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On Residual Stresses in Arteries
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Introduction

In the study of vascular elasticity the unloaded state (one
with zero transmural pressure and zero axial load) is common-
ly used as the reference state in which stresses and strains are
considered as zero everywhere. Strains at loaded states are
defined with respect to this state. Stress-strain relationships
are identified under the assumption that the vessel wall is
stress-free at this unloaded state.

Evidence of the existence of residual stresses in the arterial
wall at the unloaded state is given in Fung [4]. With a
longitudinal cut along the vessel wall the unloaded specimen
springs open and its cross section becomes a sector. The open-
ing angle of the vessel wall is time-dependent after the sudden
relief of the initial residual stress. It shows that the artery is
not stress-free at the unloaded state.

It is important to identify the stress-free state. When we use
pseudoelasticity [3] to characterize the arterial wall, we need a
stress-free state as the reference state for strain measurements.
Correspondingly, we also want to define stress with respect to
this same reference state so that we can relate stresses to
strains easily. Presence of the residual stress at the unloaded
tube state will certainly affect the evaluation of stress distribu-
tion in the arterial wall due to actual loadings in the
physiological range.

In this note we present a method to describe the geometry of
the opened-up stress-free state of the artery, which is taken to
be the reference state. An algorithm is outlined for the iden-
tification of the stress-strain relationship of the arterial wall.
Residual stresses -and strains in the unloaded tube are
evaluated. With the consideration of residual stresses the
stress distributions due to loadings in the physiological range
are also evaluated.

Method

Geometric Description of the Stress-Free State. The artery
is considered as a cylindrical tube whose wall material is
homogeneous and cylindrically orthotropic [7]. Under this
hypothesis, at the removal of residual stress from the unload-
ed state, the vessel wall should become a sector of constant
curvature and thickness. Noncircular opened-up configura-
tion similar to the photo of reference [4] are often obtained,
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however. It can be due to adventitia tethering, experimental
fixation handling difficulties, or other violations of the
assumptions. In the following, a method is proposed to deter-
mine the effective radii and the effective angle for the stress-
free reference state from the noncircular opened-up configura-
tion taken from experiments.

Figure 1 shows the idealized vessel wall configurations at
various states. We shall call the stress-free reference state as
state 0, the unloaded state as state 1, and the subsequent load-
ed states as state 2, 3, .. N. With cylindrical polar coor-
dinates, a material point is denoted as (R, O, Z) in the state 0
and (r, 0, z) in the states 1, 2, 3, . . N. The subscripts / and e in-
dicate the internal and external wall radii at various states. O,
represents half of the angle of the arterial wall at the stress-
free state 0.

The angle ©, and the internal and external wall radii for
state 0 and state 1 can be determined from the direct
measurements of fiber lengths at both surfaces taken from the
photos of the open-up specimen. For state 1, it is obvious that

2mr, =1, 1)

for the internal and external surfaces, respectively, where /

denotes the measured fiber length. For state 0, we write
20,R;=L,, 20,R, =L, )

for the inner and outer walls where L denotes the fiber length
measurements at this state. The determination of r; and r, for
state 1is straightforward. However, we need another equation
to solve for the three unknowns, ©,, R;, and R, in equation
(2). The incompressibility condition of the vessel wall [2] pro-
vides the third equation

0, (R =R =7\ (r}—r?) &)
where ), is the axial stretch ratio and is to be measured direct-

2ar; =1,

STATE 0 STATE 1 STATES 2,3...N

Pure Bending Pressurization
e

Axial Stretch

(R,6,2)

[r(ﬂ’ 6(1), z(1)]

[r(n), e("), z(n)]

Fig. 1 The cross-sectional representation of an artery at the stress-free
reference state 0, the uniloaded tube state 1, and subsequent loaded
states under transmural pressure and axial force
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ty. By solving equations (2} and (3), the geometric description
of state 0 is determined in terms of the effective values.

Identification of Material Constants. With the geometry
of the reference state determined, the deformation of a thick-
walled artery under transmural pressure and axial tethering
can be described by the following expressions:

r=r(R), 0=(n/6,)0, z=2(Z) @

for the transformation of the radial, circumferential, and
longitudinal coordinates, respectively. The corresponding
principal stretch ratios are

or TN\ 7 0z
A (9,,)R’ YA )

The arterial wall material is assumed to be characterized lby
a pseudo-strain energy function of the exponential type [3]

poW = XD Ey? + B2 + byE + 2D EE,

+2bsE E, +2bsE Ey) 6)
where p,W represents the pseudo-strain energy per unit
volume in the undeformed reference state. The constants c,
b,, by, by, by, bs, bg characterize the wall material. Ey, E,,
and E, are Green’s strains in the circumferential, longitudinal,
and radial directions, respectively. They are related to the
principal stretch ratios of equation (5) by

.t% A2=1)  (=r6,2) %

The material is assumed to be incompressible. This constraint

{is added to the strain energy function through a Lagrangian

multiplier. If X, denotes the coordinates of a point at the
reference state and x; denotes that at the deformed state, then
the Cauchy stress components can be obtained from

_p 9x; dx d . B

o by X, 3X, 9E,, poW* (U, Jj,a,B=r0,z) (8)
where p, p, denote the densities of material in the deformed
and undeformed states, respectively, and p,W* is the
modified strain energy function with incompressibility
constraint,

The problem of a pre-strained thick-walled artery under
transmural pressure and longitudinal tethering force can be
solved by substituting equation (8) into the equation of
equilibrium

do,  0,—05

A ©

and the boundary conditions. The boundary conditions are
that, 1) on the inner and outer surfaces r=r; and r=r,, the
vessel is subjected to pressures p; and p,, respectively; and 2)
on the ends of the vessel segment, an external force F acts.
Solving equation (9) with the use of two boundary conditions
. = 0), we obtain

=\ cl(1+2E,) 6By +bsE, +b,E]
Te
dar
—(14+2E,)[b,Ey+b,yE, + bE,] )2 — (10
and

F=27rc§ * 1 €Q[(1 +2E,) (b E, + bE, + bsE,)
T
1
—— (L42E,) (b Ey +bsE, + by E,)

1
——5 (1+2E,) (D, Ey + byE, +bgE)ldr (11)
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Fig. 2 Residual strain and stress in the wall of an unloaded rabbit
thoracic artery

where Q denotes the exponent of equation (6).

Equations (10) and (11) are two integral equations from
which we can determined the material constants. Once the
material constants are determined, we can evaluate the
residual stress at tube state 1 and the stress distribution at
loaded states with residual stress taken into consideration.

Results

Geometric Description of the Reference State 0. To
demonstrate the method in determining the geometry of the
stress-free reference state, an example is given. From the data
of reference [4] values of /;, /,, L;, and L, are measured to be
8.75, 12.5, 9.75, and 11.25 mm, respectively. Solving equa-
tions (2) and (3), with the assumption of A, = 1, we obtain R,
= 4.52 mm, R; = 3.92 mm, and ©, = 71.4 deg as the effec-
tive external, internal radii and the effective angle for the
reference state 0.

Residual Strain and Stress at State 1 (Tube Unload-
ed). Figure 2(a) shows the residual strain in the arterial wall
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when the vessel is unloaded. The strains are expressed in terms
of principal stretch ratios. It is seen that fibers at the inner wall
are shortened, while those at the outer wall are elongated. The
location of neutral surface can be obtained from the second of
equation (5) by setting A, = 1, yielding in this example a loca-
tion at 43 percent of the wall thickness measured from the in-
ternal surface.

To illustrate the method of calculating the residual stress at
the unloaded state and the stress distribution at the loaded
states, we shall use the raw data of Exp:71 on rabbit thoracic
artery from Fung et al. [5]. It is assumed that the residual
strain in the artery of Exp:71 is distributed like that of the
artery in reference [4]. We then solved equations (10) and (11)
for material constants to obtain ¢ = 22.40 kPa, b, = 1.0672,
b, = 0.4775, by = 0.0499, b, = 0.0903, bs= 0.0585, bg =
0.0042. We then used these constants to evaluate the stresses at
various states of loading. Figure 2(b) shows the distribution of
the residual stresses at the unloaded state. In the circumferen-
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Fig. 3 Strain and stress distributions in the wall of a rabbit thoracic

artery at p; = 120 mmHg (~16.0 kPa) and A, = 1.691
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Fig. 4 The mean diiatational stress distribution in the vessel wall is
plotted for three transmural pressures, p; = 60, 120, 160 mmHg with p,

= 0 mmHg. Note the large jump from the pressure in the lumen p; to the
mean stress at the inner wall.

tial direction, the inner wall has a compressive residual stress
of 1.5 kPa; the outer wall has a tensile residual stress of 1.3
kPa. These are small numbers compared with stresses at load-
ed states shown in Fig. 3, but their effects are large, as will be
shown in the forthcoming. At this unloaded state the vessel
wall is in a state of pure bending.

Strain and Stress Distributions at Loaded States. Figures
3(a) and (b) show the distributions of principal stretch ratios
and principal stresses of the vessel wall at p; = 120 mmHg (16
kPa) and axial stretch ratio = 1.691. The circumferential
stress at the inner wall is found to be 1.42 times larger than the
average value across the vessel wall. In a previous work [1],
under the hypothesis that the unloaded tube is stress-free, we
obtained that: at p; = 120 mmHg, the circumferential stress at
the inner wall was 6.5 times larger than the average value
across the vessel wall. Hence the removal of the hypothesis
that the unloaded state is stress-free has the effect of reducing
the stress concentration factor from 6.5 to 1.42. In the present
work, we identified the stress-free state from experimental
results, evaluated the residual strain and stress at the unloaded
tube state, and calculated the strain and stress at various inter-
nal pressures. Compared with our former work [1], the results
in Fig. 3 show that the residual stress in the unloaded tube
state, although small in magnitude, is significant in reducing
the high stress concentration.

The distribution of the mean dilatational stress across the
vessel wall is shown in Fig. 4 for p;, = 60, 120, 160 mmHg. At
60 mmHg, the mean stress is rather uniform across the wall
thickness. At 120 mmHg, it is 105 kPa at the inner wall and 60
kPa at the outer wall. At 160 mmHg, it becomes 140 kPa at
the inner wall and 75 kPa at the outer wall. This suggests that,
as the pressure varies from 60 to 160 mmHg, the driving force
for fluid movement in the arterial wall can change significant-
ly at the inner layer. The mean dilatational stress is the
negative of hydrostatic pressure, which is considered as the
driving force for fluid movement in the arterial wall. Note the
large jump in the mean stress (from p; to &) at the inner and
outer walls of the vessel. Fluid movement from the lumen into
the arterial wall is due largely to these jumps. The literature on
this subject and the interpretation of its relationship to
atherogenesis is discussed in reference [1].

References

1 Chuong, C. J., and Fung, Y. C., 1983, ‘‘Three-Dimensional Stress
Distribution in Arteries,”” ASME JOURNAL OF BIOMECHANICAL ENGINEERING,
Vol. 105, pp. 268-274.

MAY 1986, Vol. 108/ 191

220z ¥snbny 9| uo ysanb Aq ypd-| 68 1/1085995/681/2/801/4Pd-BlolE/|EdlUBYDBWOIq/BI0"aWSsE UoRIB||00[e}Bipawse//:d)y Wwoly papeojumoq



2 Chuong, C. J., and Fung, Y. C., 1984, ‘*‘Compressibility and Constitutive
Equation of Arterial Wall in Radial Compression Experiments,”” Journal of
Biomechanics, Vol. 17, pp. 35~40.

3 Fung, Y. C., 1981, Biomechanics: Mechanical Properties of Living Tissues,
Springer-Verlag, New York.

4 Fung, Y. C., 1984, Biodynamics: Circulation, Springer-Verlag, New York,
pp. 59-60.

5 Fung, Y. C., Fronek, K., and Patitucci, P., 1979, ‘‘Pseudoelasticity of

192/ Vol. 108, MAY 1986

Arteries and the Choice of its Mathematical Expression,”’ American Journal of
Physiology, Vol. 237, pp. H620-H631.

6 Green, A. E., and Adkins, J. E., Large Elastic Deformations, 2nd Edition,
Clarendon Press, Oxford, 1970.

7 Patel, D. J., and Fry, D. L., 1969, “The Elastic Symmetry of Arterial
Segments in Dogs,”” Circulation Research, Vol. 24, pp. 1-8.

8 Patitucci, P., ‘“‘Computer Program for Fitting Pseudo-Strain Energy Func-
tions to Soft Tissue Experimental Stress and Strain Data,”” Digital Equipment
Users Society, DECUS, No. 11-548, One Iron Way, Malboro, Mass., 1982.

Transactions of the ASME

220z ¥snbny 9| uo ysanb Aq ypd-| 68 1/1085995/681/2/801/4Pd-BlolE/|EdlUBYDBWOIq/BI0"aWSsE UoRIB||00[e}Bipawse//:d)y Wwoly papeojumoq



