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ON RESTARTING THE ARNOLDI METHOD FOR
LARGE NONSYMMETRIC EIGENVALUE PROBLEMS

RONALD B. MORGAN

Abstract. The Arnoldi method computes eigenvalues of large nonsymmetric
matrices. Restarting is generally needed to reduce storage requirements and
orthogonalization costs. However, restarting slows down the convergence and
makes the choice of the new starting vector difficult if several eigenvalues are
desired. We analyze several approaches to restarting and show why Sorensen’s
implicit QR approach is generally far superior to the others. Ritz vectors
are combined in precisely the right way for an effective new starting vector.
Also, a new method for restarting Arnoldi is presented. It is mathematically
equivalent to the Sorensen approach but has additional uses.

1. Introduction

There are several methods for computing eigenvalues of a large nonsymmetric
matrix A. The best known are the Arnoldi method [1,17,18,19, 20, 22, 25], the
nonsymmetric Lanczos algorithm [16, 25], and subspace iteration [7,13,14]. These
methods can be used with either the matrix A or with the shifted and inverted
matrix (A − σI)−1 [5,15]. The second choice requires factorization of A − σI, but
it brings rapid convergence for the eigenvalues near σ. If factoring is not possible,
an alternative approach is to use preconditioning methods for eigenvalue problems
[3,9,10,12]. For this paper we will concentrate on just using the matrix A.

The Arnoldi and nonsymmetric Lanczos methods are both Krylov subspace
methods. They generally give faster convergence than subspace iteration [13,18].
However, neither method is ideal. The nonsymmetric Lanczos algorithm involves
a three-term recurrence but may encounter instabilities (see [16] for an improved
version). The Arnoldi algorithm is stable but requires explicit orthogonalization
against all previously computed basis vectors. So both the expense and the storage
increase as the method proceeds. The Arnoldi method also requires calculation
of the eigenvalues and eigenvectors of a Hessenberg matrix of order m at the cost
of O(m3) operations, and this becomes prohibitive for large m. So restarting is
generally necessary. However, restarting slows down the convergence. Here we
analyze several approaches to restarting the Arnoldi algorithm and show why the
Sorensen implicit QR approach is much better than the others. Then we give a new
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1214 R. B. MORGAN

method that retains all of the desired approximate eigenvectors at the time of a
restart and adds them to the subspace. This method is mathematically equivalent
to the Sorensen method, but it has several additional uses, in particular when a
priori eigenvector information is available. Section 2 discusses the problems with
restarting Arnoldi. Section 3 looks at Sorensen’s restarting. The new method is
presented in §4, and §5 has some discussion on convergence rates.

2. Restarted Arnoldi

Like many eigenvalue methods, the Arnoldi algorithm uses the Rayleigh-Ritz
procedure [14, 19]. This procedure extracts approximate eigenvectors from a sub-
space of Rn by reducing to a smaller eigenvalue problem.

The Rayleigh-Ritz procedure

1. Let S be a j-dimensional subspace of Rn.
2. Compute Q, an n by j orthonormal matrix whose columns span S.
3. Compute the j by j matrix H = QTAQ.
4. Find eigenvalues θi of H, and if desired, find eigenvectors gi of unit length.

The θi are approximate eigenvalues of A and are called Ritz values. The Ritz
vectors, yi = Qgi, are approximate eigenvectors of A. The residual norm is
||ri|| = ||Ayi − θiyi||.

The particular subspace used by the Arnoldi method is a Krylov subspace
Span{s,As, A2s, ..., Am−1s}, where s is some starting vector [14, 19]. The reduced
matrix H is upper-Hessenberg, and its elements are found during the orthogonal-
ization phase.

The restarted Arnoldi algorithm

1. Initialize: Choose a starting vector s and let q1 = s/||s||.
2. Generation of Krylov subspace: For j = 1, 2, ...,m do:

hij = (qi, Aqj), i = 1, 2, ..., j,

q̂j+1 = Aqj −
∑j
i=1 hijqi,

hj+1,j = ||q̂j+1||, and
qj+1 = q̂j+1/hj+1,j .

3. Find approximate eigenvalues and eigenvectors: For the m by m matrix H,
compute the appropriate eigenvalues θi. If desired, compute Ritz vectors and
residual norms, and check the residual norms for convergence.

4. Restart: Choose a new starting vector, possibly a Ritz vector or a combination
of Ritz vectors. Normalize for q1, and go to 2 for the next run (we define a
run to be each pass through the algorithm, in between restarts).

The Arnoldi recurrence formula [19, p. 173] is

(2.1) AQ = QH + hm+1,mqm+1e
∗
m,

where em is the mth coordinate vector. A well-known formula for the residual norm
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RESTARTING THE ARNOLDI METHOD 1215

can be derived using (2.1):

ri ≡ Ayi − θiyi
= AQgi − θiQgi
= QHgi + hm+1,mqm+1e

∗
mgi − θiQgi

= Q(Hgi − θigi) + hm+1,mqm+1e
∗
mgi

= hm+1,me
∗
mgiqm+1,

since gi is an eigenvector of H. Letting βmi = hm+1,me
∗
mgi gives

(2.2) ri = Ayi − θiyi = βmiqm+1,

and

(2.3) ||ri|| = |βmi|.

The Arnoldi method is best at finding well-separated eigenvalues. Convergence
properties for Krylov subspace methods can be analyzed using polynomials. Any
vector from the Krylov subspace can be written as y = p(A)s, where p is a poly-
nomial of degree m − 1 or less. Suppose λ1 and z1 are the desired eigenvalue and
eigenvector. If A has a full set of eigenvectors z1, z2, ..., zn, then s can be expanded
in terms of the eigenvectors:

s =
n∑
i=1

αizi.

Then

y =
n∑
i=1

αip(λi)zi

= α1p(λ1)z1 +
n∑
i=2

αip(λi)zi.

For y to be an accurate approximation to z1, a polynomial is needed that is large at
λ1 and small at the other eigenvalues. This is difficult for a polynomial of limited
degree, especially if there are eigenvalues close to λ1. See [14, 19, 21, 22] for more
discussion.

Higher-degree polynomials give more accuracy. A problem with restarting is
that it limits the size of the Krylov subspace and thus the degree of the polynomial.
Another problem is that at each restart, a single vector must be chosen for the new
starting vector. This choice is difficult if more than one eigenvalue is desired. And
if a complex eigenvalue is needed, using a complex starting vector greatly increases
costs.

Several ways of dealing with these problems are possible. For the rest of this sec-
tion, we examine four restarting methods. The first approach is to use a weighted
combination of Ritz vectors as the starting vector and to use only the real parts
of complex Ritz vectors. Saad suggests a particular combination in [22]; the Ritz
vectors are weighted by the corresponding residual norms. If the eigenvectors were
known exactly and the starting vector was formed by combining the real parts, it
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1216 R. B. MORGAN

would only take a few steps of the Arnoldi method to compute all of the eigenvalues.
However, in practice this method may not work well, especially for difficult prob-
lems [20]. Assume two eigenvalues, λ1 and λ2, are desired. Let the corresponding
eigenvectors be z1 and z2, and let the approximate eigenvectors at the time of a
restart in the Arnoldi method be y1 and y2. Suppose the starting vector for the
next run of Arnoldi is s = y1 +αy2. After two steps of Arnoldi with starting vector
z1 + αz2, the subspace would contain z1. But after two steps with starting vector
s, the error in the new approximation to z1 can be much greater than the error in
y1. We show this for the case of real Ritz values.

Theorem 1. Assume θ1 and θ2 are real Ritz values with Ritz vectors y1 and y2.
Let s = y1 + αy2 be the starting vector for the next run. Define δ ≡ βm1 + αβm2

and let qm+1 be as defined in equation (2.1). Then every vector v in the subspace
Span{s,As} can be written in the form

(2.4) v = σ(y1 + e),

with

(2.5) ||e|| ≥ |αδ|√
δ2 + α2(θ2 − θ1)2

,

and with e in Span{y2, qm+1} and σ a scalar.

Proof. We start by multiplying both sides of the equation s = y1 +αy2 by A, then
use the definition of the residual vector and equation (2.2):

(2.6)

As = Ay1 + αAy2

= θ1y1 + r1 + α(θ2y2 + r2)

= θ1y1 + βm1qm+1 + α(θ2y2 + βm2qm+1)

= θ1y1 + αθ2y2 + (βm1 + αβm2)qm+1.

Any combination of s and As is a multiple of

As− γs = (θ1 − γ)y1 + α(θ2 − γ)y2 + (βm1 + αβm2)qm+1,

for some γ. So every vector v in Span{s,As} can be expressed as follows, for some
scalar σ:

v =
σ

(θ1 − γ)

(
As− γs

)
= σ

(
y1 + α

(θ2 − γ)

(θ1 − γ)
y2 +

(βm1 + αβm2)

(θ1 − γ)
qm+1

)
= σ

(
y1 + α

(θ2 − γ)

(θ1 − γ)
y2 +

δ

(θ1 − γ)
qm+1

)
.

The vector v is in the form specified in equation (2.4). It would be desirable to have
a value of γ that eliminates both the y2 and qm+1 terms, but this is not generally
possible. To eliminate y2, we need γ = θ2, but this causes the qm+1 term to be
large if θ1 is near θ2. Next, we find a γ that attempts to reduce both terms.
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RESTARTING THE ARNOLDI METHOD 1217

Since y2 and qm+1 are orthogonal, we have

(2.7) ||e|| =

√
α2

(θ2 − γ)2

(θ1 − γ)2
+

δ2

(θ1 − γ)2
.

The value of γ that minimizes this quantity can be found with calculus techniques.
The result is

γ = θ2 +
δ2

α2(θ2 − θ1)
.

With this value of γ, there holds (θ2 − γ)2 = δ4

α4(θ2−θ1)2 and (θ1 − γ)2 =
(α2(θ2−θ1)2+δ2)2

α4(θ2−θ1)2 . After substitution into (2.7) and some algebra, the desired re-

sult (2.5) is obtained. �
We now examine (2.5). If ||e|| is significantly larger than the error already in

y1, then accuracy is lost at the restart. First let α = 1, and assume that the Ritz
vectors are fairly accurate, so that δ is considerably smaller than θ2− θ1. Then the

lower bound on ||e|| given by (2.5) is approximately |δ|
θ2−θ1

. So the accuracy for the

next run of Arnoldi depends largely on δ = βm1 + βm2 (the θ2 − θ1 term is partly
a scaling factor to account for the fact that residual norms are used to bound an
error norm). It is common for a Krylov subspace to give a better approximation
to y1 than to y2. Then βm2 is larger than βm1. The accuracy for the new start is
roughly the same as the accuracy of y2, instead of the desired accuracy of y1.

Next, note that the choice for α suggested in [22] is α = ||r2||
||r1|| = |βm2

βm1
|. With

assumptions as before, the right-hand side of (2.5) is approximately
β2
m2

βm1(θ2−θ1) .

This leads to even greater magnification of error.
If more than two Ritz vectors are combined, the accuracy can be set back to

about the accuracy of the poorest approximation. Any setback can be disastrous,
if there is not enough improvement during a run to make up for it.

Problems also occur with complex eigenvalues, even if only one is desired. While
Re(z1) andA(Re(z1)) can be combined to form z1, the vectors Re(y1) andA(Re(y1))
generally cannot be combined to form either y1 or any other approximation to z1

of similar accuracy.
So it appears that the approach of using a combination of the real parts of Ritz

vectors as the new starting vector can be ineffective. In [20], Saad suggests another
approach. One Ritz vector is chosen as the new starting vector, and only one
eigenvalue is computed at a time. After λ1 has been found, it is deflated [14, p. 81]
and the next eigenvalue is computed. One way of deflating is to replace A in the
Arnoldi method with A − σz1z

∗
1 , for some σ. The eigenvalues are left unchanged

except for λ1, which shifts to λ1−σ (see [20]). Thus the already computed eigenvalue
can be shifted out of the way. But the disadvantage of this approach is that only
one eigenvalue is computed at a time. Also there is still the problem of dealing
with complex eigenvalues.

A third way of restarting is with a block method [6]. Several starting vec-
tors are used, so it is possible to find several eigenvalues at the same time. With
block Arnoldi, all of the approximate eigenvectors and even both their real and
imaginary parts can be in the subspace. However, much lower-degree poly-
nomials are generated. For example, suppose an m-dimensional subspace
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1218 R. B. MORGAN

is generated by the block method with blocks of size two. Then the subspace is
Span{s1, s2, As1, As2, A

2s1, A
2s2, ..., A

m
2 −1s1, A

m
2 −1s2}. So for the same size sub-

space, the powers of A reach only about half of what they are for the regular Arnoldi
method. With lower-degree polynomials, there is much less accuracy.

The fourth approach to restarting is given by Sorensen in [24]. Like the method in
[22] discussed earlier, he forms the new starting vector by combining Ritz vectors.
His combination is different. An implicit QR approach is used; see [24] for the
implementation details. This approach does not seem to be very promising, based
on the results of Theorem 1. However, in the example that follows, it works quite
well. This unexpected result is explained in the next section.

Example 1. For a test problem, let A be the tridiagonal matrix with 1, 2, ..., 1000
on the main diagonal, −0.1 in each superdiagonal position and 0.1 in each subdi-
agonal position. The three smallest eigenvalues are 1.0101, 1.9999, 3.0000. The
maximum size of subspace is 24. Four versions of Arnoldi are compared. The first
uses a combination of three Ritz vectors weighted by residual norms [22]. The sec-
ond restarts with just the one Ritz vector corresponding to the smallest Ritz value.
The third approach is block Arnoldi with blocksize of three and again maximum
size subspace of 24. The fourth method uses Sorensen’s restarting [24] with a com-
bination of three Ritz vectors. The initial starting vector is (1, 1, 1, 0.1, 0.1, ..., 0.1)T

and an additional two random vectors are used for block Arnoldi.

Figure 1. Comparison of restarts for Arnoldi

Figure 1 shows the residual norms for the smallest Ritz pair. The method using
a combination of Ritz vectors weighted with residual norms is not very effective.
We can see that the loss of accuracy around the time of each restart negates the im-
provement made during each run. Restarting with just one approximate eigenvector
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RESTARTING THE ARNOLDI METHOD 1219

is better. After 10 runs, the residual norm is 0.11e-2. But it will take quite a while
to compute the first eigenvalue accurately, let alone find the next two eigenvalues.
Block Arnoldi converges extremely slowly because with maximum size subspace of
24 and block size of 3, only degree-7 polynomials are generated in each run. This
problem is difficult for low-degree polynomials.

Finally, the Sorensen approach to restarting is used with maximal dimension of
subspace 24 and with a combination of three Ritz vectors at the restart (referring
to [24], p = 21, k = 3 and “exact shifts” are used). This method converges much
faster, especially over the last 6 runs. The residual norm for the smallest eigenvalue
is 0.55e-5 after 10 runs. In addition, there are approximations to the next two
eigenvalues with residual norms of 0.31e-3, and 0.12e-1. So not only does Sorensen’s
method find the smallest eigenvalue faster, but it also gives approximations to other
eigenvalues. In fact, in another test with k = 6 and subspaces of dimension 24, three
eigenvalues are computed with residual norms of better than 10−6 after 15 runs.
Restarting with one Ritz vector takes 19 runs to find just one eigenvalue with
residual norm under 10−6.

3. The Sorensen approach

Now we reconsider Theorem 1, which seemed to indicate that restarting with a
combination of Ritz vectors is ill-advised. Observe that there is a way of combining
y1 and y2 that does not give loss of accuracy in Theorem 1. If we choose α = −βm1

βm2
,

then δ = 0. So the qm+1 term in equation (2.6) is eliminated, and As is just a
combination of y1 and y2. Thus Span{s,As} is the same as Span{y1, y2}. So the
two-dimensional subspace contains y1 exactly. There is no accuracy lost at the
restart. Only this combination of y1 and y2, with α = −βm1

βm2
, eliminates the qm+1

term and gives no loss of accuracy. And this is exactly the choice that is made by
the Sorensen method when exact shifts [24] are used.

Now consider combining more than two Ritz vectors, say y1, y2, ..., yk. There

is a way to combine them as s =
∑k
i=1 ciyi such that Span{s,As, ..., Ak−1s} =

Span{y1, y2, ..., yk}. As in deriving (2.6), the key is that Ayi − θiyi = βmiqm+1.
So for all i, Ayi − θiyi is a multiple of the same vector. For k = 3, the Ritz
vectors can be combined with c1 = (θ3 − θ2)βm2βm3, c2 = (θ1 − θ3)βm1βm3, and
c3 = (θ2 − θ1)βm1βm2. The combination for a larger k can be found by solving a
homogeneous underdetermined system of linear equations. The matrix is k − 1 by
k with ith row [θi−1

1 βm1, θi−1
2 βm2, ..., θi−1

k βmk]. The combination vector can be
scaled so that it is a real vector. Sorensen’s implicit QR approach avoids explicitly
computing the ci’s and is more efficient. The subspace of dimension k does not
have to be generated with regular Arnoldi steps. It is formed from the previous
subspace. This saves k matrix-vector products [24].

The next theorem says that the Sorensen procedure combines the Ritz vectors
in the right way. It is proved in [24] that the new initial vector is a combination of
Ritz vectors. It is stated that the particular linear combination of Ritz vectors is
apparently different from others that had been used previously, but it is not stated
that this combination gives different results.

Theorem 2. Let the desired Ritz vectors be y1, y2, ..., yk. Suppose that Sorensen
restarting is used with exact shifts. Then during the next Arnoldi run, the subspace
of degree k is Span{y1, y2, ..., yk}.
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1220 R. B. MORGAN

We omit the proof because it requires results from [24], and also it is mostly
contained in the proof of Lemma 3.10 in [24]. (The only added difficulty is in
showing that if 2 ≤ i ≤ k, then qi can be written as ψ(H)w, for some vector w.
Then v+

i is, like v+
1 , a combination of the desired Ritz vectors.) See [8, §4.4] for

more on Lemma 3.10.
In the next theorem, p is the number of undesired Ritz values. During every

run, Sorensen’s method builds a Krylov subspace of dimension m = p + k. How-
ever, contained in that subspace are several interesting Krylov subspaces of smaller
dimension.

Theorem 3. The subspace generated during a run of the Sorensen method after
restarting is

(3.1) Span{y1, y2, ..., yk, Ayi, A
2yi, A

3yi, ..., A
pyi},

for any i such that 1 ≤ i ≤ k.

Proof. We give the proof of this theorem, although it also relies on a result from
[24]. We first assert that the subspace generated during the new run in Sorensen’s
method is

(3.2) Span{y1, y2, ..., yk, qm+1, Aqm+1, ..., A
p−1qm+1}.

This follows from Theorem 2 and from [24, p. 365, Eq. (7)]. Note that βk = 0 in
Eq. (7) of [24] when exact shifts are used, so the new qk+1 is the old qm+1.

Next, we show that subspace (3.1) is contained in subspace (3.2). From equation
(2.2),

Ay1 = βm1qm+1 + θ1y1.

Then
A2y1 = βm1Aqm+1 + θ1Ay1

= βm1Aqm+1 + θ1βm1qm+1 + θ2
1y1.

Since A2y1 is a combination of y1, qm+1, and Aqm+1, it is contained in subspace
(3.2). Similarly for other j, Ajy1 is in the subspace (3.2). For example, Apy1 is
a combination of y1, qm+1, Aqm+1, ..., Ap−1qm+1. So the subspace in (3.1) is a
subset of subspace (3.2). These subspaces have the same dimension, so they are
the same. �

According to Theorem 3, the subspace for Sorensen’s method contains a Krylov
subspace of dimension p+1 with each of the desired Ritz vectors as a starting vector.
Thus the method works on approximations to all of the desired eigenpairs at the
same time, without favoring one over the others. Nevertheless, owing to properties
of Krylov subspaces, exterior and well-separated eigenvalues will converge more
rapidly.

4. A new method

In this section, we examine another approach to restarting. It is proposed that
the new starting vector for Arnoldi be one approximate eigenvector, and that the
other approximate eigenvectors be added to the subspace. If y1 is chosen to be
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RESTARTING THE ARNOLDI METHOD 1221

the new starting vector and y2, ..., yk are other approximate eigenvectors, then the
vector basis {y1, Ay1, A

2y1, ..., A
py1, y2, y3, ..., yk} is generated and the subspace

spanning the vectors is used. So this is partly a Krylov subspace but with k − 1
extra basis vectors added. In the case of a complex approximate eigenvector, the
real and imaginary parts are separated and both are added. The real part of y1 can
be used as the starting vector, while the imaginary part is added to the subspace.

Strickly speaking, this approach is no longer the Arnoldi algorithm, but it can be
implemented as an addition at the end of the algorithm. We apply the Rayleigh-Ritz
procedure to the subspace that has added approximate eigenvectors. This method
was developed independently from Sorensen’s method and it is implemented quite
differently, but it is mathematically equivalent.

In our implementation, the Krylov portion of the subspace is generated and or-
thogonalized first, then the old approximate eigenvectors are added to the subspace
and orthogonalized. The reduced matrix H is not upper Hessenberg, but the next
theorem shows that it still has a fairly nice form (see Figure 2).

Figure 2. Form of H

Theorem 4. Let p+ 1 be the dimension of the Krylov portion of the subspace, and
let the elements of H be hij. If i > j + 1 and j ≤ p, then hij = 0.

Proof. Let qi be the ith column of Q. Note that hij = qTi Aqj . Let the Krylov
subspace of dimension j be Kj = Span{y1, Ay1, ..., A

j−1y1}. The first p+1 columns
of Q are from Kp+1. Therefore, since j ≤ p, we have that qj ∈ Kj and

(4.1) Aqj ∈ Kj+1.

Since i > j + 1 and Q has orthonormal columns, qi is orthogonal to q1, q2, ..., qj+1.
Thus qi is orthogonal to Kj+1. Using (4.1), we get qTi Aqj = 0. �

We now give the algorithm for this new method.

Restarted Arnoldi with eigenvector approximations

0. First Run: If initial approximate eigenvectors are known, proceed to 1. Oth-
erwise, use the standard Arnoldi algorithm followed by steps 5 and 6 for the
first run.

1. Initial definitions and calculations: The Krylov portion of the subspace has
dimension p+1, there are k−1 extra vectors, and m = p+k. Let x1, x2, ..., xk
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1222 R. B. MORGAN

be the approximate eigenvectors or in the complex case, the real and imagi-
nary parts of the approximate eigenvectors. Let q1 = x1/||x1||.

2. Generation of Krylov subspace: For j = 1, 2, ..., p do:
hij = (qi, Aqj), i = 1, 2, ..., j,

q̂j+1 = Aqj −
∑j
i=1 hijqi,

hj+1,j = ||q̂j+1||, and
qj+1 = q̂j+1/hj+1,j .

3. Computations for the last vector in the Krylov subspace:
compute and store Aqp+1,
hi,p+1 = (qi, Aqp+1), i = 1, 2, ..., p+ 1.

4. Addition of approximate eigenvectors: For j = p+ 2, ...,m do:
cij = (qi, xj−p), i = 1, 2, ..., j − 1,

q̂j = xj−p −
∑j−1
i=1 cijqi,

cjj = ||q̂j ||,
qj = q̂j/cjj ,
hji = (qj , Aqi), i = p+ 1, ..., j − 1,
hij = (qi, Aqj), i = 1, 2, ..., j.

5. Find approximate eigenvalues and eigenvectors: Compute the appropriate
eigenpairs, (θi, gi), of H. Compute Ritz vectors yi = Qgi. Norms of the
residual vectors, ri = Ayi − θiyi, can be checked for convergence.

6. Restart: Let x1 be the appropriate Ritz vector or in the complex case, the
real part. Let q1 = x1/||x1|| and let x2 through xk be the other Ritz vectors
(including converged ones) or real or imaginary parts of Ritz vectors. Proceed
to step 2.

Steps 2 and 4 should actually use modified Gram-Schmidt orthogonalization
[6] and some reorthogonalization may be necessary [2]. Once an eigenvector has
converged, some simplifications can be made in the implementation.

Computation of the residual norms is now considered. It is probably not nec-
essary to know all of the residual norms at every restart. When needed, there are
several ways to compute a residual norm. Another matrix-vector product can be
used, or Ayi can be formed from the vectors that have been saved (the additional
cost is jn multiplications), but there is a cheaper formula that involves forming
part of Ayi and using the Arnoldi recurrence AQp = Qp+1Hp+1,p [19, 23]. We give
the formula for the case of real eigenvalues: let θ and y = Qg be the approximate
eigenvalue and eigenvector of interest, where ||g|| = 1. Divide g into two parts; let
g1 have the first p entries and g2 have the last k. Let Q2 have the last k columns
of Q. Let G1 be the leading p+ 1 by p portion of H − θI. Let G2 be the portion of
H − θI in the first p + 1 rows and the last k columns. Let H3 be the intersection
of the last k rows and the last k columns of H (not H − θI). Figure 3 shows the
positions of these submatrices, though they are not all portions of the same matrix.
Then

rT r = gT1 G
T
1 G1g1 + 2gT1 G

T
1 G2g2 + ||AQ2g2||2 − 2θgT2 H3g2 + θ2gT2 g2.

If it is desirable to avoid matrix-vector products, a different approach can be
used in step 4. The entries of H can be computed without Aqj . Form the Ayi’s
from vectors that have been saved and use the formula: for j ≥ p+ 2,

hij =
(
qTi Ayj−p −

j−1∑
l=1

cljhil
)
/cjj .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RESTARTING THE ARNOLDI METHOD 1223

Figure 3. Positions of G1, G2, and H3

There is another way to implement the method and avoid matrix-vector products.
Orthogonalize Ayi’s instead of yi’s and use a generalized Rayleigh-Ritz procedure
to develop a small generalized eigenvalue problem (see [11] for a version of this in
conjunction with linear equations problems). These approaches appear effective in
limited testing.

Next we show that this new method is mathematically equivalent to Sorensen’s
method. This assumes that no initial eigenvector approximations are used. Also,
for the special case Re(βm1) = 0, a change is needed in the algorithm. The result
is a corollary of Theorem 3.

Theorem 5. The Restarted Arnoldi with Eigenvector Approximations method gen-
erates the same subspace as the Arnoldi method with Sorensen’s restarting.

Proof. For the case where y1 is a real Ritz vector, the subspace for the Restarted
Arnoldi with Eigenvector Approximations method is constructed to be

(4.2) Span{y1, Ay1, A
2y1, A

3y1, ..., A
py1, y2, ..., yk}.

From Theorem 3, this is equivalent to the Sorensen subspace.
For the case of complex Ritz vectors, an inductive proof will be used. We assume

that the previous subspace is the same as the subspace in Sorensen’s method. Then
the previous subspace is Krylov, so equation (2.2) can be used (the actual value of
βm1 is not readily available because of the implementation). Let the complex Ritz
pair be (θ1, y1), with ω = Re(θ1), π = Im(θ1), x1 = Re(y1) and x2 = Im(y1). The
new subspace is constructed to be

(4.3) Span{x1, Ax1, A
2x1, A

3x1, ..., A
px1, x2, ..., xk}.

We need to show that this is the same as the subspace generated by the Sorensen
method.

From (2.2), we have
Ay1 = θ1y1 + βm1qm+1.

This becomes

(4.4) Ax1 +Ax2i = ωx1 − πx2 + (πx1 + ωx2)i+ βm1qm+1.
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From (2.2) with i = 2, and using that y2 is the complex conjugate of y1,

(4.5) Ax1 −Ax2i = ωx1 − πx2 − (πx1 + ωx2)i+ βm2qm+1.

Combining (4.4) and (4.5) and using that βm1 and βm2 are conjugates gives

(4.6) Ax1 = ωx1 − πx2 + Re(βm1)qm+1.

So Ax1 is a combination of x1, x2 and qm+1. Similarly, Ajx1 is a combination of
x1, x2, qm+1, Aqm+1, ... , Aj−1qm+1, for any j. So subspace (4.3) is the same as

Span{x1, qm+1, Aqm+1, ..., A
p−1qm+1, x2, ..., xk}.

Since the xi’s are formed from the yi’s, this subspace is

(4.7) Span{y1, y2, ..., yk, qm+1, Aqm+1, ..., A
p−1qm+1}.

For the case where Re(βm1) = 0, x2 will already be in the subspace when the
algorithm attempts to add it in step 4. In theory, this causes a breakdown. However,
it can be shown for this case that A2x1 is a combination of x1, x2 and qm+1. In
order to generate subspace (4.7), the Krylov portion of the iteration can be allowed
to go one more step. Then x3, ... , xk, but not x2, can be added to the subspace.
In practice, this case is probably not worth worrying about.

To conclude the proof, it was shown in the proof of Theorem 3 that subspace
(4.7) is the same as the Sorensen subspace. So subspace (4.3) is also the same. �

The consideration of the case where Re(βm1) = 0 in the proof of Theorem 5
leads to a suggestion for the method considered in §2 that restarts with just one
Ritz vector [20]. If y1 is complex, it can be rescaled so that Re(βm1) = 0. Then
with x1 = Re(y1) as the new starting vector, the subspace of dimension two is
Span{x1, Ax1} = Span{y1, y2}. This idea could also be used to combine several
Ritz vectors as in the second paragraph of §3, but using only the real parts. So
there are several ways of generating the Sorensen subspace. However, it seems
that the implicit QR implementation is best. The rest of the section discusses the
usefulness of the proposed new method.

The new method is not as efficient as the Sorensen approach. There is additional
work for computing the yi’s andAyi’s (they are not explicitly formed in the Sorensen
method). Also, importantly, additional storage is needed for the Ayi’s when matrix-
vector products are avoided.

So it appears that for most eigenvalue problems, Sorensen’s method should be
used. The new method has simpler implementation, which might sometimes be of
interest, but on the other hand, Sorensen has software for his method (the software
is both remarkable and lengthy). However, there are a number of applications of
the new method that make its study worthwhile. The method allows for adding
any extra vectors to a subspace. They need not be Ritz vectors. Approximations
to left eigenvectors [17, 25], singular vectors [6], or anything else can be included
in the subspace. An important example is that in some applications, good approx-
imations for eigenvectors are easily available. These approximations can be added
to the subspace in the first run with the new method, but not with Sorensen’s
method. Another case where the new method is useful is with computing interior
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eigenvalues using the modified Rayleigh-Ritz procedure in [9]. The vectors needed
are not the standard Ritz vectors. The method can also be used to add approxi-
mate eigenvectors to the subspace for GMRES when solving linear equations [11].
The convergence of GMRES can be improved [11]. Next, for nonlinear eigenvalue
problems the matrix changes. It is still easy to add approximate eigenvectors to
a subspace for the new method, but it is not clear how a changing matrix could
be handled by the Sorensen approach. Similarly, with a shift-and-invert Arnoldi
method with variable shifts, the matrix would be changing.

5. On Convergence of Sorensen’s method

This section has some observations about convergence of the Sorensen method.
The comments also apply to the new method introduced in §4. See [24] for a dif-
ferent discussion on convergence. Sorensen’s method computes several eigenvalues
at the same time. But Example 1 showed that computation of just one eigenvalue
can be faster with the Sorensen method than with restarting with one Ritz vector.
We look at how the convergence of an approximate eigenvector is improved by the
presence of other approximate eigenvectors in the subspace.

Suppose for the moment that we are computing z1, but that we know the exact
eigenvectors z2, z3, ..., zk. So assume that the subspace is

Span{y1, Ay1, A
2y1, . . . , A

py1, z2, z3, . . . , zk}.

Then the eigenvalues λ2, ..., λk are effectively eliminated from the spectrum of A.
The polynomial used to combine the vectors y1, Ay1, A

2y1, ..., A
py1 does not need

to be small at these eigenvalues, because by properly combining z2, ..., zk, the com-
ponents in these directions can be eliminated. Now λ1 is better separated from the
remaining spectrum, and convergence is often much faster. It is perhaps surpris-
ing that adding approximate eigenvectors can be almost this beneficial, even before
they are very accurate. This is a consequence of the following theorem, given for
the case of one extra approximate eigenvector. Unlike in the rest of the paper, here
we do not assume that y1 and y2 are normalized.

Theorem 6. Suppose A has spectral decomposition A ≡ ZΛZ−1, with Λ diagonal.
Assume the eigenvectors, the columns of Z, are normalized. Let y1 = z1 + e1 and
y2 = z2 + e2, and further expand y1 in terms of the eigenvectors as y1 =

∑n
i=1 αizi,

where α1 = 1. Then the subspace Span{y1, Ay1, ..., A
m−2y1, y2} contains the vector

z1 + w, where

(5.1) ||w|| ≤ ||Z|| ||Z−1|| ||e1||
(

max
i6=1,2

|p(λi)| + ||e2||
)

and where p is a polynomial of degree m − 2 or less such that p(λ1) = 1 and
|p(λ2)| ≤ 1.

Proof. Every vector v in the subspace can be written in the form

v = p(A)y1 + γy2,

for p a polynomial of degree m− 2 or less and γ a scalar. A special choice of p and
γ will be made to give a vector with the desired properties.
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Using the expansions of y1 and y2 gives

v =
n∑
i=1

αip(λi)zi + γ(z2 + e2)

= p(λ1)z1 + (α2p(λ2) + γ)z2 +
n∑
i=3

αip(λi)zi + γe2.

Pick p to be 1 at λ1, less that 1 in magnitude at λ2 and as small as possible at
the other eigenvalues. Then pick γ = −α2p(λ2). This removes the z2 term. The
resulting vector is

v = z1 +
n∑
i=3

αip(λi)zi − α2p(λ2)e2

= z1 + p̂(A)e1 − α2p(λ2)e2

= z1 + Zp̂(Λ)Z−1e1 − α2p(λ2)e2,

where p̂(λi) = 0 if i = 1, 2 and p̂(λi) = p(λi) for i 6= 1, 2. So we have the vector
v = z1 + w, where

(5.2) ||w|| ≤ ||Z|| ||Z−1|| max
i6=1,2

|p(λi)| ||e1||+ |α2| ||e2||.

Note that w has a component in the direction of z1 (from e2), so v may be more
accurate than (5.2) indicates.

With e1 =
∑n
i=2 αizi, it can be shown that

|α2| ≤ ||Z|| ||Z−1|| ||e1||.

Along with (5.2), the desired result follows. �
The ||e2|| term in equation (5.1) appears because y2 is only an approximation.

Fortunately, this term is not significant as long as ||e2|| is somewhat smaller than
maxi6=1,2|p(λi)|. So if the accuracy of y2 is greater than the improvement brought
by p in one run of Arnoldi, then convergence is about the same as if the eigenvalue
λ2 had been removed from the spectrum.

We next consider some estimates for convergence. First assume we are computing
λ1 and do not have approximations to other eigenvectors. For a symmetric or
a nearly symmetric matrix with real eigenvalues, an estimate of the convergence
reduction factor is

(5.3)
1

Cm−1(1 + 2γ)
,

where m is the number of iterations in the Arnoldi method without restarting,
γ ≡ λ1−λ2

λ2−λn is the gap ratio, and Cm−1 is a Chebyshev polynomial of degree m− 1.

(See [19, p. 200], and also [14], [21], and [22] for discussion of convergence for Krylov
subspace methods.) So the error in the approximate eigenvector is reduced by a
factor of approximately 1

Cm−1(1+2γ) during a run of Arnoldi with Krylov subspace

of dimension m.
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Now we also assume that the approximations to the eigenvectors z2, z3, ... , zk
are fairly accurate, so that the convergence is as if the corresponding eigenvalues
were deleted from the spectrum. So the effective spectrum for Sorensen’s Arnoldi

method is λ1, λk+1, λk+2, ... , λn. Define the effective gap ratio, γe ≡ λ1−λk+1

λk+1−λn .

An estimate for the convergence factor during a run of this method is

(5.4)
1

Cp(1 + 2γe)
.

Consider as an example the case where A has equally spaced eigenvalues 1, 2,
3, ..., 1000. Then with m = 24, the convergence factor given by (5.3) is 0.44.
Meanwhile, (5.4) gives 0.20 with p = 21 and k = 3. So convergence of the first
eigenpair in the Sorensen method is expected to be about twice as fast as with
restarting with just one Ritz vector. Looking back at Example 1, we see that the
convergence is about twice as fast over the last 6 runs. However, it is possible for
Sorensen’s method to be slower at finding one eigenvalue. The next example is
designed to demonstrate this.

Example 2. The matrix is the same as in Example 1, except that the diagonal
elements are 1, 2, 2.05, 2.1, 3, 4, 5, ..., 998. The first five eigenvalues are 1.01,
2.05 + .13i, 2.05 − .13i, 2.05, and 3.00. Again we use k = 3. Unlike in Example
1, removing two eigenvalues close to λ1 does not improve the effective gap ratio.
Furthermore, it turns out that no eigenvalues are effectively removed. Good ap-
proximations do not develop for any of the eigenvalues near 2.05, because two Ritz
vectors are used for a cluster of three eigenvalues. We give the results after 20 runs:
the method restarting with one Ritz vector reaches residual norm 0.11e-6 while
Sorensen’s method reaches 0.32e-6. The Sorensen method is slower because it has
a Krylov subspace of dimension 22 with starting vector y1 as part of its space (see
Theorem 3). The other Arnoldi method builds a Krylov subspace of dimension 24
with y1 as starting vector. The higher dimension is an advantage. However, even
in this difficult situation for Sorensen’s method, it is not far behind.

The next example considers the question of how much the Arnoldi method is
effected by the fact that it needs to be restarted. In this example, restarting does
not slow the convergence very much. However, it is necessary to have the extra
approximate eigenvectors.

Example 3. This example includes comparison with full, unrestarted Arnoldi.
The matrix is the same as in Example 1. The Sorensen method has k = 6 and
p = 18, so the subspaces are still of dimension 24. Figure 4 (next page) has plots of
residual norm versus number of matrix-vector products for the smallest Ritz pair.
With Sorensen restarting, matrix-vector products are not needed for the first six
vectors in the subspace after a restart. In 10 runs with subspaces of size 24, the
number of matrix-vector products needed is 24 + 9(18) = 186. The large Krylov
subspace used by full Arnoldi contains the Krylov subspaces used by the Sorensen
method. For example, the full Arnoldi subspace of dimension 186 contains all of
the Sorensen subspaces for 10 runs. Therefore, we expect full Arnoldi to be the
better method. It is even reasonable to expect full Arnoldi to be much better,
because this problem is fairly difficult (gap ratio of 0.001 for λ1). Large subspaces
are quite advantageous for difficult problems. However, we see from Figure 4, that
convergence for the Sorensen method is very close to that of full Arnoldi. After 185
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Figure 4. Comparison of restarted and full Arnoldi

matrix-vector products of the Sorensen method, the residual norm is the same as
after 171 matrix-vector products of full Arnoldi. The results are surprising in view
of the fact that full Arnoldi uses a polynomial of degree 170, instead of polynomials
of degree 23. The next paragraph attempts to explain why the Sorensen method is
so effective.

The Sorensen method develops approximations to the eigenvalues near 2, 3, 4, 5,
and 6, in addition to the eigenvalue near 1. Once these approximations are accurate
enough, the effective spectrum is 1, 7, 8, 9, ..., 999, 1000. This spectrum is not so
difficult, because the eigenvalue near 1 is better separated. For easy problems, the
degree of the polynomial is not as crucial. Having several low-degree polynomials
is about as good as the corresponding high-degree polynomial. The approximate
convergence factor for this effective spectrum (with γe = .006) and with a Krylov
subspace of dimension 19 is 1

C18(1+2γe)
= 0.12. So the error is expected to be

reduced by almost an order of magnitude during each run (over each 18 matrix-
vector products). From Figure 4, we see that the convergence is about this good
over the last few runs.

If a restarted Arnoldi method competes well with full Arnoldi, then it will also
contend well with the nonsymmetric Lanczos algorithm for the task of computing
eigenvectors. Full Arnoldi uses the same subspace for finding eigenvectors as does
the Lanczos algorithm. A study with further comparisons of full and restarted
Arnoldi and also with comparisons to nonsymmetric Lanczos would be interesting.

6. Conclusion

Restarting the Arnoldi method with a combination of Ritz vectors is generally
not effective. However, Sorensen’s implicit QR method restarts with the right com-
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bination. No accuracy is lost at the restart. Approximations to several eigenvalues
can be found at the same time. In addition, convergence can often be improved
even for finding one eigenvalue. Even though some information is discarded be-
cause of restarting, the most important information is retained. In an example,
Sorensen’s restarted Arnoldi method competes surprisingly closely with full, un-
restarted Arnoldi.

A new method is introduced that is mathematically equivalent to the Sorensen
method but has many possible additional uses. Of particular significance is that it
can be used when initial approximate eigenvectors are available. It may also be of
interest for nonlinear problems in both the symmetric and nonsymmetric cases.
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