications of such a game schematically 
by: 
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The main feature of the game F,(p) is the following: Player II would like to 
learn as much as possible concerning which game was chosen by chance since 
the more he knows about it the higher his profits will usually be (certainly not 
less). However, the procedure of learning may be costly for him, therefore he will 
balance learning against profits at each stage of the game. 

For the purpose of computing the value of our games we will make use of the 
minimax theorem which we will read roughly as: "The value of the game is the 
best that player II (or I) can guarantee if his opponent has to announce his mixed 
strategy in advance". In other words we will assume that player II knows player I's 
strategy and suggests a 'best reply' for it. Then we will maximize over all player 
I's strategies and obtain the value. Now since player I knows the choice of chance 
v, his move at each stage may depend on v. The strategy of player I together with 
player II's move,j, induce a probability distribution on the elements h~; v = 1 ... . .  k; 
i = 1 . . . . .  t. Hence given the announced information player II will compute a 
new conditional distribution on the choice of chance v. Realizing this mechanism 
of player II to gain knowledge about the choice of chance, the essential notion 
for classifying strategies of player I becomes that of a non-separating strategy 
defined as follows: 

Definition 1: 
A mixed strategy o" of player I in F 1 (p) will be called non-separatin 9 if for any 

j(1 < j < m) the probability distribution induced by a, j and v on the elements 
of H v is the same for all v with pV > 0 (considered as distributions on H = 
{h,~ll < i < t , l  < j _ < m , l _ < v < k } ) .  

In other words if at a certain stage player I uses a non-separating strategy then 
whatever player II does, his conditional probability about the choice of chance 
after that stage is the same as it was before. This means that player II can gain 
no knowledge about the choice of chance in a stage in which player I uses a 
non-separating strategy. 

Denote by NS(p) the set of non-separating strategies in F1(p) and by A(p) 
the one stage game F 1 (p) in which the strategy space of player I is restricted to 
NS(p). Note that it is possible that for some p E P, NS(p) is the empty set 0 in which 
case A(p) is not defined. However at least when p is an extreme point of P we 
have NS(p) ~ O. In fact if p is the vth unit vector (0 . . . . .  1 ... . .  0) then A(p) is the 
ordinary two-person zero-sum game A ~. 



On Repeated Games with General Information Function 217 

Let v,(p) denote the (minimax) value of F,(p) and let u(p) denote the value 
of d(p) (u(p) is defined whenever NS(p) ~ O), Denote by u*(p) the coneavification 
of u(p) i.e. the smallest concave function on P satisfying u*(p) >_ u(p) whenever 
u(p) is defined. 

Theorem 1 (AUMANN-MASCHLER [1968]): 

lim v,(p) = u*(p) for all p ~ P .  
n - * o o  

The special case in which hi~ = (i,j) will be referred to as the case of standard 
information. In such games the information announced after each stage is just 
the moves (i,j) done by the players at that stage. For  standard information 
AUMANN and MASCHLER [1966] proved a stronger version of Theorem 1, namely: 

Theorem Is: 
In the case of standard information 

v . ( p ) = u * ( p ) + 6 , ( p )  for p ~ P ;  n =  1,2,..., 

where 6,(p) < c/Vn for some c > 0. 
The error term 6,(p) which measures the speed of convergence of v.(p) is the 

subject of Our paper. In an earlier paper on this subject [ZAMIR, 1971/72] we 
proved among other things that in the standard information case c/]/~ is the 
best bound possible. There are games for which 6. >_ c'/]/~ for c' > 0. As for 
the general case, nothing is said about the error term in Theorem 1. The main 
question is of course: Does 6, < c/]/~ still hold for the non-standard infor- 
mation case? The answer is no: In Section 1 we describe a game in which 
c'/n x/a < 6. <_ c/nl]3; (C > O,C t > 0). The next natural question is: What is 
an upper bound for 6. in the non-standard information case? This question is 
answered only for the case k = 2 (only two possible choices of chance). In Section 3 
we shall prove at this case 6. <_ c/n 1/6. If, in addition, we have NS(p) = 0 for 
0 < p < 1, a stronger bound is valid, namely 6, < c/n a/4. 

It will be convenient to use in this paper the following terminology: 

Definition 2." 
Two sequences of non-negative numbers {a,} and {b.} is said to be of the same 

order of magnitude if there are constants c a > 0 and c2 > 0 s.t. CEb . <_ a. <_ cab.; 
n = 1,2 . . . . .  This will be denoted by a. = 0*(b.) (or b. = 0*(a.)). 

2. A Game with ~. = O*(1/n l/a) 

Consider the game: A 1 H 1 <" 
A 2 H2 
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where: A I " = ( ~  - 3  3 -11) H1 =(ab c 

(We use the notation x' for I - x for any 0 < x < 1.) Denoting the pure strategies 
of player II by c~, fl, 7, we observe that deleting the strategy e and changing H * 
to standard information matrices we obtain the game with 6, = 0"(1/]/~) analyzed 
in our previous paper. The main feature of our present game is that player II 
does not collect any information about  the choice of chance as long as he restricts 

himself to the strategies fl and 7. The only way for him to gain some information 
is to use his dominated strategy e. In other words player II  "has to buy the informa- 

tion", whenever he wants to know player I 's move he has to pay 8 units. This 
will cause the enlargement of the order of magnitude of 5, from 1/n 1/2 to 1/n 1/a. 

A general strategy of player I in FI(p) is o- = [(s,s'),(t,t')]; 0 < s < 1, 0 <_ t < 1; 

which is to say: Play the mixed strategy (s,s') in A ~ and the mixed strategy (t,t') 
in A 2. We will write a in short as ~r = (s,t). It is easily verified that: 

NS(O) = NS(1) = {(s,t) l 0 _< s _< 1,0 _< t < 1} 

X S ( p ) =  { ( s , t ) [ s=t ;O_<s_< i} for pp' @O. 

(I.e. except for p = 0 or p = 1, the 0nly non-separating strategies for player I 
are those in which he plays in the same way in A 1 and A2.) 

A(p) is therefore the game: 

(8 3 p + 2 p '  - p - 2 p " ]  

\8 - 3 p  - 2p' p + 2p ' ]  

and its value is u(p) = 0 for 0 < p < 1 ; since also u(1) = val (A 1) = 0 = va l  (A z) = 
u(0) we conclude that u*(p) = 0 for 0 _ p _< 1.. 

Lemma 1." 

1 
v,+l(P) = rain max {8e +(1  - e)min[3p(s  - s') 

O_~e_<l O_<s,t_<l F/ -~- ]- 
+ 2p'(t - V);p(s' - s) + 2p'(t' - t)] 

+ n(l -- e)v,(p) + ne[R"v,(p a) + RbVn(pb)]} (1) 

fo r0  _< p _< 1; n = 1,2 ... .  where 

Ra = ps + p't ; pa = ps/R,  
(2) 

R b = p s ' + p ' t ' ;  p b = p s , / R  b. 

Proof: 

in 
Let a = (s,t) be the part  concerning the first play in any strategy of player I 
F,+l(p ). Let z = ( e , x , y )  where ~___0, x > 0 ,  y > 0 ,  e + x + y =  1 be the 
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corresponding part for player II. With strategies starting this way the expected 
payoff in the first play will be: 

E(H1)  = 8e + x [ 3 p ( s  - s') + 2p'( t  - t')] + y[p(s '  - s) + 2p'(t '  - t)] 

> 8e + (1 - e ) m i n [ 3 p ( s  - s') + 2p'( t  - t ' ) ;p(s '  - s) + 2p'(t '  - t)]. 

After the first play the information announced will be: 

a - with probability eR  a 
b - with probability e R  b 

c or d - with probability 1 - e, 

where R a and R b given by (2). Given the information a, b, c, or d, the conditional 
probability (for player II) of the event "Chance has chosen A TM is pa, pb, poor pd 

respectively where pC = pa = p and pa and pb are given by (2). After the first play 
therefore the players will face a situation equivalent to either 

F.(p) (with probability 1 - e) 
or F.(p a) (with probability e R  a) 
or F,(p b) (with probability eRb) .  

By playing optimally in F.(p), F,(p a) or F.(p b) player I can guarantee a total expected 
payoff of nv,(p), nv , (p  a) or nv. (p  b) respectively, for the last n plays, thus: 

1 
v,+ I(P) > min max i-{85 + (1 - e)min [3p(s - s') 

O_<e_<l O<_s , t< l  l~ "[- 

+ 2p'( t  - t ' );p(s '  - s) + 2p'(t '  - t)] + n(l - e)v,(p) 

+ ne[Rav . (p  ") + R%.(pb)]}. (3) 

On the other hand, for each e, 0 _< e < 1, player II, by playing optimally, can 
guarantee to pay not more than max {...}/(n + 1) and hence: 

O < s,t <__ l 

v,+l(p) < min max { . . . } / (n  + 1), 
0_<c_<1 O<_s,t<_l 

which together with (3) proves (1). 

L e m m a  2: 

vn(P) >_ pp ' /n  a/3 (4) 
f o r O _ < p _ < l , n = l , 2  . . . . .  

Proo f :  
Since (4) is clearly true for p = 0 or p = I we may assume pp' ~ O. It is easily 

verified that v l ( p ) =  min(p,p ' )_  pp' in accordance with (4). We proceed by 
induction: Assume (4) is true for n then apply (1) and restrict s and t by the relation: 

1 p(s  - s') (5) 
p ( s - s ' ) = p ' ( t ' - t )  i.e. t = 2 2p' ' 

which implies: 

min [3p(s - s') + 2p'( t  - t ' ) ; p ( s ' -  s) + 2p'(t '  - t)] = p(s - s ' ) ,  
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and also: pa = 2ps, pb .-= 2ps', R" = R b ---= 21-. So by (1) we have 

1 
v.+l(p) _> min max ~ {8e + (1 - ~)p(s - s') + n[(1 - ~)v.(p) 

o_<~_<1 o_<s_<l ~ 4- l 
o<~ -p~s-~') _<1 

- -  z z p '  

+ -~(v.(2ps) + v.(2ps'))]} 

and by induct ion hypothesis  

On + 1 (P) ~ m i n  m a x  
O_<e_<l 0_<s_<l 

where 

n + l  
(8e + (1 -- e)pp'n z/3 + ~o(S)}, 

~H2/3 

~o(s) = (1 - e)p(s - s') + ~ ( 2 p s ( 2 p s ) '  + 2ps~(2ps') ') 

= (1 - e)p(s - s') + epn2/3(1 - 4pss' - 2p(s - s') 2) 

(6) 

and since ss' < 1/4 we have 

tp(s) > O(s) = (1 - e)p(s - s') + spnZ/3(p" - 2p(s - s') 2) 

= ~ p p ' n  2/3 + (1 - -  e)p(s - s') - 2 e p 2 n 2 / 3 ( s  - s ' )  2 (7) 

~(s) attains its max imum at So such that  

1 - -  ~ (1 - -  ~)2 
(So - s~) = ~ and ~O(so) = spp'n 2/3 + ~ 2 7 x  �9 (8) 

Consider  the two cases: 

Case a)So is in the domain  of  maximizat ion of (6) then by (6) and (8): 

v.+l(P) > min 1 { r/2/3 (1 - -  •)2 
o<_~<_ln--~ 8e + pp' + 8~n /a ~. 

This min imum is at tained at eo = 1 / ] / ~ n  -~/3 + 1, so 

V n + l ( P )  ~ 
pp' n 2/3 -k- -F 

n + 1 [ l / ~  + 1 8n 2:a 4n 2:a 

+ 8 n 2 / 3 V ~ n ~ l  + 1 '} > nPP'+ 1 (n2/3 + 1/nl/3) >- pp'/(n + 1) 1/3 

which is the desired inequality. 

Case b: So is out  of the domain  of  maximizat ion of (6). Let  us split this case into 
three subcases: 

Case bx: So - s~ > 1 (i.e. p < (1 - e)/(4e, n2/3)) and p < p'. 
In this case choose s - s' = 1 and p(s - s') = p'(t' - t). By (6) and (7) we then 

get: 
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v.+l(P) >- rain ~ {pp'  n 2/3 + p + e(8 - p - 2pZn2/3)}  > pp ' / (n  + 1) 1/3. 
1 - - c  

The last inequality is a result of a careful and straightforward examination. 
Caseb2:  so - s; > 1 andp > p'. In this case we choose t' - t = I andp(s - s ' )=  

p'( t '  - t). Again by (6) and (7) we get very similarly: 

vn+l(p) > 1----~{pp'n2/3 + p' + e(8 -- p' --  2p '2n2/3)}  
- n + 1  

min 

-- 4en2/3 ) 

_> min 1 {...} _> pp ' / (n  + 1) '/3 . 

C a s e b 3 : s o  - s; < 1 andto = 1/2 - p(s  - s ' ) /2p'  < 0,i.e.p' < (1 - ~)/(4en 2/3) <_ p. 
In this case we again choose t' - t = 1 and p(s - s') = p'(t '  - t) and get the 
same expression as in the last step of case b2. Hence the proof of Lemma 2 is 
complete. 

Lemma 2 asserts that 1/1/~ which is the upper bound for (the order of magnitude 
of) 6, in the standard information case is not an upper bound in the general 
case. The upper bound is at least I/n 1/3, and this is the only thing that can be said 
from our example since in this example 6, is actually of the order of 1/n 1/3 as 
it is shown by the next theorem. 

T h e o r e m  2:  

In the game under consideration, 

Vn(P) = 0 " ( 1 / n l / 3 ) .  

P r o o f :  

First notice that since l imv. (p)=  0 we have actually v . (p)= 6.(p). Now in 
view of Lemma 2 the proof of the theorem will be concluded by proving 

_ = ~ .  ( 9 )  v,,(p) < c~ V p p ' / n  1/3, where 

We shall prove (9) by induction on n. For  n = I we have vl(P) = min(p,p') < 
in accordance with (9). Assume (9) holds for n and let us prove it for n + 1. First 
we notice that by min(A,B) < (1 - p / 4 ) A  + (1 + p / 4 ) B  we get: 

min[3p(s - s') + 2p ' ( t  - t ' ) ;p(s '  - s) + 2p ' ( t '  - t)] < 2pp ' ( s  - t ) .  (10) 

Combining (10) and (1) we have: 
1 

v.+l(P) < min max {8e + 2(1 - e )pp ' ( s  - t) + n(1 - e)v.(p) 
0 _ < e < l  Ogs,t<_l n ~ T 

"k- rte.[Ravn(p a) -4- R%.(pb)]}. 

Using the induction hypothesis and noticing that by (2) 

- -  ~ ' 
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we get 

0n+l(/)) __< 0 @ / ~  n2/3 ~_ + min  max  0) ,  
n + 1 o_<,_<~ o_<t,~_<l n + 1 -~~ - 

where 

~o((s - t)) = 8s + 2pp'(s  - t) - ~ e ] / / ~ n  z/3 (s - 0 2 
4 

~o((s - t)) at tains its m a x i m u m  at (s - t)o = 4 ] / ~ ; / ( e e n  2/3) and q~((s - t)o ) = 
8e + 4pp '  ] / /~ / ( e snZ /3 ) ,  therefore, 

1 ~ 4 p p ' l / ~  Vn+l(P) < ~ p ~ y / 2 / 3  -t- --'--'--=-. min )8e  + 
- -  n "q- 1 n + 1 0_<e_<l~ ~ S (12) 

The expression {...} as a function of e a t ta ins  its m i n i m u m  at ~o = (pp,)3/4/ 
(2~)1/2nl/3 ,< 1, so by (12) 

v ,+l (p  ) < ~ n  z/3 + 1 16(pp') 3/4 
- n + 1 n + I (2~)t/Zn1/3 

n + i 1/5 1/3 < + 

which completes  the p roof  of  T h e o r e m  2. 

3. An Upper Bound for 6.  

In this section we discuss the order  of  magni tude  of the error  t e rm 6, when 
k = 2, i.e. chance chooses one of two games  A 1 and A 2 with the cor responding  
informat ion  matr ix  H 1 or  H 2 respectively. 

Let  H = {hi~ [ 1 <_ i <_ 1,1 <_j <_ m,v  = 1,2}. H m a y  be called the informat ion  
set and it is the set of  all possible pieces of  in format ion  that  can be announced  
by the referee th roughou t  the game. A k-stage history is a k-tuple of  elements 

of  H denoted by A k = (h I . . . . .  hk). It is to be interpreted as the list of  announcement s  
of  the referee for the first k stages of  the game. A strategy 3) of  player  I in F,(p) 

is an n-tuple o-. = ( f t  . . . .  ,f,) where fk(1 < k < n) is a function f rom the set of  
all k - 1 stage histories to the set of mixed strategies (of player I) in FI(P). A 
strategy for player  II  in F,(p) is z.  = (g l , . . . , 9 , )  defined similarly. Denote  by 
z* = (Jl . . . . .  Jk) the k-tuple of pure strategies actually p layed by player  I I  in the 
first k stages. The  probabi l i ty  dis tr ibut ion on all possible z* is de termined by z. 
Now,  a,, z~' and p induce a probabi l i ty  distr ibution on the set of  all k - 1 stage 
histories. Therefore,  given ~r, and  A k - 1 ,  player  I I  can compute  the condi t ional  
probabi l i ty  of the event "Chance  has chosen A 1''. Deno te  this probabi l i ty  by 

Pk, i.e., 
Pk prob  {chance has chosen Aa ] * 1 ,Ak-  1 } t T n ~ ' C k _  . 

Notice  that  E(Pk) -= p for k = 1,2 . . . .  (E denotes  expectation).  

3) Essentially a behavioural strategy. 
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The probability Pk is a state variable in the sense that the situation in F,(p) 
before the k tn stage is equivalent to thai of a new game F,_k+ l(Pk) with n - k + 1 

stages and a probability Pk for chance to choose A 1. 
In what follows we shall use the expression "given Pk", in symbols (... lPk), 

as a short form of saying: "Given a strategy a ,  of player I and given that before 
the k th stage, the history was A k_ 1, and the sequence of pure strategies played 
by player II  up to that stage was z~'_ 1, such that  the conditional probabili ty of the 

event 'Chance has chosen A 1, is Pk"" 
We denote as usual the one-stage strategy of player I by ~r = (sl,s 2) = 

[(SI ' 1 2 ~2 ~1 ~2 .... sll),(sl ..... s~2)] ~ I ;  1 x where and are the spaces of mixed 
strategies for player I in A 1 and A 2 respectively. (For the general model as well 
as for what we are going to prove, player I need not have the same number  of 
pure strategies in all AV.) The non-separating strategies of player I are then given 

by: 
NS(O) = NS(I) = S 1 x ~ 2 ,  and 

NS(p)= al E 1 1 = si eijh -- ~S2e2h 0; j  = 1 .. . . .  m ; h ~ H  
i=1 i= l  

for 0 < p < 1, where: 

e~Jh= h i ~ @ h '  v =  1,2. 

Notice that NS(p) is the same for any p with 0 < p < 1. 
We are now in the position to state our next result: 

Theorem 3: 
If  NS(p) = ~ for 0 < p < 1 then there exists a positive constant c such that 

v,(p) < u*(p) + c/n 1/4 for n = 1,2, . . . ,0 < p < 1. 

Proof: 
Note first that since u*(p) is concave, it is always true that u*(p) > pu(1) + p'u(O). 

However  when NS(p) = O, u(p) is not defined for 0 < p < 1 and hence u*(p) = 
pu(1) + p'u(O) for 0 < p _< 1. 

Proposition 1: 
There is a constant ct > 0 such that given Pk, player II  can guarantee E(Hklpk) <-- 

u*(pk) + CtpkP'k. (Hk is the payoff at the k tla stage.) 

To see this, let "q and z o be two optimal strategies (for player II) in A 1 and A 2 

respectively. Using zl player II  guarantees: E(HkIP~) <<- U(1) + Bp' k where 
B = max[a~jl. Similarly % guarantees E(HkIPk)< u(O)+ Bpk. Thus mixing zl 

i , j ,v 

and Zo with probabilities Pk and p~ guarantees: 

E(Hk[pk ) <_ pku(1) + p[,u(O) + 2Bpkp' a <_ U*(pk) + C~pkp' k 

where e = 2B. 
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We notice that Proposition 1 is valid (and in fact it was proved) in the general 
case, without the assumption NS(p) = (). 

Proposition 2: 
There is a constant q > 0 such that for any a ~ 2; ~ x S 2 

I V s ~ e l ~  I >  (13) max /.., i ijh -- S~ ~h  - - f t .  
hell i 

This follows since the left hand side of the inequality is a non-negative continuous 
function on the compact set 271 x s and therefore it attains its minimum. This 
minimum, 0, cannot be 0 since this would imply NS(p) = ~ for 0 < p < 1. 

For  any a ~ 2; 1 • ~2 let h~ be the element in H for which the maximum in 
(13) is attained. Let j~ be such that e~h~ = 1 for some i and v. For  0 < ~ _ 1 
define a strategy z(e) for player II as follows: Choose j~ with probability e, and 
with probability (1 - e) play the strategy that guarantees E(HklPk) < u*(Pk) + 
ePkP'k. By using T(e) in the k 'h stage, player II guarantees: 

E(HklPk ) <_ u*(pk) "3 L F,B "~- O~pkP'k, (14) 

where B = max [ai~ I" 
i,j,v 

When a and z(e) are played, the information h~ will be announced with a 
probability p {h,} satisfying: 

( p  V'S1F.I ~ S 2 / ;  2 "~ p{h~} >_ e k /'i i ijoh~ + P'k . i ij~hc:)" 

In this event the new conditional probability will be: 

Pk Z s l  el  i ij~h~ 
Pk + X (h,~) = i 

Pk Z sl eb=h= + P'k E 2 2 " St 8ij~h~ 
i i 

Therefore, by (13): 

E(lPk+I -- Pk]lPk) >-- ]Pk+l(h~) -- Pk] "p{h,~} >__ PkV'krl e. (15) 

Combining (14) and (15) we have 

E(Hk]Pk) <-- U*(Pk) + eB + eE(lpk+I -- Pk] IPk) 
tie 

Taking ~o = ~ / ~ ] / E ( I p g + I  - Pk[ ]Pk), and choosing N such that k _> N 
"o < 1. (This is possible since E(Ip~+~ - p~] ]Pk) -- '  0 ) w e  get: 

k >_ g ~ E(HK]pk) --< U*(pU) + 2 Pk+l -- P~[ [Pk). 

N-1  
Let L = ~ E(Hk). Using E(Pk) = p, the linearity of u*(p) and the concavity of 

k=l  
the function ]/~ we get: 
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E H k 
v.(p) < 

n 

/1 

 I/E(Ip,+I- pkl) 
< u * ( p ) + ~ L  + 2  

n n 

n E ( IPk+ ,  --  Pkl) 
< _ u , ~ , ) +  L + 2  

n n 

Since E 2 [P~+I - Pkl -- V ~, (see, AUMANN & MASCHLER, or ZAMm), we obtain 
finally: \ ~ 

v.(p) < u*(p) + c/n 1/4 , 

where c = 2 ] / / ~  + L, which concludes the p roof  of  Theorem 3. 

Lemma 3: 

Let  S be a non-empty  po lyhedron in  E '~ and let L ix = 0, i = 1 ..... d; x = (x 1 . . . . .  xm) 

be hyperplanes in E m. Define N S  = { x l x ~ S ; L i x  = O,i = 1 . . . .  ,d}. If  N S  4= 0 

then there exists a constant  D > 0 depending only on Li, i = 1 . . . . .  d and S such 
that  

maxlZi~l>-DIIx-NSll fo ra l l  x ~ S .  (16) 
t 

(llx - NSll = min IIx - Yl[, Ilxll being the Euclidean n o r m  in E=.) 
y ~ N S  

Proof:  
Proposition 1: 

If  { x [ L x  = 0} is a hyperplane,  Lxo = 0 and  a 4= Xo, then for each x in the half  
line {x[x  = Xo + O(a - x);O > 0} we have 

I t x l  lEa[ 

I t ~ -  ~oll -- I l a -  ~o11 

This is demonst ra ted  by:  

lEvi _ IZ(xo + 0(a - Xol)l = LOa lEnt 
I I x -  ~otl - I I 0 ( a -  ~ o ) 1 1  IlO(a-xo)lt = [I a - ~o11 

Proposition 2: 

If  N S  is a convex set in E m, x o ~ N S  , a ~ N S  such that  Ila - Nsll= Ila - xoll, 

then for any x in  the halfl ine {x ]x  = Xo + O ( a -  Xo); 0 > 0}, IIx - Nail = I1~- xoll 
holds. 

To  prove this we will show that  the hyperplane  th rough  Xo and perpendicular  
to the half  line, separates a f rom NS.  In  other  words we show that  

(a - Xo)(y - Xo) < 0 V y ~ N S .  

Assume that  there is z E N S  such that  

(17) 

(a - Xo)(z - Xo) > 0 ,  (18) 
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then by the defini t ion of  Xo: 

[[a - x o l [  2 < Ila - z l l  2 = [ ( a  - Xo) + (Xo - z ) ]  (a  - z )  

= l id  - Xoll  2 + (a  - X o ) ( X o  - z ) -  (a  - z ) ( z  - Xo) 

< tla - xo l?  - ( a  - z ) ( z  - -  Xo), 
hence 

(a - z)(z  - Xo) < 0 .  (19) 

F r o m  (18) and  (19) it follows tha t  there  is z*, z* = Oxo + (1 - O)z, 0 < 0 < 1 
such tha t  

(a - z*)(z - Xo) = 0 .  (20) 

Since N S  is convex it follows tha t  z* ~ N S  and  

11 a - z* ii 2 = (a - z . ) [ ( a  - z*) + (1 - 0)(z - Xo) ] 

= ( a - z * ) ( a - x o ) = [ ( a - x o ) - ( 1 - 0 ) ( Z - X o ) ] ( a - x o )  

= [[a - xo l?  - ( 1  - O)(a - Xo)(Z - Xo) < lid - Xo]?,  

which con t rad ic t s  the def ini t ion of  Xo and  hence proves  P r o p o s i t i o n  2. 

Let  us p rove  now L e m m a  3 by  induc t ion  on  the d imens ion  of  S: I f  d im S = 0 

(S is one point )  there  is no th ing  to  prove.  I f  d im  S = 1, i.e., S = {x] x = Oa + (1 - O)b; 

0 < 0 < 1} then (16) fol lows easily f rom P r o p o s i t i o n  1. Assume tha t  the  l e m m a  

is t rue  for d im S < k < m and  it is wrong  for d im S = k + 1. Then  there  is a 

sequence {Xn} of  po in ts  in S such tha t :  

IZ, xn[ < 1 ] I x . -  Nail,  i =  1 . . . . .  d;n = 1,2 . . . . .  (21) 

Let  yn be the po in t  in N S  neares t  to x,,  i.e.: 

[ I x n - N S l l = l l x n - y n l l ,  n =  1,2 . . . . .  
Define:  

0. = max  {Oiy . + O(x. - y.) ~ S} 

x'. = y .  + On(X. - -  y . ) .  

Clear ly  each X'n is on a face of  S and  since S has  a finite n u m b e r  of  faces we can 

assume (by tak ing  a subsequence)  that  X'n are  on one face, say n, of  S for n = 1 , 2 , . . . .  

N o w  by P r o p o s i t i o n  1 IZ, x'l/llx' ,- y,l[ = IZ, x , I / l lx . -  y,[[, and  by  P ro -  

pos i t ion  2: IIx" - Nail = IIx; - Y.II. Hence  by  (21): 

1 
IZ, x;I < ~-IIx"  - Nsl l ,  i =  1 ..... d;n = 1,2 . . . . .  (22) 

Let  Xo be a l imit  po in t  for a subsequence  of  {x;}, then since II x; - N s  II is b o u n d e d  

we have:  Lixo = 0 for i =  1 . . . . .  d; which impl ies  Xo e NS. O n  the o ther  hand  

since the face n is closed we have  also Xo e n. So if we define NS'  = N S  n n we 

have NS'  ~ O. N o w  clearly IIx; - usll <- IIx; - gs'll, hence:  

1 
Ig, x'.l < ~-IIx' .-  gs'[I, i = 1  ..... d ; n = a , 2 , . . . -  (23) 
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which contradicts the induction hypothesis since rt is a polyhedron of dimension 
k. This completes the proof of Lemma 3. 

Theorem 4: 
For any game F,(p) with k = 2, there exists a constant c such that 

On(p) ~ U*(p) "~ c/n 1/6 , (24) 

for 0 < p < l  and n = l , 2 , . . . .  
Proof:  

If NS(p) = 0, 0 < p < 1, then (24) follows from Theorem 3. Assume therefore 
that NS(p)  = N S  ~ 0 for 0 < p < 1, then by Lemma 3 there is a constant D > 0 
such that for any tr ~ Z 1 x ~2 we have: 

max ~, s ile~; h - ~i s2e2h >- DIl - NSII , (25) 
h i 

f o r 0 < p <  1. 

Proposition 1: 
Given Pk, player II has a pure strategyjo such that when used with probability 

e it guarantees E([Pk+I -- Pk[ [Pk) >- epkp'~ll~ - NSII for any t rEZ  1 x r, 2 played 
by player I. 

This can be shown by very much the same argument used to prove (15) in the 
proof of Theorem 3 (namely J0 is the column in which is found h~ that maximizes 
the left hand side of (25).) 

Proposition 2: 
Player II can guarantee: 

E(Hdp0 ___ u*(p0 + nll  - NSII,  (26) 
where B = max l aTjl. 

i,j,v 
In fact he can do this by playing an optimal strategy in A(pk). 
A combination of Proposition 2 and Proposition 1 in the proof of Theorem 3 

gives: 

Proposition 3: 
Given Pk, player II has a strategy z, that guarantees E(HkIPO <--u*(pk)+ 

min (nil a - NSlI, p p'k), and hence: 

E(nklP0 <-- u*(PO + (n~) 1/2 (pkp'O 1/z II - NS 111'2. (27) 

For 0 < e < 1 define z,(e) = ejo ~ (1 - e)z, (Jo is defined by Proposition 1 and 
is a formal probabilistic mixture). Playing "c,(a) at stage k player II guarantees: 

E(Hk I Pk) <-- U* (pk) + eS  + (B~t) 1/2 (pk P'k) 1/2 I I tr -- N S  II 1/2  

and by Proposition 1 : 

E(H~Ip~) < u*(pO + eB + ~I-E(IP~+I - Pkl IP0P/2 (28) 
- -  ~ . 1 / 2  
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where ? = (o~B/D) 1/2. Now minimize the right hand side of (28) by choosing 
~o = (~/(2B))  2/3 [E([Pk+t -- P~] [Pk)] ~/3, for k > N (where N is such that k _> N 
e o _< 1), we get: 

k >_ g ~ E ( H k [ P k  ) _<__ u*(pk) + D[E([Pk+I - Pk] [Pk)] ~/3 , (29) 
N-1 

where /5 = 2B~. Letting L = ~ E(Hk) we get by using the concavity of u*(p) 
and of xl/3: 1 

1 n L /3 " 
Vn(P) --< T ~1 E(Hk) - < u*(p) A~- __H "~- Y ~1 [E(IPk+ I -- P~I)] 1/3 . (30) 

ByHOLDERinequal i tyandsinceE(~lpk+l --pg[) <_ nl/2: 

~ [E( [pk+~  - pk])]  1/3 _< E( lP~§ - Pk l )  n2/~ 

< [nl/211/an 2/3 = nS/6" 

Inserting this in (30) and setting c = / )  + L we obtain finally v,(p) < u*(p) + c/n 1/6 
which completes the proof of Theorem 4. 

4. Some Open Questions 

There are several questions still to be answered: 
1) What is the upper bound for 6, when k > 2 ? Quite surprisingly, the generaliza- 

tion of our results for k = 2 is not straightforward. 
2) What is the least upper bound for the order of magnitude of 6.? This is 

interesting even when k = 2 since there is a gap between our bound 1/n 1/6 and 
the order of magnitude of 6, in our example which is 1/n 1/3. In fact we conjecture 
that the least upper bound is lower than 1In 1/6. 

3) Even for k = 2 and NS(p) = 0 it is not known whether the bound 1In ~/4 
is the least upper bound. 

4) In what way does the error term depends on the information matrices of 
both players ? In this work we assumed that the information announced by the 
referee was the same for both players. More generally this information may be 
different for each player. AUMANN and MASCHLER [1968] showed that the in- 
formation to player I (the one who knows the choice of chance) is irrelevant as 
far as the value of the game is concerned. We feel that it may play an important 
role in the speed of convergence, namely in @ 
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