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Universiẗat Dortmund, Fachbereich Informatik, D-44221 Dortmund, Germany.

ELI DICHTERMAN eli@cdam.lse.ac.uk
Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, UK. And,
Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.

JEFFREY JACKSON jackson@mathcs.duq.edu
Math and Computer Science Department, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.

NORBERT KLASNER klasner@lmi.ruhr-uni-bochum.de
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Abstract. In thek-Restricted-Focus-of-Attention (k-RFA) model, onlyk of then attributes of each example are
revealed to the learner, although the set of visible attributes in each example is determined by the learner. While
thek-RFA model is a natural extension of the PAC model, there are also significant differences. For example,
it was previously known that learnability in this model is not characterized by the VC-dimension and that many
PAC learning algorithms are not applicable in thek-RFA setting.

In this paper we further explore the relationship between the PAC andk-RFA models, with several interesting
results. First, we develop an information-theoretic characterization ofk-RFA learnability upon which we build a
general tool for proving hardness results. We then apply this and other new techniques for studying RFA learning
to two particularly expressive function classes,k-decision-lists (k-DL) andk-TOP, the class of thresholds of parity
functions in which each parity function takes at mostk inputs. Among other results, we prove a hardness result for
k-RFA learnability ofk-DL, k ≤ n− 2. In sharp contrast, an(n− 1)-RFA algorithm for learning(n− 1)-DL
is presented. Similarly, we prove that 1-DL is learnable if and only if at least half of the inputs are visible in
each instance. In addition, we show that there is a uniform-distributionk-RFA learning algorithm for the class of
k-DL. For k-TOP we show weak learnability by ak-RFA algorithm (with efficient time and sample complexity
for constantk) and strong uniform-distributionk-RFA learnability ofk-TOP with efficient sample complexity for
constantk. Finally, by combining some of ourk-DL andk-TOP results, we show that, unlike the PAC model,
weak learning doesnot imply strong learning in thek-RFA model.

Keywords: Restricted Focus of Attention, PAC-Learning, Learning Algorithms, Boolean Function Classes,
Decision Lists, Threshold of Parities, Fourier Transform

1. Introduction

Learning theory has been mainly concerned with the problem of generalizing from a sample
of fully-specified classified examples. For this problem classical statistical uniform con-
vergence theorems have been used to characterize scenarios in which a good generalization
can be found with high confidence (Vapnik and Chervonenkis, 1971), specific bounds on
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the sample size needed for such generalization have been proven (Blumer et al., 1989), and
efficient learning algorithms have been designed for specific cases (cf. (Valiant, 1984)).

It has also been noticed that in many realistic scenarios, the samples from which the learner
has to generalize are not fully specified (Kearns and Schapire, 1990, Kearns et al., 1992).
The learning models which have been formulated for studying this type of problem usually
assume—sometimes implicitly (Blum and Chalasani, 1992)—that there is a fixed set of
relevant variables which are invisible to the learner. In such problems, the learner may only
attempt to find a good probabilistic prediction rule with respect to the visible attributes.
However, as observed by Ben-David and Dichterman (Ben-David and Dichterman, 1993),
there are many cases in which there are no attributes which are inherently invisible, but
rather there are other restrictions on the visibility of the attributes, such as the amount of
visible attributes in each single example. Since in such cases every attribute is potentially
visible, the learner may attempt to find more than just a probabilistic prediction rule; he may
try to formulate a full description of the concept with respect to all the relevant attributes.

Consider, for instance, medical research which aims at forming the exact pattern of some
disease. Typically, there is some a priori knowledge about the disease, such as the potentially
relevant attributes of the disease and the possible patterns of the disease with respect to these
attributes. Then, in the course of studying the disease, it is usually possible to sample people
from a given population and conduct several tests on each one of them. However, due to
practical considerations (e.g., the cost of the tests), or inherent restrictions (e.g., the fact that
some blood tests may be destructive, or may not be usable for more than a limited number
of tests), the amount of data that is available for each single person is limited.

In such circumstances, researchers face the following problem: They can choose a set
of attributes which can be tested on a given sample, and they may choose to test different
attributes on different samples. However, they cannot have the full relevant medical record
of each sampled person. What type of information can be extracted from such partially-
specified samples? Certainly, if the samples are large enough, it is possible to estimate the
probability of developing the disease, for each set of attributes, and for every assignment to
these attributes (assuming that it is known whether each sampled person has developed the
disease or not). Although such estimates are useful in predicting whether a given subject
will develop the disease, forming an exact description of the disease with respect to all the
relevant attributes may be much more useful in understanding the disease and in finding
ways of treating it. This is the main theme of this paper—when and how a learner can use
a priori knowledge (i.e., the class of possible concepts) and partially-specified samples to
find with high confidence a good approximation of the target concept. For instance, it is
implied by the results shown in this paper that, in general, if it is known that the disease
may be described as a binary-valued decision list, then in order to find with high confidence
a good approximation of the disease at least half of the attributes have to be tested for each
sampled person.

The problem of learning in such scenarios motivated the generalrestricted-focus-of-
attentionlearning model (Ben-David and Dichterman, 1993), in which the learner has no
direct access to full examples, but rather may observe each example in one of a limited
number of ways. In this work we consider a special type of restriction calledk-RFA, in
which the learner may observe any set ofk attributes of each example.
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An interesting and useful feature of the RFA restriction is its relation to efficient noise-
tolerant learning. It follows from a result in (Ben-David and Dichterman, 1994) that an
O(logn)-RFA oracle can be efficiently simulated by statistical queries, and hence by
Kearns’ transformation (Kearns, 1993) an efficientO(logn)-RFA learner can tolerate clas-
sification noise (a simple and direct proof of the noise-robustness of anO(logn)-RFA
learner is shown in (Ben-David and Dichterman, 1997)). Furthermore, it is shown in
(Decatur and Gennaro, 1995) that if each statistical query uses only a restricted view (i.e., it
depends on a logarithmic number of attributes), then the learner can tolerate attribute noise
as well. It follows that anO(logn)-RFA learner can tolerate efficiently and simultaneously
both attribute and classification noise. Hence, one may view the RFA restriction as a useful
conceptual tool in constructing efficient noise-tolerant learning algorithms: Just make sure
that the learning algorithm selects no more than a logarithmic number of attributes to be
seen in any given input example. As demonstrated in (Ben-David and Dichterman, 1994),
in many cases this is easily accomplished by a slight variation of the well-known learning
strategies.

While thek-RFA framework resembles the PAC model in many aspects, there are also
some interesting differences. For example, unlike the PAC model,k-RFA learnability
of a class isnot characterized by its VC-dimension (Ben-David and Dichterman, 1993,
Ben-David and Dichterman, 1994). We show in this paper another surprising difference:
Weakk-RFA learnability of a class doesnot imply strongk-RFA learnability of that class.
Hence, it seems that better understanding ofk-RFA learnability can substantially increase
our understanding of the extent to which results in other learning models depend on access
to complete examples.

A few initial results fork-RFA learning of Boolean functions are given in (Ben-David and
Dichterman, 1993). For instance, it is shown there that the class of Boolean functions which
are representable byk-CNF ork-DNF formulas are efficientlyk-RFA learnable (for fixed
k), and that the class ofk-decision-lists is (inefficiently)k-RFA learnable under the uniform
distribution. (We use the notion “efficient” learning when both the time and the sample
complexities of the learning algorithm are polynomials in all the learning parameters of the
problem).

This paper extends our understanding ofk-RFA learnability of Boolean functions in a
number of ways. First, we develop a characterization ofk-RFA learnability that forms
the basis for a general tool that we later use to prove learnability hardness results. Next,
we consider thek-RFA learnability of two specific function classes:k-DL, the class of
functions expressible as decision lists in which each test is ak-term; andk-TOP, the class
of functions expressible as a threshold of parity functions, where each parity is defined over
at mostk inputs. We have chosen these classes for several reasons. For constantk, both
of these classes are efficiently PAC learnable; in fact, they are among the most expressive
classes which are currently known to be efficiently and distribution-free PAC-learnable (both
containk-CNF∪ k-DNF, for example). On the other hand, their learnability in thek-RFA
model is not immediately clear. Also, our study of these classes, particularly ofk-DL, has
shown that seemingly small variations in a question about the class can lead to substantial
variation in the resulting answers. This variability adds significantly to our interest ink-RFA
learnability questions. Finally, as discussed further below, a combination of some of our
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results for these two classes produces an interesting result about the relationship between
weak and strong learning in thek-RFA model.

As an example of ourk-DL results, we show that, in the distribution-freek-RFA model,
(n− 1)-DL is (inefficiently) learnable from an(n− 1)-RFA oracle. On the other hand, it
is information-theoretically impossible to learn(n − 2)-DL from an(n − 2)-RFA oracle,
even if the decision list has at most two alternations of the labels! Another small change,
however, leads to quite a different result: with respect to any known distribution,k-DL isk-
RFA learnable (not necessarily efficiently) for allk (for k = 1 and the uniform distribution
there is an efficient learning algorithm; cf. (Decatur and Gennaro, 1995)). In yet another
contrast, we also prove a hardness result showing, among other things, that distribution-free
learnability of1-DL requires access to at least half of the bits in each example.

Our study ofk-TOP is motivated in part by the fact that it is known to have useful Fourier
properties (Jackson, 1994); furthermore, it has also been studied in the context of empirical
machine learning (Jackson, 1995). We exploit the Fourier properties ofk-TOP to show
first thatk-TOP is weaklyk-RFA learnable and that this learning is efficient for constantk.
Second, we show that with respect to the uniform distribution,k-TOP is stronglyk-RFA
learnable with polynomial (in the usual learning parameters, and assuming a constantk)
sample complexity, but running time which is not necessarily polynomial.

As indicated earlier, we ultimately combine some of ourk-DL and k-TOP results to
obtain the following: unlike the PAC model, weak and strong learning arenot equivalent
in the k-RFA model (fork ≤ n − 2). This says that the hypothesis boosting technique
introduced by Schapire (Schapire, 1990) for transforming weak learning algorithms into
strong learners depends in a fundamental way on having access to more of the attributes in
an example than the number needed for merely weak learning.

The paper closes with some directions for further research.

2. Definitions

2.1. The Learning Model

The model introduced in (Ben-David and Dichterman, 1993) suggests a general way of
extending any learning model by a new mechanism which generates observations (seen by
the learner) from examples (drawn by nature). In this work we use the RFA extension of
the well-known PAC model (Valiant, 1984), as defined below.

LetF be a class of{0, 1}-valued functions (concepts) over an instance spaceX, and let
D be some probability distribution overX. The distributionD is used both to generate the
random training examples for the learner and to define the proximity between a learner’s
hypothesis and the correct target concept. We use the notationx ∈ D to denote thatx is
drawn randomly from the distributionD (over the instance spaceX).

In the RFA model another characterizing component is added to any learning problem.
This is a setW of projections, where a projection is a mapping of classified examples
to some observation spaceO. In the process of learning atarget functionf ∈ F , the
learner can make an observation by selecting a projectionw ∈W , and getting the value of
w(x, f(x)), wherex is a random instance drawn fromD. Choosing a projectionw ∈ W
models the act of focusing the attention on a set of features.
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Let the instance space beX = {0, 1}n. A special interesting case of the RFA setting is
thek-RFA model,0 ≤ k ≤ n, in which the learner is restricted to choose projections from
the classWk of k-RFA projections; ak-RFA projectionw ∈ Wk is defined by a set ofk
indices{i1, . . . , ik} ⊆ {1, . . . , n}. Whenx is drawn fromD andf is the target function,
then the learner observes〈(xi1 , . . . , xik), f(x)〉 (wherexj is thej-th bit of x). Hence, a
k-RFA learner may observe onlyk bits of each instancex (this is the restriction on the size
of the learner’s focus of attention), and he can also observe the classification bit.

Formally, this focusing mechanism is modelled by ak-RFA focusing functionΦ :
O∗ → Wk, which selects the nextk-RFA projection based on the sequence of obser-
vations seen so far. Given a sequence ofm instances~x = (x1, . . . , xm) ∈ Xm, a
target functionf ∈ F , and ak-RFA focusing functionΦ, the observation sample gen-
erated by~x, f andΦ is sample(~x, f,Φ) = (w1(x1, f(x1)), . . . , wm(xm, f(xm))), where
wi = Φ(w1(x1, f(x1)), . . . , wi−1(xi−1, f(xi−1))), for 1 ≤ i ≤ m (w1 is the value ofΦ
on the null sequence).

Having a sufficiently large sample of observations, the learner has to choose a hypothesis
h : X → {0, 1} from thehypothesis classH. The error of anyh with respect tof andD
is measured byerrorf,D(h) = Prx∈D[h(x) 6= f(x)], and a hypothesish is calledε-good
(with respect tof andD) if errorf,D(h) ≤ ε (h is ε-bad if it is notε-good).

Following (Blumer et al., 1989), our basic definition of learnability in the RFA model,
is an information-theoretic one (no computational restrictions). That is, we model the
hypothesis selection by alearning functionL : O∗ → H. Given a sufficiently large sample
of observations, a successful learning function should produce, with high confidence, a
good hypothesis. In general, the sample size should be finite, but can be super-polynomial
in the parameters of the leaning problem.

Definition 1. [k-RFA Learnability] A function classF ⊆ 2X is k-RFA learnable using
the hypothesis classH, if there is an integer-valued sampling functionm(·, ·, ·, ·), there is
a k-RFA focusing functionΦ, and there is a learning functionL : O∗ → H, such that for
every target functionf ∈ F , for every distributionD onX, and for every0 < ε, δ ≤ 1

Pr~x∈Dm [errorf,D(L(sample(~x, f,Φ)) > ε] < δ

wherem = m(ε, δ, n, size(f)), andsize(f) is the minimal representation length off .

Usually we seek a learning algorithm, so we want the sampling functionm, the focusing
functionΦ, and the learning functionL, to be computable. In fact, we are mainly interested
in efficientlearning algorithms. We say that a learning algorithm issample-efficientif its
sampling functionm is polynomial in1

ε , 1
δ , n, andsize(f). Also, we say that the algorithm

is efficientif it is sample-efficient, and both its focusing function and its learning function
are computable in polynomial time (in1ε , 1

δ , n, andsize(f)).
When the hypothesis classH is omitted it is assumed thatH = {0, 1}X . However,

efficient learning in this case means that the learning algorithm outputs a hypothesis which
is computable in polynomial time. The termproper learnabilityis used for the caseH = F .

The above definition models the ‘distribution-free’ scenario in which the learning algo-
rithm can handle arbitrary generating distributionsD (and does not knowD in advance).
In many cases this requirement appears to be too restrictive. In such cases we shall also
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Figure 1. Example of a decision list.

consider a more permissive setting obtained by requiring successful learning only with
respect to a fixed distribution which is known to the learner.

Finally, a function class isweakly learnable(in either the PAC or RFA model) if it is
learnable given thatε is restricted to be at least1/p(n, size(f)) for p(·, ·) a fixed polynomial.

2.2. Classes of Boolean Functions

One of the classes whose RFA learnability is studied in this work is the class of decision
lists, introduced by Rivest in (Rivest, 1987). A decision list is an ordered list of pairs
〈(t1, b1), . . . , (tr, br)〉, where eachtj is a term (conjunction of literals, where each literal is
a Boolean variable or its negation), and eachbj is a Boolean value called label. A pair(tj , bj)
is satisfied by an assignmenta ∈ {0, 1}n if tj(a) = 1. A decision listL defines a Boolean
function as follows. The value ofL on the assignmenta is determined by the label of the
first item in the list which is satisfied bya. To ensure that at least one item is always satisfied,
the last item of the list is of the form(1, b), where1 is the term which is always satisfied.
Consider, for instance, the decision list〈(x1x2, 0), (x2x4x5, 0), (x1x3x4, 1), (1, 0)〉, which
is illustrated in Figure 1. The values of the list on inputs(1, 1, 1, 0, 1) and(1, 1, 0, 0, 0) are
0 and1, respectively.

Intuitively, a decision list is a useful representation for a Boolean function whose value
is dominated by terms in some decreasing order of importance;i.e., a term determines the
value of the function on a given assignment only if it is true and all of its predecessors in
the list are false. In other words, the tail of the list has an influence on the value of the
function only for the assignments on which the value of the function has not been already
determined by the head of the list.

A k-decision-list is a decision list in which each termti consists of at mostk literals.
For example, the decision list given above is a3-decision-list. Formally, the class ofk-
decision-lists is defined as follows.

Definition 2. [k-DL] A k-decision-list is a list〈(ti, bi)〉ri=1 of pairs, in which eachti
is ak-term, bi ∈ {0, 1}, andtr is the constant1. Thesizeof thek-decision-list isr. A
k-decision-listL defines a Boolean function as follows: for everyx ∈ {0, 1}n, L(x) = bj
wherej = min{i | ti(x) = 1}. We denote byk-DLn the class of allk-decision-lists over
n variables.

We also denote byj-alt-k-DLn the class of allk-decision-lists, in which the number of
alternations in each list is bounded byj (an alternation occurs whenbi+1 = 1− bi).

We omit the subscriptn when it is clear from the context.
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It is shown in (Rivest, 1987) thatk-DL properly containsk-DNF ∪ k-CNF, and is ef-
ficiently PAC learnable for constantk. It is shown in (Ben-David and Dichterman, 1993)
that the classk-DL is (non-efficiently)k-RFA learnable under the uniform distribution. In
this work we further study the RFA learnability of this class, and show some new positive
and negative (i.e., non-learnability) results for this class.

Another class studied in this work is the class TOP, which is defined as follows.

Definition 3. [TOP] We denote by TOP the class of Boolean functions expressible as
a depth-2 circuit with a majority gate at the root and parity gates at the leaves, and we
will require an odd number of parity gates in every TOP expression so that we need not be
concerned about the value of the majority gate in the case of half of the parity gates “voting”
each way. The inputs to the parity gates are literals,i.e., variables in either an unnegated or
a negated sense. All gates in a TOP have unbounded fanin and fanout one. Ak-TOP is a
TOP in which each parity has fanin at mostk; we call such a parity ak-parity. Thesize of
a (k-)TOPr is the number of parity gates inr.

Note that a parity may appear multiple times in a TOP circuit. It is often convenient
to instead think of such a circuit as having each distinct parity appearing just once and
associating a positive integer weight with it. Furthermore, as discussed further below, we
will find it useful to view parity functions and TOPs as mapping to{−1,+1} rather than
the standard{0, 1}. In particular, this allows us to view the majority gate at the root of a
TOP as a threshold function, which outputs 1 if the weighted sum of the parity functions
defining the TOP is positive and−1 if the sum is negative. Put another way, the root node
simply takes the sign of the weighted sum of the inputs to the root.

Furthermore, notice that a parity gate defined over a set of variables in which an odd
number of the variables are negated is equivalent to the complement of that parity over the
same set of variables but with all variables appearing unnegated. For example,x1 ⊕ x2 =
x1 ⊕ x2. Also, given the assumption that parity functions produce values in{−1,+1},
the effect of complementing a parity function can be achieved within a TOP expression
by simply negating the weight associated with that parity function. Thus we have that the
TOP expressionssign((x1 ⊕ x3) + 2(x1 ⊕ x2)) andsign((x1 ⊕ x3) − 2(x1 ⊕ x2)) are
equivalent. This view of TOPs as being defined by the sign of the integer-weighted sum
of uncomplemented{−1,+1}-valued parity functions over unnegated variables will be
adopted in the remainder of the paper. The size of such a TOP is the sum of the magnitudes
of the weights.

We also denote by PAR the class which contains only two functions: the parity func-
tion overn variables (parityn ≡ x1 ⊕ x2 ⊕ . . . ⊕ xn) and its complement (parityn ≡
x1 ⊕ x2 ⊕ . . .⊕ xn).

2.3. The Fourier transform

While the Fourier transform has numerous uses in computer science (see,e.g., (Aho et al.,
1974)), we will use a somewhat nonstandard multidimensional version of the transform
first applied to learning theory by Linial, Mansour, and Nisan (Linial et al., 1993). For
each vectora ∈ {0, 1}n we define the functionχa : {0, 1}n → {−1,+1} asχa(x) =
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(−1)
∑

i
aixi . That is,χa(x) is the Boolean function that is1 when the parity of the bits in

x indexed bya is even and is−1 otherwise. These functions have the property that

Ex[χa(x) · χb(x)] =
{

1 if a = b
0 otherwise

(Expectations and probabilities here and elsewhere are with respect to the uniform distribu-
tion over the instance space unless otherwise indicated). Thus these functions form a basis
for the space of all real-valued functions on{0, 1}n, and every functionf : {0, 1}n → R can
be uniquely expressed as a linear combination of theχ functions:f =

∑
a f̂(a)χa, where

f̂(a) = E[f · χa]. The vector of coefficientŝf is called the (discrete multi-dimensional)
Fourier transformof f (also known as the Walsh transform). We say that a Fourier co-
efficient f̂(a) hasorder k if |a| = k and hasbounded orderk if |a| ≤ k, where |a|
represents the Hamming weight ofa. Note thatχ0̄ is the constant+1 function; therefore,
f̂(0̄) = E[fχ0̄] = E[f ]. Also note that forf ∈ {−1,+1}, f̂(a) = E[fχa] represents
the correlation off andχa with respect to the uniform distribution. For this and related
reasons, in the sections of this paper dealing with Fourier analysis and TOP functions we
will assume thatf ∈ {−1,+1}.

By Parseval’s theorem, for every functionf : {0, 1}n → R, E[f2] =
∑
a f̂

2(a). For
f ∈ {−1,+1} it follows that

∑
a f̂

2(a) = 1. More generally, for any real-valued functions
f andg, E[f · g] =

∑
a f̂(a)ĝ(a).

3. Hardness ofk-RFA Learnability

In this section we develop a characterization of the conditions under which a function class
is or is not learnable from ak-RFA oracle. (In Appendix A we present an alternative,
Fourier-based characterization ofk-RFA learnability which, while potentially useful, does
not lead directly to any results in this paper.) Building on this characterization, we develop
a general tool for showingk-RFA learnability hardness, which we then apply to obtain
hardness results for RFA learnability ofk-DL.

3.1. Characterizingk-RFA Learnability

A general scheme for proving information-theoretic hardness in a given learning model is
the following one. Assume we can find a setQ of scenarios (a scenario here is a setting of
all the parameters which are unknown to the learner, typically the target function and the
target distribution), satisfying the following two conditions:

1. Any possible hypothesis made by the learner is bad for at least one of the scenarios in
Q.

2. A learner in the given model cannot distinguish between the scenarios inQ (i.e., each
scenario inQ provides the learner with exactly the same information).

Being unable to distinguish between the different scenarios inQ, the learner has to make
the same decision in each scenario. However, since any decision is bad for at least one
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scenario inQ, there must be a scenario in which the learner fails. The exact formulation of
this scheme depends on the given learning model.

Such a scheme has been first used by Kearns and Li (Kearns and Li, 1993) (and later
by others, cf. (Goldman and Sloan, 1995)), in proving the information-theoretic upper
bound on the rate of tolerable malicious noise. Specifically, they show that by maliciously
corrupting an ε

1+ε fraction of the learner’s sample, there are two different scenarios which
induce the same distribution over the corrupted sample space, yet any hypothesis made by
the leaner isε-bad for at least one of them.

We use a similar idea to formulate a general scheme for proving information-theoretic
hardness of learnability in thek-RFA model. It turns out that our formulation also provides
a full characterization ofk-RFA learnability.

Define ascenarioover the instance spaceX = {0, 1}n to be a pair〈f,D〉 of a Boolean
functionf and a distributionD overX. If f ∈ F then〈f,D〉 is called anF -scenario. To
formulate the notion of indistinguishability by ak-RFA learner we define an equivalence
relation among scenarios as follows. ForI = {j1, . . . , jk} ⊆ {1, . . . , n} andx ∈ {0, 1}n,
let x|I = (xj1 , . . . , xjk). Given a scenarioS = 〈f,D〉 over {0, 1}n, define forI =
{j1, . . . , jk} ⊆ {1, . . . , n}, z ∈ {0, 1}k, andb ∈ {0, 1}, the probability

pS(I, z, b) ∆= Prx∈D[ f(x) = b , x|I = z ]

That is, in the scenarioS, the probability of observing(z, b) when focusing on the index set
I ispS(I, z, b). The set{pS(I, z, b)}I,z,b is called thek-RFA probabilitiesof the scenarioS.
We say thatS1 andS2 arek-RFA equivalentif pS1 ≡ pS2 (i.e., pS1(I, z, b) = pS2(I, z, b)
for everyI, z, andb). Obviously, this is an equivalence relation. Also, notice that for
anyk-RFA projection defined by a set ofk indices{i1, . . . , ik} ⊆ {1, . . . , n}, two k-RFA
equivalent scenarios induce identical distributions over the observation space, and thus
k-RFA equivalent scenarios are indistinguishable by ak-RFA learner.

A hard set for ak-RFA learner is a set ofk-RFA equivalent scenarios which has some
“discrepancy”. A set has anε-discrepancywith respect to a hypothesis classH, if every
h ∈ H is ε-bad for at least one of the scenarios (recall thath is ε-bad for the scenario
〈f,D〉 if errorf,D(h) ≥ ε). A set isk-RFA hardfor H if it has a non-zero discrepancy
with respect toH, and all of its scenarios arek-RFA equivalent. Notice that there might be
a hard set which does not include any hard pair. We prove that the existence of ak-RFA
hard set is sufficient to imply non-learnability in thek-RFA model. Furthermore, we also
prove that this condition is weak enough to be necessary (for non-learnability), providing a
full characterization of (information-theoretic) learnability in thek-RFA model.

Theorem 1 A classF of boolean functions isk-RFA learnable using the classH if and
only if there is no set ofF -scenarios which isk-RFA hard forH.

Proof: First we prove that the existence of a hard set of scenarios implies non-learnability.
Assume that there is a setQ of k-RFA equivalentF -scenarios, which has anε-discrepancy
(ε > 0). LetSh be a scenario inQ for whichh is ε-bad. Since the instance space is finite,
the hypothesis class is also finite, henceQ′ = {Sh : h ∈ H} is a finite class ofF -scenarios
which isk-RFA hard forH.

LetA be ak-RFA learning algorithm which uses a sample ofm observations in order to
learn the classF usingH. Beingk-RFA equivalent, all the scenarios inQ′ induce the same
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m-fold product distributionPm over them-fold observation space. The hardness ofQ′
implies that for each sequencez of m observations drawn fromPm, the hypothesisA(z)
chosen byA is ε-bad for at least one scenario inQ′.

Let αS = Prz∈Pm [A(z) is ε-bad forS]. As everyA(z) is ε-bad for someS ∈ Q′, we
have

∑
S∈Q′ αS ≥ 1, so there must be a scenarioS ∈ Q′ for whichαS ≥ 1

|Q′| . Hence,
for S being the target scenario, the probability thatA fails to find anε-good hypothesis is
at least 1

|Q′| > 0.
Next we prove that if there is no set ofF -scenarios which is hard forH, thenF is k-RFA

learnable usingH. Assume that there is no such hard set, and assume first that the learner
knows the exactk-RFA probabilities{pS} of the target scenarioS. LetA = {S′ : pS′ ≡
pS} (notice thatS ∈ A). SinceA cannot be a hard set, it must have a zero discrepancy.
Hence, there must be a hypothesishwhich is good for all the scenarios inA, and in particular
for the target scenarioS. This implies that an infinite sample size is sufficient for finding a
good hypothesis. However, we need to show that afinitesample size is uniformly sufficient
for all the possible target scenarios. Since the number of possible scenarios is infinite (as
is the number of possible distributions), it is not immediately obvious why a finite sample
size is sufficient.

Here is the main idea of the proof. First, we wish to show that, given the accuracy needed
from the learner, it is sufficient to consider a finite cover of the set of all scenarios. Then, by
using a finite sample, the learner can choose from this finite cover a set of scenarios which
has a small discrepancy, and which includes with high probability a good approximation of
the target. Once such a set is found, the learner can choose a hypothesis which is good for
all the scenarios in the set, and hence also for the target scenario. The crucial point here is to
ensure that one can use goodk-RFA estimates in order to find a set with small discrepancy.
Hence, we need to relate the accuracy of thek-RFA estimates to the discrepancy of a set of
scenarios. This is done as follows.

Define the discrepancy of a set of scenariosA to be:

discrepancy(A) = min
h∈H

sup
S∈A

errorS(h)

Notice that ifdiscrepancy(A) < ε then there is a hypothesish which isε-good for all the
scenarios inA. Also, define thek-RFA resolution of a setA to be:

resolution(A) = sup
S,S′∈A

‖pS − pS′‖∞ = sup
S,S′∈A

max
I,z,b

|pS1(I, z, b)− pS2(I, z, b)|

Obviously, ifresolution(A) = 0 then all the scenarios inA arek-RFA equivalent. Other-
wise, it is possible to distinguish between at least two subsets ofA by having close enough
estimates of thek-RFA probabilities.

We would like to have a lower bound on the necessaryk-RFA resolution of a setAwhich
guarantees a lower bound on the discrepancy of the set. Assuming that there is no setQ
for whichdiscrepancy(Q) > 0 andresolution(Q) = 0, the following lemma establishes
such a relation.

Lemma 1 If there is no set ofF -scenarios which isk-RFA hard forH, then for every
ε > 0 there isγ > 0, such thatdiscrepancy(A) ≥ ε impliesresolution(A) ≥ γ for every
finite setA ofF -scenarios.



ON RFA LEARNABILITY OF BOOLEAN FUNCTIONS 99

Proof: Assume that there is no set ofF -scenarios which isk-RFA hard forH. If the
lemma does not hold then we can find an infinite sequence ofF -scenario sets(Aj)j∈J , in
whichdiscrepancy(Aj) ≥ ε for everyj, butresolution(Aj) converges to0. The idea of
the proof is to show that in this case there is a sub-sequence of(Aj) which converges to a
hard set, contradicting the assumption that there is no such set.

First we show that there is a sequence of finite scenario-sets which satisfies the same
conditions. For eachh ∈ H, let Sh,j = 〈fh,j , Dh,j〉 ∈ Aj be anF -scenario for which
errorSh,j (h) ≥ ε, and letBj = {Sh,j : h ∈ H}. Notice thatdiscrepancy(Bj) ≥ ε.
Also notice thatresolution(Bj) ≤ resolution(Aj) for everyj, and hence the sequence
resolution(Bj) converges to0. Furthermore, sinceF andH are finite, there is an infinite
J ′ ⊆ J , and a set of functions{gh : h ∈ H} ⊆ F , such thatfh,j = gh for everyj ∈ J ′
and everyh ∈ H.

Pick someh ∈ H, and consider the infinite sequence(Dh,j)j∈J′ . We claim that it has
a converging subsequence. LetD be the set of all distributions over{0, 1}n, and letds
be thestatistical-distancemetric defined byds(D,D′) =

∑
x∈{0, 1}n |D(x) − D′(x)|.

First notice that any distributionD over{0, 1}n can be represented as a pointa ∈ R2n by
letting ai = D(̄i), wherēi is the binary vector-representation ofi. Hence,〈D, ds〉 can be
embedded as a subspace in the metric space〈R2n , d1〉, whered1 is theL1 metric. Being a
bounded and closed subspace, it is also compact, and hence any infinte sequence in it has
a converging subsequence.

By applying the same argument iteratively for everyh ∈ H we obtain a scenario-set sub-
sequence(Bj)j∈J ′′ , such that for everyh ∈ H, the distribution sub-sequence(Dh,j)j∈J′′
converges to some distributionDh. LetQ be the set ofF -scenarios to which the sequence
(Bj)j∈J′′ converges. That is,Q = {〈gh, Dh〉 : h ∈ H}. We claim thatQ is k-RFA hard
forH. First notice that for everyj ∈ J ′′:

errorSh(h) ≥ errorSh,j (h)− ds(Dh, Dh,j) ≥ ε− ds(Dh, Dh,j)

Sinceds(Dh, Dh,j) converges to0, we get thaterrorSh(h) ≥ ε for everyh ∈ H, hence
discrepancy(Q) ≥ ε. Also, for everyh, h′ ∈ H and everyj ∈ J ′′:

‖pSh − pSh′ ‖∞ ≤ ‖pSh,j − pSh′,j‖∞ + ds(Dh, Dh,j) + ds(Dh′ , Dh′,j) (1)

Since all the terms in the r.h.s. of Inequality 1 converge to0, we get‖PSh − PSh′ ‖∞ = 0
for everyh, h′ ∈ H, and thereforeresolution(Q) = 0.

By Lemma 1, there is a functionΓ : R+ → R+, such that for every setA of scenarios
resolution(A) > Γ(discrepancy(A)) > 0. Givenε > 0, let γ = min{Γ( ε2 ), ε

2k−1 }, and
recall thatD is the set of all distributions over{0, 1}n. Define:

D′ ∆= {D ∈ D : ∀x D(x) ∈ {i/M : i = 0, 1, . . . ,M}} ; M =
⌈

2n−k+2

γ

⌉
T ∆= {〈f,D〉 : f ∈ F , D ∈ D′}

For everyD ∈ D there isD′ ∈ D such thatds(D,D′) ≤ 2k−2γ. Hence,D′ is a(2k−2γ)-
cover ofD with respect to the statistical-distance metricds, and for every two functionsf
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andh,

errorf,D(h) ≤ errorf,D′(h) + ds(D,D′) ≤ errorf,D′(h) + 2k−2γ

Taking sufficiently large samples of the target scenarioS = 〈f,D〉, ak-RFA learner can
compute an estimatêpS satisfying (with high confidence)‖p̂S − pS‖∞ < γ

4 . Let

B = {S′ ∈ T : ‖p̂S − pS′‖∞ ≤
γ

2
}

We claim that a hypothesish which minimizesdiscrepancy(B) is with high confidence
anε-good hypothesis. Consider the scenarioS′ = 〈f,D′〉, whereD′(x) = bD(x)Mc 1

M .
Obviously,S′ ∈ T . Furthermore, since|D(x) − D′(x)| ≤ 1

M for everyx, it follows
that ‖pS − pS′‖∞ ≤ 2n−k γ

2n−k+2 = γ
4 . Thus, with high confidence,‖p̂S − pS′‖∞ ≤

‖p̂S − pS‖∞ + ‖pS − pS′‖∞ ≤ γ
4 + γ

4 = γ
2 , implying thatS′ ∈ B.

Sinceresolution(B) < γ implies discrepancy(B) < ε
2 (recall thatγ ≤ Γ( ε2 )), h

must beε2 -good for every scenario inB, including the scenarioS′. Sinceds(D,D′) ≤
2n γ

2n−k+2 = 2k−2γ, and sinceγ ≤ ε
2k−1 we conclude that

errorf,D(h) ≤ errorf,D′(h) + 2k−2γ <
ε

2
+
ε

2
= ε

3.2. Hardness of RFA Learnability ofk-DL

Being aninformation-theoreticcharacterization ofk-RFA learnability, the main importance
of Theorem 1 is in providing a scheme for proving information-theoretic hardness results
in the k-RFA model. We now apply this scheme to obtain hardness RFA results for the
learnability of decision lists.

First notice that to disprove thek-RFA learnability of a function classF , it is sufficient
to find apair of k-RFA hardF -scenarios. If thek-RFA hardness of the pair is proved for
F itself, then properk-RFA learnability is disproved.

Now assume{Fn}n≥n0 is a family of function classes, whereFn is defined over the in-
stance space{0, 1}n. Naturally, we are seeking hardness results which hold for alln ≥ n0.
We now show few constructions which expand ak-RFA hard pair of scenarios over the
instance space{0, 1}n into a(k+1)-RFA hard pair of scenarios over{0, 1}n+1. By induc-
tively applying this construction (within a family which is closed under the construction),
we will obtain a generalization of non-learnability results from a givenn0 to all n ≥ n0.

To enable compact descriptions of these constructions, we introduce few additional no-
tations. Forb ∈ {0, 1} andc ∈ R+, let 〈b, c〉 be theconstantscenario〈f,D〉, where
f(x) = b andD(x) = c for all x ∈ {0, 1}n. For a scenarioS = 〈f,D〉 andb ∈ {0, 1},
we denote byb(S) theprojectedscenario〈b,D′〉, where

D′(x) ∆=
{
D(x) , if f(x) = b,
0 , otherwise.

Note thatD′ is not necessarily a probability distribution over{0, 1}n. Therefore, we denote
by 〈b(S)〉 the “normalized” scenario, whereD′(·) is normalized by

∑
x′∈f−1(b)D

′(x′).
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However, it will be convenient to abuse our notations by treating the non-normalized form
as a scenario.

Notice that for every scenarioS, I ⊆ {1, . . . , n}, z ∈ {0, 1}k, andb ∈ {0, 1}, we have
pS(I, z, b) = pb(S)(I, z, b), and therefore the following holds.

Claim 1 Two scenariosS1, S2 are k-RFA equivalent if and only if both pairs〈0(S1)〉,
〈0(S2)〉, and〈1(S1)〉, 〈1(S2)〉 arek-RFA equivalent.

Hence, in order to show equivalence of scenarios, it is sufficient to show the equivalence
of their projections.

For scenariosS1 = 〈f (n)
1 , D

(n)
1 〉 andS2 = 〈f (n)

2 , D
(n)
2 〉 over{0, 1}n, letS1⊗S2 denote

the scenario〈f (n+1), D(n+1)〉 over{0, 1}n+1, where

f (n+1)(x1, . . . , xn+1) ∆= xn+1f
(n)
1 (x1, . . . , xn) + xn+1f

(n)
2 (x1, . . . , xn),

D(n+1)(x1, . . . , xn, 1) ∆= D
(n)
1 (x1, . . . , xn),

D(n+1)(x1, . . . , xn, 0) ∆= D
(n)
2 (x1, . . . , xn).

Again, S1 ⊗ S2 forms not necessarily a scenario over a probability distribution and we
denote by〈S1 ⊗ S2〉 the normalized scenario.

Lemma 2 (Crossing Construction) If S1, S2 is a k-RFA hard pair of scenarios over
{0, 1}n, then〈S1 ⊗ S2〉, 〈S2 ⊗ S1〉 is a (k + 1)-RFA hard pair over{0, 1}n+1.

As a simple example consider the following two scenarios over{0, 1}: Both distributions
are uniform,f (1)

1 (x1) = x1, andf (1)
2 (x1) = x1. Obviously, this pair of scenarios is0-RFA

hard. Now, if we apply the crossing construction, we get the following two scenarios: Both
distributions remain the uniform distribution,f (2)

1 (x1, x2) = x1 ⊕ x2, andf (2)
2 = x1⊕x2.

Lemma 2 implies that this is a1-RFA hard pair of scenarios. By applying the same con-
struction iterativelyn−1 times, we conclude that the class PARn is not (n−1)-RFA learn-
able (recall that PARn consists of two functions—the parity function overn variables, and its
inverse). This result, which has already been shown in (Ben-David and Dichterman, 1993),
demonstrates the gap between PAC learnability (=n-RFA learnability) and(n − 1)-RFA
learnability (and similarly, between(k + 1)-RFA learnability andk-RFA learnability
(Ben-David and Dichterman, 1997)). It also immediately implies that the class DNFn

(which contains PARn) is not (n − 1)-RFA learnable. We later apply this construction
to obtain hardness results for the RFA learnability ofk-DL, but first let us prove the lemma.

Proof of Lemma 2: Assume thatSi = 〈f (n)
i , D

(n)
i 〉, i ∈ {1, 2}, is ak-RFA hard pair, and

let S′i = 〈f (n+1)
i , D

(n+1)
i 〉 = 〈Si ⊗ S3−i〉, i ∈ {1, 2}. We first prove thatS′1 andS′2 are

(k + 1)-RFA equivalent. LetI = {i1, . . . , ik+1} ⊂ {1, . . . , n + 1}, z ∈ {0, 1}k+1, and
b ∈ {0, 1}. To verify thatpS′1(I, x, b) = pS′2(I, x, b), consider the following two cases:

• n+ 1 ∈ I. Assume first thatzk+1 = xn+1 = 0. Then

f
(n+1)
1 (x1, . . . , xn, 0) = f

(n)
2 (x1, . . . , xn)

D
(n+1)
1 (x1, . . . , xn, 0) = D

(n)
2 (x1, . . . , xn)/2.
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(Dividing D(n)
2 (·) by 2 guarantees thatD(n+1)

1 is a probability distribution).
HencepS′1(I, z, b) = pS2(I ′, z′, b)/2, whereI ′ = I \ {n+ 1} andz′ = (z1, . . . , zk).
Similarly, pS′2(I, z, b) = pS1(I ′, z′, b)/2, and by the assumptionpS1 ≡ pS2 we get
pS′1(I, x, b) = pS′2(I, x, b). The casezk+1 = xn+1 = 1 is symmetric.

• n + 1 /∈ I. Let I ′ = I ∪ {n + 1}, and letza = (z1, . . . , zk+1, a) for z ∈ {0, 1}k+1

anda ∈ {0, 1}. Then

pS′1(I, z, b) = pS′1(I ′, z0, b) + pS′1(I ′, z1, b)

= pS′2(I ′, z1, b) + pS′2(I ′, z0, b) = pS′2(I, z, b)

The first and last equality follows directly from the definitions of the probabilities
pS′1(I, z, b) andpS′2(I, z, b), whereas the second equality follows from the fact that for

everyx ∈ {0, 1}n+1

f
(n+1)
1 (x1, . . . , xn, xn+1) = f

(n+1)
2 (x1, . . . , xn, xn+1),

D
(n+1)
1 (x1, . . . , xn, xn+1) = D

(n+1)
2 (x1, . . . , xn, xn+1).

We also have to show that the pairS′1, S
′
2 has a non-zero discrepancy. Letε > 0 be such

that everyh : {0, 1}n → {0, 1} is ε-bad for eitherS1, S2, and leth′ : {0, 1}n+1 → {0, 1}.
Let ha(x1, . . . , xn) = h′(x1, . . . , xn, a). Then

errorS′1(h′) = errorS2(h0)/2 + errorS1(h1)/2

errorS′2(h′) = errorS1(h0)/2 + errorS2(h1)/2

Since bothh0 andh1 areε-bad for eitherS1 or S2, it follows thath′ is ε
2 -bad for eitherS′1

or S′2.

Note that the crossing construction also applies to “non-normalized” scenarios, yielding
a hard pair of “non-normalized” scenarios. We will use this observation, for instance, in
the proof of Lemma 4.

While the pair of scenarios used in the crossing construction wask-RFA hard for every
hypothesis class, the following construction yields a pair which isk-RFA hard for1-DL.
This will be used later to obtain a hardness result for proper-learnability of1-DL.

Lemma 3 (Linear Construction) If S1, S2 is a pair of 1-DL-scenarios over{0, 1}n
which isk-RFA hard for1-DL, and1(S1) = 1(S2), then〈S1⊗〈0, D(n)

2 〉〉, 〈S2⊗〈0, D(n)
1 〉〉

is a pair of1-DL-scenarios over{0, 1}n+1 which is(k + 1)-RFA hard for1-DL.

Proof: Let Si = 〈f (n)
i , D

(n)
i 〉, i ∈ {1, 2} be ak-RFA equivalent pair of scenarios over

{0, 1}n, and assume1(S1) = 1(S2). Let S′i = 〈f (n+1)
i , D

(n+1)
i 〉 = 〈Si ⊗ 〈0, D(n)

3−i〉〉.
First notice that iff (n)

i is a1-decision list, then so isf (n+1)
i (just add the item(x̄n+1, 0) in

front of the listf (n)
i ).

To prove(k + 1)-RFA equivalence ofS′1, S
′
2, it is sufficient to prove it for the pair

〈b(S′i)〉 (by Claim 1). Forb = 1 the claim is obviously true, since1(S1) = 1(S2) implies
〈1(S′1)〉 = 〈1(S′2)〉. For b = 0, consider the scenariosT1 = 〈S1 ⊗ S2〉, T2 = 〈S2 ⊗ S1〉
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(obtained by the crossing construction). Note thatTi andS′i share the same distribution.
By Lemma 2, the pairT1, T2 is (k + 1)-RFA equivalent, i.e.,pT1(I, z, b) = pT2(I, z, b),
for all I = {i1, . . . , ik+1} ⊆ {1, . . . , n}, z ∈ {0, 1}k+1, andb ∈ {0, 1}. Hence,

pS′1(I, z, 0) + pS′1(I, z, 1) = pT1(I, z, 0) + pT1(I, z, 1)
= pT2(I, z, 0) + pT2(I, z, 1)
= pS′2(I, z, 0) + pS′2(I, z, 1),

and sincepS′1(I, z, 1) = pS′2(I, z, 1) (caseb = 1) we havepS′1(I, z, 0) = pS′2(I, z, 0).
Hence, the scenarios〈0(S′1)〉 and〈0(S′2)〉 are(k + 1)-RFA equivalent.

Finally, we prove that pairS′1, S
′
2 has a non-zero discrepancy with respect to1-DL. Let

ε > 0 be such that every1-decision list over{0, 1}n is ε-bad for eitherS1 or S2. Let h
be a1-DL over {0, 1}n+1, and leth′(x1, . . . , xn) = h(x1, . . . , xn, 0). Obviously,h′ is
a 1-decision list over{0, 1}n, and hence isε-bad for eitherS1 or S2. But errorS′

i
(h) ≥

errorSi(h
′)/2 for both i = 1 and i = 2, and henceh is ε

2 -bad for eitherS′1 or S′2.

Using the linear construction, we prove the following theorem.

Theorem 2 1-DL is not properly(n− 2)-RFA learnable.

Proof: By Lemma 3, it is sufficient to show the existence of a0-RFA hard pair of
scenarios over{0, 1}2. Let f (2)

1 = 〈(x2, 1), (x1, 1), (1, 0)〉, f (2)
2 = 〈(x2, 1), (x1, 1),

(1, 0)〉, D(2)
1 = 1

3 for everyx 6= (0, 0), andD(2)
2 (x) = 1

3 for everyx 6= (1, 1) (see
Table B.1 in Appendix B). It is easy to verify that this forms a pair of scenarios over
{0, 1}2 which is0-hard for1-DL.

Notice that the linear construction always adds the item(x̄n+1, 0) in front of the list, and
therefore the lists which are used to obtain the hardness of proper(n− 2)-RFA learnability
have only two alternations of their labels. This implies that even the class2-alt-1-DL is not
properly(n− 2)-RFA learnable.

Next we turn to non-proper learnability of1-DL. In the next section we present an algo-
rithm that learns this class, if the learner has access to at least half of the attributes (Theorem
6). We now show that this result is tight—no algorithm can learn1-DL in thek-RFA model
whenk < n/2. We use the following construction.

Lemma 4 (Projecting Construction) If Si, i ∈ {0, 1} is a pair of1-DL-scenarios which
is k-RFA hard over{0, 1}n, then the pairS′i = 〈Ui ⊗ Vi〉, whereUi = Si ⊗ 0(S3−i) and
Vi = 1(S3−i)⊗ 〈1, 2−n〉 (see Table 1), is a pair of1-DL-scenarios which is(k + 1)-RFA
hard over{0, 1}n+2.

Before we start the proof let us mention the following simple claim.

Claim 2 Given twok-RFA equivalent scenariosS1, S2, an arbitrary scenarioS overn
variables, and a real numberα > 0, the scenariosS′1 = 〈αS1 ⊗ S〉 andS′2 = 〈αS2 ⊗ S〉



104 A. BIRKENDORF, ET AL.

Table 1.An illustration of the scenarios defined in Lemma 4.

xn+1

xn+2 1 0 S′1
1 S1 0(S2) U1

0 1(S2) 〈1, 2−n〉 V1

Ŝ1 Û1 V̂1

xn+1

xn+2 1 0 S′2
1 S2 0(S1) U2

0 1(S1) 〈1, 2−n〉 V2

Ŝ2 Û2 V̂2

are alsok-RFA equivalent, whereαSi denotes the scenario obtained fromSi by multiplying
all the probabilities byα > 0.

Proof of Lemma 4: First note that that ifSi is a1-DL-scenario, then so isS′i (just add the
items(xn+2, 1), (xn+1, 0) in front of the1-decision list of the scenarioSi).

The proof that the non-zero discrepancy of the pairS1, S2 is preserved byS′1, S
′
2 is similar

to the argument made in the proof of Lemma 2. Hence, it remains to show that the scenarios
〈b(S′i)〉 are(k + 1)-RFA equivalent forb ∈ {0, 1}. For the caseb = 0 we get:

0(Ui ⊗ Vi) = 0((Si ⊗ 0(S3−i))⊗ (1(S3−i)⊗ 〈1, 2−n〉))
= 0(Si ⊗ 0(S3−i))⊗ 0(1(S3−i)⊗ 〈1, 2−n〉)
= 0(Si ⊗ S3−i)⊗ 〈0, 0〉

Since the pairS1, S2 is k-RFA equivalent, we obtain by Lemma 2 and Claim 1 that the
scenarios〈0(Si ⊗ S3−i)〉, i ∈ {0, 1} are(k + 1)-RFA equivalent. Hence, by Claim 2, the
scenariosS′i = 〈0(Ui ⊗ Vi)〉 are(k + 1)-RFA equivalent.

For the caseb = 1, consider the following pair̂S′i, i ∈ {1, 2} of scenarios over{0, 1}n+2:

Ŝ′i
∆= 〈Ûi ⊗ V̂i〉, where Ûi

∆= Si ⊗ 1(S3−i), and V̂i
∆= 0(S3−i)⊗ 〈1, 2−n〉

(See Table 1). Similarly to the caseb = 0, we get that the scenarios〈1(Ŝ′i)〉, i ∈ {0, 1} are
(k + 1)-RFA equivalent, since

1(Ûi ⊗ V̂i) = 1((Si ⊗ 1(S3−i))⊗ (0(S3−i)⊗ 〈1, 2−n〉))
= 1(Si ⊗ 1(S3−i))⊗ 1(0(S3−i)⊗ 〈1, 2−n〉)
= 1(Si ⊗ S3−i)⊗ (〈1, 0〉 ⊗ 〈1, 2−n〉)

Note that Ŝ′i represent the same scenarios asS′i up to permutation of the variables
xn+1, xn+2, and hence, the scenarios〈1(S′i)〉, i ∈ {0, 1} are also(k+1)-RFA equivalent.

The projecting construction is used to prove the following theorem.

Theorem 3 1-DL is not bn−1
2 c-RFA learnable.

Proof: It is sufficient to proof the theorem for oddn. (For n even, the(n2 − 1)-RFA
non-learnability of1-DLn−1 implies (n2 − 1)-RFA non-learnability of1-DLn). By the
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projecting construction of Lemma 4, it is sufficient to show a pair〈f (3)
1 , D

(3)
1 〉, 〈f

(3)
2 , D

(3)
2 〉

of 1-DL–scenarios which is1-RFA hard. Let:

f
(3)
1 = 〈(x3, 1), (x2, 0), (x1, 0), (1, 1)〉
f

(3)
2 = 〈(x3, 1), (x2, 0), (x1, 0), (1, 1)〉

LetD(n)
1 (x) = 1

5 forx ∈ {(0, 1, 0), (1, 0, 1)}, otherwiseD(n)
1 (x) = 1

10 , and letD(n)
2 (x) =

1
5 for x ∈ {(0, 0, 1), (1, 1, 0)}, otherwiseD(n)

1 (x) = 1
10 (see Table B.2 in Appendix B). It

is easy to verify the1-RFA hardness of this pair.

The1-decision listsf (n)
i used in the above proof haven−1 alternations. However, we can

define functionsg(n)
i ∈ 2-alt-1-DL such thatPr

x∈D(n)
i

[g(n)
i (x) 6= f

(n)
i (x)] = 0. Hence,

〈g(n)
i , D

(n)
i 〉 is also abn−1

2 c-RFA hard pair, implying that even the class2-alt-1-DL is not

bn−1
2 c-RFA learnable. Assuming again thatn is odd,g(n)

1 , g(n)
2 will be the following

2-alternating1-decision lists

〈(xn, 1), (xn−2, 1), . . . , (x3, 1), (xn−1, 0), (xn−3, 0), . . . , (x2, 0), (x1, 0), (1, 1)〉,
〈(xn, 1), (xn−2, 1), . . . , (x3, 1), (xn−1, 0), (xn−3, 0), . . . , (x2, 0), (x1, 0), (1, 1)〉.

Assumeg(n)
i (x) 6= f

(n)
i (x). Note, that there exists nox = (x1, . . . , xn) for which

g
(n)
i (x) = 0 and fi(x) = 1. Furthermore,gi(x) = 1 and fi(x) = 0 implies x3 =

0 ∨ x5 = 0 ∨ . . . ∨ xn = 0. Observing that

f
(n)
i (x) = 0 ∧ D(n)

i (x) > 0 =⇒ x3 = x5 = . . . = xn = 1,

we getDi(x) = 0.
By combining the crossing and projecting constructions, we obtain yet another hardness

result. Assume we have a pairSi = 〈f (c)
i , D

(c)
i 〉 of c′-RFA hard scenarios wheref (c)

i ∈ a-

alt-c′′-DLc. Now the crossing construction yields a pairS′i = 〈f (c+1)
i , D

(c+1)
i 〉 of (c′+ 1)-

RFA hard scenarios wheref (c+1)
i ∈ a-alt-(c′′ + 1)-DLc+1. We get by induction that

n − (c − c′′)-DL is not n − (c − c′)-RFA learnable for constantc, c′, c′′. By Theorem 3
we know that1-DLk+1 is not bk/2c-RFAk+1 learnable. Settingc = k + 1, c′ = bk/2c,
c′′ = 1 we get

Theorem 4 (n− k)-DL is not (n− 1− dk/2e)-RFA learnable.

Again, the lists used in the proof have at most two alternations, and thus even the class2-alt-
(n−k)-DL is not (n−1−dk/2e)-RFA learnable. Also note that for a fixedk, the class1-alt-
k-DL = k-DNF∪k-CNF is efficientlyk-RFA learnable (Ben-David and Dichterman, 1993).

4. Distribution-free Learning of Decision Lists

In this section we contrast the hardness results, shown in (Ben-David and Dichterman, 1993)
and in Section 3 of this paper, with two positive results for RFA learnability of decision
lists. Both results are tight in terms of the amount of visible attributes used by the learning
algorithms. In the analysis of both learning algorithms we make use of the following lemma.
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Lemma 5 LetA ⊆ {0, 1}X be finite, and letD be a distribution onX. For everyA ∈ A,
let p(A) = Prx∈D[A(x) = 1], and letp̂(A) be the empirical estimate ofp(A) based on
a sample of sizem. For everyτ, δ ∈ (0, 1), and everyβ ∈ (1, 2], let M(τ, β, δ, t) =
dmax(3,2β2)

τ(β−1)2 log |A|δ e. Then, for a sample of sizem ≥ M(τ, β, δ, |A|), the following holds
with confidence1− δ: For everyA ∈ A,

p(A) > βτ =⇒ p(A)
β

< p̂(A) < βp(A)

p(A) ≤ βτ =⇒ p̂(A) < β2τ

Proof: For a sample of sizem, and for everyA ∈ A, the Chernoff bounds imply
(Angluin and Valiant, 1979):

Pr[p̂(A) > βp(A)] ≤ e−mp(A)(β−1)2/3

Pr[p̂(A) < p(A)/β] ≤ e−mp(A)(β−1)2/(2β2)

If we upper bound all inequalities (for everyA ∈ A) by δ
|A| , then all the estimates are

within β of their true values. Solving form yieldsm = M(τ, β, δ, |A|).

4.1. (n− 1)-RFA learnability of(n− 1)-DL

In the PAC model, every class of Boolean function is clearly (information-theoretic) learn-
able. As implied by the hardness results in (Ben-David and Dichterman, 1993) and in
Section 3 of this paper, this is not the case in thek-RFA model, whenk < n. In fact,
any class which contains both the parity function and its inverse (overn variables) is not
(n − 1)-RFA learnable. One may ask whether by excluding these two functions we gain
(n− 1)-RFA learnability. We answer this question affirmatively. (One may also add either
the parity function or its inverse, but not both, without affecting the(n−1)-RFA learnability
of the class). Notice that this class is actually the class(n−1)-DL, and hence by Theorem 4,
is not(n− 2)-RFA learnable. Thus, the result is also tight in terms of the visibility size.

The time and sample complexities of the learning algorithm areO((n32n/ε)(n+ln(1/δ))).
Notice that, sinceV Cdim((n− 1)-DL) = 2n − 1, every algorithm which PAC learns
(n−1)-DL (let alone an RFA one) needs a sample size exponential inn ((Ehrenfeucht et al.,
1989)).

Theorem 5 (n − 1)-DL is properly (n − 1)-RFA learnable with a sample and time
complexity of

O

(
n32n

ε

(
n+ ln

1
δ

))
.

Proof: We start by showing information-theoretic learnability of this class, then elaborate
on the details needed to construct a learning algorithm. By Theorem 1, the class is properly
(n− 1)-RFA learnable if there is no(n− 1)-RFA hard set for the class(n− 1)-DL. Recall
that all the scenarios in such a hard set should be(n − 1)-RFA equivalent. However, we
show that no two(n − 1)-DL scenarios can be(n − 1)-RFA equivalent. Furthermore,



ON RFA LEARNABILITY OF BOOLEAN FUNCTIONS 107

we show how to construct the target decision list from the(n− 1)-RFA probabilities; this
construction suggests the basic strategy for the algorithm presented later.

An (n − 1)-RFA observation is made by fixing an index setI = {1, . . . , n} \ {k}. For
a target scenarioS, we have denoted the probability of observing(z, b) via this index set
by pS(I, z, b), wherez ∈ {0, 1}n−1 andb ∈ {0, 1} (see Section 3). Notice thatI andz
identify a pair of instances which differ only in thek’th bit; we call such an unordered pair
ak-edge. For simplicity, we use the notationpS(e, b) rather thanpS(I, z, b), wheree is the
edge determined byI andz, andS is the target scenario (omitted in the sequel). We show
how to construct the target functionf from the set of(n− 1)-RFA probabilities{p(e, b)}.

First notice that if an edge ispure, i.e., both of its instances have the same labelb, then
p(e, 1− b) = 0. Hence, the label of a pure edgee can be determined from the probabilities
p(e, 0) andp(e, 1). Also notice that once the labels of an edgee have been determined, the
value of any adjacent edgee′ can be determined (e′ is adjacent toe if they share a common
point), as follows. Assume thate = (x, y) is adjacent toe′ = (y, z), and that the label of
y has been determined to beb. Then, ifp(e′, 1 − b) = 0 (e′ is pure) then the label ofz
is b, otherwise (e′ is impure) it is1 − b. Finally, there is at least one pure edge for every
(n− 1)-decision list—the edge which is determined by the first item in the list. This edge
can be used as apivotaledge for determining the labels of all the other edges inn−1 stages
(in stagei determine the value of an edge whose distance from the pivotal edge isi).

The above argument proves that the exact(n−1)-RFA probabilities determine an(n−1)-
decision list, and Theorem 1 guarantees that estimates based on a finite sample size are
sufficient to identify the target list. However, to construct a learning algorithm, we need to
refine the basic approach described above.

First we need to refine the notion of being a “pure” edge to allow for a small amount of
error. To see why, consider two impure adjacent edgese = (x, y) ande′ = (y, z), where the
probability of drawinge is low, and the probability of drawinge′ is high. Assume further
that the label ofx andz is 0, while that ofy is 1. Having a small probability, the impure
edgee might look to the learner like a pure edge. Deciding first the value ofe (i.e., of
bothx andy) to be0, and knowing thate′ is impure, the above approach assigns the wrong
label toz, incurring a significant error. Hence, it is preferable in such a case to consider the
“almost pure” edgee′ as being pure, labellingz with 0.

Furthermore, we have to allow for the amount of impureness in a pure edge to increase
throughout the stages of the algorithm. This is due to the fact that this impureness is only
estimated. Consider again the previous example, and assume that, in deciding the label of
the edgee, we allow for an empirical impureness of sizeτ . If our estimates are within a
factorβ of the real probabilities, then the real impureness could be of sizeβτ . (A good
choice forβ will be determined later.) Hence, in deciding the label of the edgee′, the real
impureness that should be tolerated isβτ , so the estimated one should beβ2τ . Thus, ifτi
is the amount of empirical impureness allowed in stagei, τi+1 should satisfyτi+1 = β2τi.
Sinceτn−1 = β2n−2τ0, and since the error incurred by each impureness is bounded byβτi,
choosingτ0 = ε

β2n−12n guarantees that the overall error is bounded byε.

The learning algorithm works as follows. For every1 ≤ k ≤ n it takes a sample of size
m′ via the index set{1, . . . , n} \ {k}, and, for everyk-edge, it estimates the probability
p(e, b); let p̂(e, b) be this estimate. We will determine the value ofm′ later. An edgee is
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b-pure at stagei if p̂(e, 1− b) < τi. (Note thate can be bothb-pure and(1− b)-pure).e is
impure if it neither0-pure nor1-pure.

Having the estimates, the algorithm first searches for a pivotal edge—a pure edgee =
(x, y) (pure at stage0), and setsh(x) = h(y) = b if e is b-pure. Then, at any stage
1 ≤ i ≤ n− 1, the algorithm sets the value of any edgee′ = (y, z) which is adjacent to an
edgee = (x, y) whose value has been set at stagei − 1: if e′ is h(y)-pure at stagei then
h(z) = h(y), otherwiseh(z) = 1− h(y).

We now prove thath is ε-good for the target functionf and the target distributionD, if the
following conditions hold for all the estimateŝp(e, b): if p(e, b) ≥ βτ0 thenp̂(e, b) is within
a factor ofβ fromp(e, b) (in both directions), otherwise (p(e, b) < βτ0) p̂(e, b) ≤ β2τ0.

Sinceβτi < ε
2n at any stagei, it is sufficient to prove that for every instancex, if

D[x] ≥ βτi, andh(x) has been set in stagei, thenh(x) = f(x). The proof is by induction
oni. If the pivotal pointe = (x, y) is b-pure at stage0, then it satisfieŝp(e, 1−b) < τ0, and
p(e, 1 − b) < βτ0, hence the claim is true fori = 0. Assume that the label ofe′ = (y, z)
is set in stagei + 1, using an edgee = (x, y) whose second label has been set in stage
i. If D[z] ≥ βτi+1, thenp̂(e′, f(z)) ≥ τi+1, and thereforee′ cannot be(1 − f(z))-pure.
Hence,h(z) = 1 − f(z) only whene′ is impure, andh(y) = 1 − h(z) = f(z) 6= f(y).
But then, by the induction hypothesis,D[y] < βτi, implying p̂(e′, f(y)) < β2τi = τi+1,
contradicting the impureness ofe′.

It remains do determine appropriate values forβ andm′, and to show that the above
assumptions on parametersp̂ andp are valid with probability at least1 − δ. For fixedk,
there are2n−1 k-edges, and therefore2n probability parameters that have to be empirically
estimated fromm′ examples. Since we haven samples (one for each1 ≤ k ≤ n), we want
all estimates based on a sample of sizem′ to be accurate with confidence1− δ

n . Hence, by

Lemma 5, we need a sample of sizem′ = M(τ0, β, δn , 2
n) = O

(
n22n

ε

(
n+ ln 1

δ

))
, and

thusm = nm′ = O
(
n32n

ε

(
n+ ln 1

δ

))
.

As for the time complexity of the learning algorithm, first notice that the number of edges
is n

2 2n = t. Computing the estimates from a sample of sizem can be done inO(m), and
finding the pivotal edge can be done inO(t). Choosing a pivotal edge induces an order
on the visit of the other edges, considering each edge only once (at a stagei which is its
distance from the pivotal edge). Ast = O(m), the overall time complexity isO(m).

4.2. (n− k)-RFA Learnability of1-DL usingk-DL

Theorem 3 shows that1-DL is notbn−1
2 c-RFA learnable (using any hypothesis class). We

now contrast this result by showing that fork ≤ n/2, this class is(n − k)-RFA learnable
using the hypothesis classk-DL. This shows that1-DL is learnable if and only if at least
half of the attributes are visible in each example. The learning algorithm is efficient for
k = O(logn), and is proper fork = 1. Note that, by Theorem 2,1-DL is not properly
(n− 2)-RFA learnable.
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Theorem 6 For every every1 ≤ k ≤ n/2, the class1-DL is (n − k)-RFA learnable

usingk-DL, with sample complexity ofO
(
k3n222k

ε log n
δ

)
, and with time complexity of

O
(
k4n222k

ε log n
δ

)
Proof: As in the proof of Theorem 5, we start by showing information-theoretic learn-
ability of this class. That is, given a target1-decision list, we show how to construct a
k-decision list from the exact(n− k)-RFA probabilities. Then, we show how to settle for
good estimates of these probabilities in order to find a good approximation of the target list.

First notice that for every1-decision list there is an equivalent one in which each variable
appears only once (cf. (Simon, 1995)). Hence, we may assume that in both the target and
the hypothesis list each variable appears only once.

We construct the hypothesish gradually. At any intermediate stage, there are instances
for which h is not defined. For any such instancex, we denoteh(x) = ∅. We also
denote by|h| the number of items inh. Given a partial decision listh and a termt,

defineB(h, t) ∆= {x ∈ {0, 1}n : h(x) = ∅, t(x) = 1}. That is,B(h, t) is the subset of
instances which are not defined by the partial listh, and are satisfied by the termt. We
call such a subsetblock. For a target scenarioS = 〈f,D〉, and a blockB = B(h, t), let
pS(B, b) = Prx∈D[x ∈ B, f(x) = b] (we henceforth omit the subscriptS). Notice that if
p(B(h, t), 1− b) = 0 andh is consistent withf , then appending(t, b) to h preserves this
consistency. In such a case we say that the blockB(h, t) is b-pure.

The construction of the decision list from the(n−k)-RFA probabilities can be done in three
phases. The first two phases are based on the following observation (cf. (Rivest, 1987)):
If f is a1-decision list, andh is a partial1-decision list,|h| < n, then there is a literall
for which the blockB(h, l) is pure (take the first literall in f which does not appear inh).
Hence, the construction is essentially based on searching for pure blocks; ifB(h, l) is b-
pure, then we can add the item(l, b) toh. However, notice that the probabilityp(B(h, l), b)
is a(|h|+ 1)-RFA probability, and recall that we can only use(n− k)-RFA probabilities.
Hence, as long as|h| < n− k, using the(n− k)-RFA probabilities to find pure blocks is
straightforward. This forms Phase1 of the construction.

How can we find pure blocks when|h| ≥ n− k? Phase2 of the construction is based on
the following observation. Lethb be the list obtained fromh by deleting all the(1 − b)-
items, where ab-item is an item of the form(l, b). We claim that if|hb| < n− k for both
b = 0 andb = 1, then there is a literall, and there isb ∈ {0, 1}, such thatB(h1−b, l) is a
b-pure block. To see why, recall that there is an item(l, b) such thatB(h, l) is b-pure. But
if h1−b(x) = ∅ andh(x) 6= ∅ then necessarilyh(x) = b = f(x), and therefore the block
B(h1−b, l) is alsob-pure. Hence, we can continue the construction as long as|hb| < n− k
for both b = 0 andb = 1 (searching for ab-pure blockB(h1−b, l), for eitherb = 0 or
b = 1, and appending the item(l, b) to h once such a pure block is found).

Finally, assume that|hb| = n − k (for eitherb = 0 or b = 1), but |h| < n (h is not yet
complete). If the next pure blockB(h, l) is (1 − b)-pure, this cannot be revealed using
the (n − k)-RFA probabilities. However, notice that the number of variables which are
not inhb is bounded byk ≤ n − k. Consider a blockB = B(∅, t), where∅ is undefined
for everyx, and t is a k-term over the variables which are not inhb. (Notice that the
probabilityp(B, b) is an(n− k)-RFA probability). SinceB(hb, t) is a singleton{x} (the
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assignment to every variables is determined by eitherhb or t), if B(∅, t) is impure, it must
be due tof(x) = 1 − b. Hence, in that case(t, 1 − b) can be appended to the list. After
appending all the(1− b)-singletons to the listh (i.e., all the instances for whichh(x) = ∅
andf(x) = 1−b), we can close the list with the item(1, b), concluding with ak-decision list
which is equivalent to the target1-decision list (each step of the construction ofh preserves
consistency, and the finalh is defined over the entire instance space).

When using estimateŝp(B, b) of the(n−k)-RFA probabilitiesp(B, b), impure blocks may
look like pure blocks to the learner, and thus the constructed listh is only an approximation
of the target list. Hence, we have to refine our notion of pureness to allow for a small
amount of impureness which might increase throughout the stages of the algorithm. We
assume that each estimate is within a factor ofβ of the true probability whenever the true
probability is at leastβτ (the value ofτ and the sample size needed for that to hold will be
determined later), and analyze the error incurred by the three phases of the construction.

At each stage of Phase1 (|h| < n−k) we search for empirically pure blockB (p̂(B, b) =
0). If the block is actually impure, then by Lemma 5p(B, b) ≤ βτ , so the overall error
incurred in this phase isε1 = (n− k)βτ .

Next consider Phase2 (|h| ≤ n−k, |h0| < n−k, |h1| < n−k). Recall that at each stage
of this phase we search for ab-pure blockB(h, l), but can only estimate the probability
p(B(h1−b, l), b). Sincehb is not necessarily consistent withf (due to the error incurred
by previous stages), the blockB(h1−b, l) may include a small amount of impureness.
To recognize that(l, b) is a proper item to append at stagei, we allow for an empirical
impurenessτi, which includes all the errors incurred by previous stages in Phases1 and2.
That is,τi = βε1 +β

∑i−1
j=1 βτi, implyingτi = (n−k)β2τ(1+β2)i−1. Hence, the overall

error incurred by this phase is bounded byε2 =
∑k
i=1 βτi = (n− k)βτ((1 + β2)k − 1).

Each impure blockB(∅, t) found in Phase3 determines the value of a specific instance
x ∈ B(hb, t). Let B′ = B(∅, t) \ {x}. ThenB′ ⊆ {x : h(x) = b}. The impureness
of B(∅, t) might be due to the errors inB′ incurred by previous stages. This error can be
bounded byε1 + ε2. Hence, we can allow for an the empirical impureness ofβ(ε1 + ε2)
for the blockB(∅, t), and thus appending the item(t, 1− b) to the list incurs an error of at
mostβ2(ε1 + ε2). Since at most2k instances are determined in this phase, the overall error
incurred by Phase3 is ε3 = 2kβ2(ε1 + ε2) = (n− k)β3τ(1 + β2)k.

The overall error is

errorf,D(h) ≤ ε1 + ε2 + ε3 = (n− k)τβ(1 + β22k) < (n− k)τβ2(1 + β2)k2k+1.

Choosingτ = ε
(n−k)β2(1+β2)k2k+1 guarantees thaterrorf,D(h) < ε. Notice that for

β = (1 + 2
k )

1
2 we haveτ = O( ε

n22k ) and 1
(β−1)2 = O(k2).

Now we can determine the sample size needed in each phase, so that any estimate of
a probability larger thanβτ is within a factor ofβ of that probability. As the overall
confidence in all the estimates should be1− δ, we require a confidence of1− δ

3 for all the
estimates used by each one of the three phases. Recall that by Lemma 5, a sample of size

M(τ, β, δ, t) = dmax(3,2β2)
τ(β−1)2 log t

δ e is sufficient to ensure (with confidence1 − δ), that for
a set oft estimates, each estimates is within a factor ofβ of the true probability, whenever
the probability is greater thanβτ .

Phase 1 consists ofn − k stages. At each stage, having the current hypothesish, we
search for a literall, for which the blockB(h, l) is pure. LetS be the variables which
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appear inh. We can decompose the variables which are not inh into d n−|h|
n−k−|h|e ≤

k + 1 sets, and for each such setT , focus our attention onS ∪ T . Hence, we need
(n−k)(k+1) samples in this phase. For each such sample we need to estimate4(n−k−|h|)
probabilities (estimatingp(B(h, l), b) for every new literall and everyb ∈ {0, 1}). By
Lemma 5, a sample of sizeM(τ, β, δ

3(n−k)(k+1) , 4(n− k)) is sufficient, hence a sample of

size(n − k)(k + 1)M(τ, β, δ
3(n−k)(k+1) , 4(n − k)) = O(k

3n222k

ε log n
δ ) is sufficient for

Phase1.

At any stage of Phase2 we search for a(1− b)-pure blockB(hb, l), where|hb| < n− k.
Let Sb be the set of variables inhb. Then, for every variablev not in h (at mostk), we
need to focus our attention onSb ∪ {v}, for eitherb = 0 or b = 1. Hence,2k samples
are sufficient at each stage, and2k2 samples are sufficient for the entire phase. For each
sample we need to estimate at mostk probabilities, hence by Lemma 5, a sample of size
M(τ, β, δ

6k2 , k) is sufficient for each stage, and2k2M(τ, β, δ
6k2 , k) = O(k

3n222k

ε log n
δ )

observations are sufficient for the entire Phase2.

In Phase3 we take one sample and estimate at most2k probabilities. Hence a sample of
sizeM(τ, β, δ3 , 2

k) = O(k
3n2k

ε log 1
δ ) is sufficient for this phase, and the overall sample

complexity of the algorithm isO
(
k3n222k

ε log n
δ

)
.

The time complexity is essentially determined by the time needed for estimating thek-
RFA probabilities. In the first two phases this is obvious. To see this for the third phase
note that an item(t, b) is added only if the correspondingB(∅, t) is notb-pure. But this can
happen only if an example (labeledb) in this block is drawn. Hence for each such item at
least one example has to be drawn.

In Phase1 each example drawn changes at mostk empirical probabilities, whereas in
Phases2 and3 each example drawn changes only one empirical probability. Hence, the
time complexity isO(km).

4.3. Summary of Results about Distribution-free Learning of Decision Lists

Table 3 (Table 4, resp.) summarizes the results shown in this paper (or directly implied
by them), and known results from literature (Rivest, 1987) for proper (improper, resp.)
RFA-learning. A legend is given in Table 2.

Table 2.Legend for Tables 3 and 4.

Symbol Meaning

+e efficiently learnable
+ learnable (maybe efficiently)
+i only inefficiently learnable
− not learnable (even not inefficiently)
? learnability unknown
−/? “−” if n is even, and “?” if n is odd
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Table 3.Summary of results for properb-RFA-learning of
a-DL.

a\b 0, . . . , n− 2 n− 1 n

0 +e +e +e
1 − +e +e

2, . . . , k − ? +e
n− k, . . . , n− 2 − ? +i

n− 1 − +i +i
n − − +i

Table 4.Summary of results for improperb-RFA-learning ofa-DL.

a\b 0, . . . , k dn/2e − 1 dn/2e n−Θ(logn) n− k n− 4 n− 3 n− 2 n− 1 n

0 +e +e +e +e +e +e +e +e +e +e
1 − − + +e +e +e +e +e +e +e
2 − − −/? ? ? ? ? ? + +e
3 − − − ? ? ? ? ? + +e
4 − − − ? ? ? ? ? + +e

k − 1 − − − ? ? ? ? ? + +e
k − − − ? ? ? ? ? + +e

n− k − − − − − ? ? ? +i +i
n− k + 1 − − − − − ? ? ? +i +i

n− 6 − − − − − − ? ? +i +i
n− 5 − − − − − − ? ? +i +i
n− 4 − − − − − − − ? +i +i
n− 3 − − − − − − − ? +i +i
n− 2 − − − − − − − − +i +i
n− 1 − − − − − − − − +i +i
n − − − − − − − − − +i

5. Learning Decision Lists under Fixed Distributions

Let D be an arbitrary, but fixed, distribution overX = {0, 1}n. Two functionsf, g in n
Boolean variables are calledD-equivalentif Prx∈D[f(x) 6= g(x)] = 0. We say that a
Boolean termt separatesf, g if Prx∈D[f(x) = 1 | t(x) = 1] 6= Prx∈D[g(x) = 1 | t(x) =
1]. For fixed distribution, the assertion of Theorem 1 can be reformulated as follows:

Theorem 7 1. IfF contains two functionsf, g which are notD-equivalent and cannot
be separated by anyk-term t, then there exists no hypothesis classH such thatF is
k-RFA learnable usingH.

2. If every two functionsf, g from F which are notD-equivalent can be separated by
somek-termt, thenF is properlyk-RFA learnable.

Proof:

1. We claim that〈f,D〉, 〈g,D〉 form ak-RFA hard set of scenarios even for hypothesis
class2X . Obviously, both scenarios arek-RFA equivalent, since they cannot be sepa-
rated by anyk-term. Observe next that the symmetric difference off, g has a strictly
positive probabilityγ becausef, g are notD-equivalent. Chooseε = γ/3. Certainly,
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no hypothesis can beε-good for bothf andg. Thus the claim follows. By Theorem 1,
F is notk-RFA learnable using2X (and thus notk-RFA learnable using any hypothesis
class).

2. Assume thatF is not properlyk-RFA learnable. We have to show thatF contains
two functionsf, g that are notD-equivalent and cannot be separated by anyk-term
t. By Theorem 1, there exists ak-RFA hard set of scenarios forF . SinceD is fixed,
this hard set has the form{〈f1, D〉, . . . , 〈fr, D〉}. If the functionsfi were pairwise
D-equivalent, hypothesisf1 would beε-good (even0-good) for all potential targetsfi.
This would contradict thek-RFA hardness of the set. Thus there exist two functionsf, g
in this set which are notD-equivalent. Since〈f,D〉 and〈g,D〉 arek-RFA equivalent,
there cannot exist a separatingk-termt. This concludes the proof.

The essential message of Theorem 7 is thatk-RFA hard sets (if there are any) can always
be formed by two hypotheses beingD-inequivalent and nonseparable by anyk-term.

Theorem 8 For any fixed distributionD over{0, 1}n, k-DL is properlyk-RFA learnable
for all 1 ≤ k ≤ n.

Proof: According to Theorem 7 it suffices to show that anyf, g ∈ k-DL, which are not
D-equivalent, can be separated by somek-termt. LetL be a decision list with items(ti, bi)
for 1 ≤ i ≤ r representingf , andL′ a decision list with items(t′j , b

′
j) for 1 ≤ j ≤ r

representingg. Here, we assumed, for the sake of simplicity, that both lists have the same
length r (using redundant items for one list if necessary). LetLq andL′q be the lists
starting both with the sublistSq = [(t1, b1), (t′1, b

′
1), . . . , (tq, bq), (t′q, b

′
q)] and ending with

the remaining items of, respectively,L andL′. Let fq, gq be the functions represented
by these lists, respectively. Note thatLr = L′r. The maximal indexq such thatf is D-
equivalent tofq andg isD-equivalent togq is therefore smaller thanr. Let P ⊆ {0, 1}n
be the set of Boolean vectors of positive probability underD, A the subset of vectors
from P which satisfy one of the terms inSq, B = P \ A, T = {x | tq+1(x) = 1}, and
T ′ = {x | t′q+1(x) = 1}. SinceLq representsf andL′q representsg up toD-equivalence,
it follows that:

∀x ∈ A : f(x) = g(x), ∀x ∈ B ∩ T : f(x) = bq+1,

∀x ∈ B ∩ T ′ : g(x) = b′q+1.

The maximality ofq implies that:

∃x ∈ B ∩ T : g(x) 6= bq+1 or ∃x ∈ B ∩ T ′ : f(x) 6= b′q+1.

It easily follows thattq+1 or t′q+1 separatesf, g.

The running time and the sample size of the learning algorithm, given implicitly in the
proof of Theorem 8, depend on the specific choice ofk andD, and are certainly not
polynomial in general. However, it is known that with respect to the uniform distribution,
1-DL is efficiently1-RFA learnable (Decatur and Gennaro, 1995).
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6. k-RFA Learnability of k-TOP

In this section we prove two positive results for the learnability ofk-TOP in thek-RFA
model. First, we prove thatk-TOP is weaklyk-RFA learnable in a distribution-independent
sense. We also show thatk-TOP is sample-efficientlyk-RFA learnable with respect to the
uniform distribution. In the next section we combine the weak learning observation of this
section with one of our negative results for decision list learning to show that weak and
strong learnability arenot equivalent in thek-RFA model.

It should be noted that, as is standard in Fourier analysis, we assume throughout this
section and the next that Boolean functions map to{−1,+1} unless otherwise stated. This
includes decision lists, so we will assume a slightly different definition here in which the
bi defining a decision list are in{−1,+1} rather than in{0, 1}.

6.1. Weak Learnability ofk-TOP

Our first observation is that the classk-TOP of thresholds ofk-parities is weakly learn-
able from ak-RFA oracle, and the learning is polynomial-time for constantk. This is a
direct result of the following lemma, which is a slight modification of a similar result in
(Jackson, 1994).

Lemma 6 Let f be anyk-TOP of sizes andD any distribution over the domain off .
Then there exists a parityχa with |a| ≤ k such that

|Prx∈D[f = χa]− 1
2 | ≥

1
2s
.

We use the notatioñO(·) in the following theorem and elsewhere to represent the standard
big-O notation with log factors suppressed.

Theorem 9 k-TOP is weaklyk-RFA learnable in timẽO(nk+1s2).

Proof Sketch: By standard Chernoff bound arguments (see, e.g., (Jackson, 1995)), given
an example oracle forf and a fixedχa we can produce an estimate ofPrx∈D[f = χa]
that, with probability at least1− δ over the random draws by the example oracle, is within
1/(8s) of the true value. Furthermore, the algorithm producing this estimate runs in time
O(ns2 log δ−1), where the algorithm is assessed unit time for each call to the example
oracle. Notice also that ak-RFA oracle suffices rather than a full example oracle if the
parityχa is ak-parity.

Thus if we know the sizes of the target then we can find a weak approximator tok-TOP
f by querying ak-RFA oracle in order to estimate the correlation of each of theO(nk) k-
parities withf and choosing as the weak hypothesis any parity having correlation of at least
3/(8s) (theδ used in each estimate must of course be set sufficiently small to assure that the
overall confidence of the procedure is within that allowed to the weak learner). That such a
weak hypothesis exists is guaranteed by the lemma above. Because onlyO(nk) estimates
are performed and each estimate requires timeÕ(ns2), this procedure satisfies the claimed
time bound.
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If the sizes of the target functionf is not known, a standard guess-and-double technique
can be applied (see, e.g., (Jackson, 1995)). That is, we can start withs = 1. If no k-parity
has correlation3/8 with the target, we doubles and try again. Notice that this process will
converge to a weak approximator inlog s stages, again with high probability for appropriate
choices forδ.

6.2. Polynomial Sample Size for Uniformk-TOP Learning

Our most general positive result fork-TOP is that for constantk,k-TOP is sample-efficiently
k-RFA learnable with respect to uniform. To obtain this result, we show that any two
noticeably differentk-TOP functions will differ noticeably in at least one Fourier coefficient
of orderk or less. This says that estimates of these low-order Fourier coefficients provide
the information necessary to closely approximate ak-TOP function. Since for constantk
these low-order Fourier coefficients can be efficiently estimated from a uniform-distribution
k-RFA oracle,k-TOP is sample-efficientlyk-RFA learnable with respect to uniform.

Lemma 7 Letf : {0, 1}n → {−1,+1} be ak-TOP of sizes and letIk = {a ∈ {0, 1}n :
|a| ≤ k}. Also, letε be any positive constant, and letg : {0, 1}n → {−1,+1} be such that
for all a ∈ Ik, |f̂(a)− ĝ(a)| ≤ ε/s. ThenPr[f = g] ≥ 1− ε.

Proof: Becausef is a k-TOP of sizes, there exists a functionF =
∑
a∈Ik waχa on

the domain off such thatf = sign(F ), the weightswa of F are all integer-valued,
and

∑
a∈Ik |wa| ≤ s. But by the definition of the Fourier transform we can also write

F =
∑
a F̂ (a)χa. Thus we see that̂F (a) = wa for all |a| ≤ k and F̂ (a) = 0 for all

|a| > k. Now applying the generalized Parseval’s identity we obtain the following:

E[|F |] = E[f · F ] =
∑
a

f̂(a)F̂ (a) =
∑
a∈Ik

f̂(a)F̂ (a).

By our assumption about the relation betweenf andg we then have that

E[|F |] ≤
∑
a∈Ik

ĝ(a)F̂ (a) +
∑
a∈Ik

ε

s
|F̂ (a)| ≤

∑
a∈Ik

ĝ(a)F̂ (a) + ε.

Now note that again applying Parseval we have∑
a∈Ik

ĝ(a)F̂ (a) =
∑
a

ĝ(a)F̂ (a) = E[g · F ].

ThusE[|F |] − E[g · F ] ≤ ε. Furthermore, sinceg is Boolean, every one of the terms
g(x)F (x) in E[g · F ] has magnitude|F (x)|. This means thatE[g · F ] ≤ E[|F |], with
equality achieved if and only iff ≡ g. Furthermore, since|F (x)| ≥ 1 for all x (recall that
the F̂ (a) are integers and by definition of the sign functionF (x) 6= 0), eachx such that
f(x) 6= g(x) adds at least2−n to the differenceE[|F |]− E[g · F ]. Thereforef andg can
differ on at most anε fraction of thex’s.
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Theorem 10 Let s be the size of a targetk-TOP function andε and δ the standard
PAC accuracy and confidence parameters, respectively. Thenk-TOP is learnable from a
uniform-distributionk-RFA oracle with sample complexityO(nkks2 log(n/δ)/ε2) and in
time at most singly exponential inn, s, andk.

Proof: By Chernoff, a sample of sizeO(ks2 log(n/δ)/ε2) from the k-RFA oracle is
sufficient to estimate, with probability at least1− δ/nk, each of thek-order or less Fourier
coefficients off to within ε/2s. By the preceding lemma, we then know that any function
which has low-order Fourier coefficients withinε/2s of those we have estimated will be an
ε-approximator tof . And there is at least one suchk-TOP—f itself—which satisfies this
requirement.

One algorithm for finding thisk-TOP then is to systematically construct variousk-TOP
expressions in such a way that all possiblek-TOP functions will eventually be represented.
This can be done by writing down lexicographically successive bit strings and checking
each to see if it represents a valid encoding (in, say, ASCII) of ak-TOP.O(n2ks) is a crude
upper bound on the number of strings we will write down before encounteringf . For each
k-TOP constructed this way we can compute its Fourier coefficients using the Fast Fourier
Transform in time singly exponential inn. We then compare the Fourier coefficients of
each constructed function with those previously estimated forf until a match is found.

7. Weak and Strongk-RFA Learning

In the PAC model of learning, weak learnability implies strong learnability (Schapire, 1990).
Existing proofs for this fact are based on the notion of hypothesis boosting. Therefore, an
obvious approach to turning the weak learning result of the previous section into a strong
learning result is to apply boosting. However, all currently known boosting algorithms work
by running the weak learner multiple times, each time on a distribution which is defined in
part by the performance of earlier weak hypotheses on instances. This presents a significant
problem in thek-RFA model: to determine the appropriate probability weight to assign to
an instance, we need to know how earlier hypotheses classify the instance, which requires
that each hypothesis have access to enough of the instance to perform the classification. But
to the same degree that attention is focused on portions of an instance in order to determine
the weight of the instance, attention is not available for performing the weak learning task
at hand. This raises an interesting question: does an alternative form of boosting exist that
avoids this difficulty? We answer this question negatively.

Theorem 11 k-TOP is weaklyk-RFA learnable, but is not stronglyk-RFA learnable for
1 ≤ k ≤ n − 2. The weak learning is polynomial-time for constantk, while the strong
learning is information-theoretically impossible.

Corollary 1 Weakk-RFA learnability of a class does not imply strongk-RFA learn-
ability of the class.

Proof of Theorem 11: By Theorem 9 we know thatk-TOP is weaklyk-RFA learnable,
and in polynomial time for constantk. And we have also shown that it is information
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theoretically impossible to stronglyk-RFA learnk-DL for 1 ≤ k ≤ n−2. All that remains
to show is thatk-DL is a subclass ofk-TOP.

To see this, consider a targetf with a k-DL representation(t1, b1), . . . , (tr, br). Note
that this function can be written equivalently as the sign of the following sum of the terms
ti, which we view as functions with range{0, 1} (and recall that we are treating thebi as
{−1,+1}-valued in this section):

r∑
i=1

2r−ibiti.

To see that the sign of this sum is equivalent tof , notice that given an inputx, each term
tj that is not satisfied contributes nothing to the sum, sincetj(x) = 0 for all suchtj . But
the first termti which is satisfied byx will cause2r−ibi to be added to the sum. Since
2r−i >

∑r
j=i+1 2r−j , the values ofbj , j > i, have no effect on the sum. Thus the value of

bi determines the value of the function atx, as desired.
Furthermore, it follows from the definition of the Fourier transform that each of these

k-termsti can be written as a sum ofk-parity functions, since the terms are functions of
at mostk variables each and everyk-variable Boolean function can be written as a linear
combination ofk-parities. Thusf can be written as the sign of a weighted sum ofk-parities,
that is, as ak-TOP.

It should be noted that, while the proof above shows thatk-DL is a subclass ofk-TOP,
for a givenk-DL representation of sizer the construction above may lead to ak-TOP with
size exponential ink and inr. Thus if r is, say, linearly related ton, then thek-TOP
representation constructed may be exponential-size inn. On the other hand, time-efficient
weak learning allows the learner to run in time polynomial in the size of the function within
the representation class being learned. Thus, while the scenarios which are hard to learn
strongly fork-TOP may not be weakly learnable efficiently with respect tok-DL, they are
weakly learnable efficiently with respect tok-TOP.

The above theorem shows that boosting is not applicable in general within thek-RFA
model. However, boostingcanbe employed to good use under certain conditions in RFA
models. For example, we now use hypothesis boosting to argue that fork constant,k-
TOP functions can beε-approximated efficiently from aK-RFA oracle, whereK depends
polynomially on the size of the target and logarithmically onε−1 but does not depend onn.
This means that “small” (with respect ton) k-TOP functions are efficiently learnable from
an oracle which has focus of attention which, while larger thank, is at least smaller thann.

Theorem 12 Let s be the size of a targetk-TOP function andε the accuracy required
of a learning algorithm. Thenk-TOP isK-RFA learnable forK = 2ks2 ln 4

ε . Note that
K does not depend onn. The learning algorithm runs in timẽO(nk+1) but is otherwise
polynomial in the usual PAC parameters.

Proof: As noted earlier, there is ãO(nk+1s2)-time weakk-RFA learning algorithm for
k-TOP. In fact, the weak hypothesis produced by this learner can be made a nearly( 1

2−
1
2s )-

approximator to the targetk-TOPf . Now assume for the moment that we have access to
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a PAC example oracle rather than aK-RFA oracle. Then applying Freund’s boosting-by-
majority algorithm (Freund, 1990, Freund, 1993) to this weak learner will produce anε-
hypothesis forf consisting of a majority vote over approximately2s2 ln 4

ε weak hypotheses.
As each weak hypothesis is defined over onlyk bits of the input, the algorithm actually
only needs access to approximately2ks2 ln 4

ε bits of each instance.

8. Further Research

Being a refinement of the PAC learning model, the formulation of the RFA model stimulates
the need for new techniques and approaches in order to cope with new learning problems.
Some of the needed tools are developed in this paper, enabling the study of the RFA
learnability of interesting classes of Boolean functions, such as decision lists andk-TOPs.
We believe that these tools, particularly the indistinguishability argument of Section 3.1,
can be used further, both in the study of the learnability of other classes and also for other
RFA scenarios.

Perhaps the most interesting open problem concerning this work is the following prob-
lem, which significantly predates learning theory research but naturally leads to an RFA
problem. Consider the class of linearly-separable half-spaces over{0, 1}n (perceptrons).
It is well-known that the first-order Fourier coefficients of a perceptron (also called the
Chow parametersof the perceptron) uniquely determine the perceptron (see (Chow, 1961),
or (Bruck, 1990) for a more general result). Is it possible to efficiently compute a good
weights-based approximation of the perceptron from good approximations of these coeffi-
cients?

This question leads naturally to a1-RFA learning problem, as follows. It can be shown
that when learning from a1-RFA oracle with respect to the uniform distribution, we can
obtain good estimates of the Chow parameters. Also, based on our Fourier characterization
of k-RFA learning (see Appendix A), we know that in fact these parameters captureall
of the information available from the1-RFA oracle. Thus, the above open question leads
to the following RFA question: is the class of perceptrons efficiently and properly1-RFA
learnable with respect to the uniform distribution?

Note that since perceptrons are efficiently (and properly) PAC learnable, it is enough
to have a good prediction rule which can be computed from approximations of the Chow
parameters, and succeeds for almost all the instances. Although it can be shown that one
of the Chow parameters is a weak approximator for the target function (see Theorem 11),
we currently do not know how to boost weak approximators in the1-RFA model.

Another intersting question concerns weak and strong learnability in thek-RFA model.
We have shown that—in a class that contains functions of size exponentially large inn—
weak and strong learnability are not equivalent. Is there also a class of functions all of size
polynomial inn for which weak and strongk-RFA learnability differ, or are these learning
models equivalent in all such classes?
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Appendix A

Fourier Characterization of k-RFA Learnability

We present here an alternative to the characterization ofk-RFA learnability developed
in Section 3. Specifically, we definek-Fourier equivalence of scenarios and show that
two scenarios arek-RFA equivalent precisely when they arek-Fourier equivalent. The
definition ofk-RFA hardness can therefore be rephrased in terms ofk-Fourier equivalence
rather thank-RFA equivalence, and thus Theorem 1 can also be viewed in terms ofk-Fourier
equivalence. While we do not use this characterization to obtain any learnability results in
this paper, the connection ofk-RFA learnability with Fourier analysis, which has proved
quite useful in learning theory, seems potentially very useful.

We will assume in this section thatf ∈ {−1,+1}; this also means that we assume similar
small changes in the definitions of the previous sections, such as that the parameterb in the
definition ofpS(I, x, b) is in {−1,+1}.

Definition 4. Two scenariosS1 = 〈f1, D1〉 andS2 = 〈f2, D2〉 arek-Fourier equivalent
if and only if for all a ∈ {0, 1}n such that|a| ≤ k,

Ex∈D1 [χa(x)] = Ex∈D2 [χa(x)] and

Ex∈D1 [f1(x) · χa(x)] = Ex∈D2 [f2(x) · χa(x)].

Theorem 13 Two scenariosS1 = 〈f1, D1〉 andS2 = 〈f2, D2〉 arek-RFA equivalent if
and only if they arek-Fourier equivalent.

Proof: For a scenarioS = 〈f,D〉 defineE(S, k) to be the vector of expectations
{Ex∈D[χa(x)],Ex∈D[f(x) · χa(x)] | |a| ≤ k} and letP (S, k) be the vector of proba-
bilities {pS(I, x, b) | |I| = k}. We will show that the expectations inE(S, k) can be
computed given the probabilities inP (S, k) and vice versa. Given this, it follows that
if for two scenarios,S1 andS2, pS1(I, x, b) = pS2(I, x, b) for all |I| = k, x, b then
the vectors of expectationsE(S1, k) andE(S2, k)—which are functions of thepS1 ’s and
pS2 ’s, respectively—must also be equal. That is,k-RFA equivalence ofS1 andS2 implies
k-Fourier equivalence. Conversely, given thatP (S, k) can be computed fromE(S, k) then
if E(S1, k) = E(S2, k) it follows thatP (S1, k) = P (S2, k), or in other words,k-Fourier
equivalence impliesk-RFA equivalence. Thus we need only show the claimed functional
relationships between the probabilities inP (S, k) and the expectations inE(S, k) to prove
the theorem.

Let S = 〈f,D〉 be a scenario. Consider the expectationEz∈D[f(z)χa(z)] and assume
without loss of generality thata begins with0 ≤ j ≤ k 1’s and ends withn − j 0’s. Let
x ∈ {0, 1}j , and let the notation

∑
z=jx

denote the sum over allz ∈ {0, 1}n such that the
first j bits ofz andx agree. Then

Ez∈D[fχa] =
∑
z

f(z)χa(z)D(z)

=
∑
x

∑
z=jx

f(z)χa(x)D(z)
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=
∑
x

χa(x)
∑
z=jx

f(z)D(z)

=
∑
x

χa(x)
(

Pr
z∈D

[f(z) = 1 ∧ z =j x]− Pr
z∈D

[f(z) = −1 ∧ z =j x]
)
.

Note that the probabilities in the last line above can readily be computed from the proba-
bilities in P (S, k). Thus for all|a| ≤ k, ED[fχa] is a function of thepS ’s in P (S, k), and
a similar argument shows thatED[χa] is as well.

Now we show that thepS ’s in P (S, k) are functions of the expectations inE(S, k); this
will also provide some insight into why we chose these expectations for our definition of
k-Fourier equivalence. We first want to rewritepS(I, x, b) in another form. Letf ′ be
the {0, 1}-valued equivalent off , specifically the function such thatf(z) = (−1)f

′(z)

for all z. Defineb′ similarly with respect tob. Now define the{0, 1}-valued function
gI,x,b′(z, f ′(z)) to have value1 if and only if f ′(z) = b′ and for alli in I, zi = xi. Then
clearlyEz∈D[gI,x,b′(z, f ′(z))] = pS(I, x, b) for everyI, x, andb.

Writing pS this way allows us to apply an observation of Blum et al. (Blum et al., 1994)
to our analysis. They showed that for any{0, 1}-valued functionf ′ with corresponding
f ∈ {−1,+1} and any functiong(z, f ′(z)),

Ez∈D[g(z, f ′(z))] =
∑
a

ĝ(a0)Ez∈D[χa(z)] +
∑
a

ĝ(a1)Ez∈D[f(z)χa(z)],

wherea ∈ {0, 1}n. Now each of thegI,x,b is a deterministic function, and therefore the
Fourier coefficientŝg for each of these functions are constants. Furthermore, eachgI,x,b
depends on onlyk of the bits inz if |I| = k. A standard Fourier argument gives that
for suchg, ĝ(a0) and ĝ(a1) will be zero for all|a| > k. Thus for all|I| = k, x, andb,
pS(I, x, b) = Ez∈D[gI,x,b′(z, f ′(z))] is a function ofED[χa] andED[fχa] for |a| ≤ k.

Finally, note thatED[χa] =
∑
z χa(z)D(z) = 2nEz[D(z)χa(z)] = 2nD̂(a). Similarly,

ED[fχa] = 2nD̂f(a) (hereD is being used to represent both a probability distribution and
the real-valued function that returns the weight this distribution assigns to each instance).
In other words, the expected values characterizingk-RFA learnability are actually the
boundedk-order Fourier coefficients of the target distribution and of the product of the
target distribution and the target function. This suggests thatk-RFA learnability results
for a function class (possibly with respect to a restricted class of distributions) might be
obtained by applying Fourier analysis to the class.

Appendix B

Karnaugh diagrams with RFA hard scenario pairs

Tables B.1 and B.2 on the next page show Karnaugh diagrams with the RFA hard scenario
pairs we used for the proofs of Theorem 2 and 3, respectively.

The bold numbers are the function values on the input instances, addressed by the rows and
columns of the two dimensional tables. The smaller numbers in parentheses represent the
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probability distributions. For clarity, we avoid fractions. Hence, to get the real distribution
these numbers should be divided by the factor given in the titles of the diagrams.

Consider, for instance, in Table B.1 the diagram entitledf (3)
2

(6·D(3)
2 ). The numbers0 (1) in

the upper left corner mean thatf (3)
2 (0, 0, 0) = 0 and thatD(3)

2 (0, 0, 0) = 1/6. The numbers

1 (0) in the lower left corner mean thatf (3)
2 (0, 0, 1) = 1 and thatD(3)

2 (0, 0, 1) = 0.

Table B.1.Karnaugh-diagrams for the scenarios of Theorem 2.

f
(2)
1

(3·D(2)
1 )

x1x2

00 01 11 10

0 (1) 1 (1) 1 (0) 1 (1)

f
(2)
2

(3·D(2)
2 )

x1x2

00 01 11 10

1 (0) 1 (1) 0 (1) 1 (1)

f
(3)
1

(6·D(3)
1 )

x1x2

x3 00 01 11 10

0 0 (0) 0 (1) 0 (1) 0 (1)

1 0 (1) 1 (1) 1 (0) 1 (1)

f
(3)
2

(6·D(3)
2 )

x1x2

x3 00 01 11 10

0 0 (1) 0 (1) 0 (0) 0 (1)

1 1 (0) 1 (1) 0 (1) 1 (1)

f
(4)
1

(12·D(4)
1 )

x1x2

x3x4 00 01 11 10

00 0 (1) 0 (1) 0 (0) 0 (1)

01 0 (0) 0 (1) 0 (1) 0 (1)

11 0 (1) 1 (1) 1 (0) 1 (1)

10 0 (0) 0 (1) 0 (1) 0 (1)

f
(4)
2

(12·D(4)
2 )

x1x2

x3x4 00 01 11 10

00 0 (0) 0 (1) 0 (1) 0 (1)

01 0 (1) 0 (1) 0 (0) 0 (1)

11 1 (0) 1 (1) 0 (1) 1 (1)

10 0 (1) 0 (1) 0 (0) 0 (1)

Table B.2.Karnaugh-diagrams for the scenarios of Theorem 3.

f
(3)
1

(10·D(3)
1 )

x1x2

x3 00 01 11 10

0 1 (1) 1 (2) 1 (1) 1 (1)

1 0 (1) 0 (1) 1 (1) 0 (2)

f
(3)
2

(10·D(3)
2 )

x1x2

x3 00 01 11 10

0 1 (1) 1 (1) 1 (2) 1 (1)

1 0 (2) 1 (1) 0 (1) 0 (1)

f
(5)
1

(28·D(5)
1 )

x1x2

x3x4x5 00 01 11 10

000 1 (1) 1 (1) 1 (1) 1 (1)

010 1 (1) 1 (1) 1 (2) 1 (1)

110 1 (0) 1 (1) 1 (0) 1 (0)

100 1 (1) 1 (1) 1 (1) 1 (1)

001 0 (0) 0 (0) 0 (0) 0 (0)

011 1 (1) 1 (2) 1 (1) 1 (1)

111 0 (1) 0 (1) 1 (1) 0 (2)

101 0 (2) 0 (0) 0 (1) 0 (1)

f
(5)
2

(28·D(5)
2 )

x1x2

x3x4x5 00 01 11 10

000 1 (1) 1 (1) 1 (1) 1 (1)

010 1 (1) 1 (2) 1 (1) 1 (1)

110 1 (0) 1 (0) 1 (1) 1 (0)

100 1 (1) 1 (1) 1 (1) 1 (1)

001 0 (0) 0 (0) 0 (0) 0 (0)

011 1 (1) 1 (1) 1 (2) 1 (1)

111 0 (2) 1 (1) 0 (1) 0 (1)

101 0 (1) 0 (1) 0 (0) 0 (2)
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