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ON RIEMANN-ROCH FORMULAS FOR MULTIPLICITIES

ECKHARD MEINRENKEN

1. Introduction

Let (M,ω) be a compact Kähler manifold, and let τ : L → M be a holomor-
phic line bundle over M with Hermitian fiber metric h. (L, h) is called quantiz-
ing if −2πiω is the curvature of the canonical Hermitian connection on L. Let
Hi(M,O(L)) be the ith cohomology group for the sheaf of germs of holomorphic
sections. By the Riemann-Roch formula of Hirzebruch and Atiyah-Singer [4], the
Euler number

Eul(L) :=
∑
i

(−1)i dimHi(M,O(L))(1)

is equal to the characteristic number

Eul(L) =

∫
M

Td (M) Ch (L),(2)

where Td (M) is the Todd class and Ch (L) = e[ω] the Chern character. Recall that
if L is “sufficiently positive”, in particular if one replaces L by some sufficiently
high tensor power, all the cohomology groups with i > 0 are zero by Kodaira’s
vanishing theorem, so in this case (2) gives a formula for the dimension of the space
H0(M,O(L)) = Γhol(M,L) of holomorphic sections.

Let G be a compact, connected Lie group that acts on M by Kähler diffeomor-
phisms Φ : G×M → M , with an equivariant moment map J : M → g∗. Suppose
also that Φ lifts to Hermitian bundle automorphisms of L → M , according to the
rules of geometric quantization. The corresponding virtual representation of G on∑

(−1)iHi(M,O(L)) may then be regarded as the “quantization” of the classical
action Φ. Its character χ is the element of the representation ring R(G) defined by

χ(g) :=
∑
i

(−1)i tr
(
g|Hi(M,O(L))

)
.(3)

From the equivariant Riemann-Roch formula of Atiyah-Segal-Singer [3, 4], one has
an expression for χ(g) as the evaluation of certain characteristic classes on the
fixed point set Mg = {x ∈ M | g.x = x} (which is a Kähler submanifold of M):
Let Chg(L|Mg) = cL(g)−1 Ch(L|Mg), where cL(g) ∈ S1 is the (locally constant)
action of g on L|Mg. Denote by Ng the normal bundle of Mg in M , by F (Ng) its
curvature, and let

Dg(Ng) = det(I − (g]) e−
i

2πF (Ng))(4)
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where g] is the automorphism of Ng defined by g. Then

χ(g) =

∫
Mg

Td (Mg)Chg(L|Mg)

Dg(Ng)
.(5)

By a theorem of Guillemin and Sternberg [16], there are also Riemann-Roch
formulas for the multiplicities of the irreducible components of the above repre-
sentation, at least if certain regularity assumptions are satisfied. Let T ⊂ G be a
maximal torus, and g = t⊕ [t, g] the corresponding decomposition of the Lie alge-
bra. Choose a fundamental Weyl chamber t∗+ ⊂ t∗ ⊂ g∗, let Λ∗ ⊂ t∗ be the integral
lattice, and Λ∗+ = Λ ∩ t∗+ the dominant weights. For a given lattice point µ ∈ Λ∗+,
let Vµ denote the corresponding irreducible representation with highest weight µ,
and define the multiplicity N(µ) by the alternating sum

N(µ) :=
∑
i

(−1)i dim
(
V ∗µ ⊗Hi(M,O(L))

)G
.(6)

Suppose that µ ∈ Λ∗+ is a regular value of J , or equivalently that the action
of the isotropy group Gµ on J−1(µ) is locally free. If the action is in fact free,
the reduced space Mµ = J−1(µ)/Gµ is a smooth symplectic manifold, and it is
well-known that it acquires a natural Kähler structure, together with a quantizing
line bundle Lµ. The main result of [16] is that the multiplicity of µ in Γhol(M,L)
is equal to the dimension of the space Γhol(Mµ, Lµ), so in particular N(µ) is given
by the Euler number of Lµ if L is sufficiently positive:

Theorem 1.1 (V. Guillemin, S. Sternberg [16]). If the action of Gµ on J−1(µ) is
free, and if L is sufficiently positive,

N(µ) =

∫
Mµ

Td (Mµ)Ch (Lµ).(7)

The “physical” interpretation of this theorem is that reduction and quantization
commute.

In practice, one is often dealing with situations where the action is only locally
free. In this case, the reduced space is in general just an orbifold (or V-manifold) in
the sense of Satake [21], which means (roughly) that it is locally the quotient of a
manifold by a finite group. Moreover, the reduced line bundle is in general just an
orbifold-bundle, that is, at some points the fiber of Lµ is not C, but its quotient by a
finite group. Guillemin and Sternberg conjectured that in this case, the right hand
side of (7) has to be replaced by the expression from T. Kawasaki’s Riemann-Roch
formula for orbifolds [20]. It was proved by R. Sjamaar [22] that this assertion is
true if L is sufficiently positive, and if Lµ is an honest line bundle. In fact, his
approach also covers the truly singular case where µ is not even a regular value,
by using Kirwan’s partial desingularization procedure to reduce it to the orbifold
case. On the other hand, the condition that Lµ be a genuine line bundle is rather
restrictive.

Moreover, the proofs of Guillemin-Sternberg and Sjamaar rely heavily on com-
plex geometry arguments, while Theorem 1.1 also makes sense for the non-Kähler
case. In fact, for every quantizable symplectic manifold M , one can define χ(g)
as the equivariant index of the Spinc-Dirac operator ∂

/
associated to L → M . The

construction of ∂
/

involves some choices, for instance the choice of a compatible
positive almost complex structure on M , but the index does not depend on that,
and is again given by (5).
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It is the aim of the present paper to give a different proof of the Guillemin-
Sternberg conjecture (for µ a regular value), which covers both the orbifold- and
the non-Kähler case.

The method we use is motivated by recent work of V. Guillemin [13], who used
localization techniques from equivariant cohomology to establish the connection
between the multiplicity formula (7) and a certain formula for counting lattice
points in polytopes. This formula is known to be true in various interesting cases,
and for these gives a new proof of (7) without using complex geometry techniques.

We will also use equivariant cohomology, but in a slightly different guise. The
main idea is to consider the rescaled problem, where we replace

ω ; mω, L; Lm, J ; mJ, µ; mµ(8)

for m ∈ N. Let N (m) : Λ∗+ → Z be the corresponding multiplicity function.
Our starting point will be the equivariant Riemann-Roch formula, but in a form

due to Berline and Vergne [6], involving equivariant characteristic classes. By a sta-
tionary phase version of the localization formula of Jeffrey-Kirwan-Witten [19, 25],
we pass from equivariant characteristic classes to (ordinary) characteristic classes
on the reduced spaces. This leads to the desired multiplicity formula for N (m)(mµ),
up to an error term O(m−∞).

Since the multiplicities are integers, one easily finds that the error term is zero
for large m. To investigate the general dependence of N (m)(mµ) on m, we use
a different expression for N (m)(mµ) via the number of lattice points in certain
polytopes. If J(M) is contained in the set of regular elements of g∗, in particular
in the abelian case, this analysis turns out to be sufficiently good to show that the
above error term is zero for all m.

Acknowledgements

I would like to thank V. Guillemin, J. Kalkman, E. Lerman, R. Sjamaar and
C. Woodward for useful comments and discussions. After completing this article,
I learned that M. Vergne has found a different proof of the Guillemin-Sternberg
conjecture for the abelian case, see [23].

2. Statement of the result

In order to state the result, we have to give a more precise description of the
reduced space and its singular strata. Suppose that µ ∈ Λ∗+ is a regular value of
J . Recall first the shifting-trick to express Mµ as a reduced space at the zero level
set: Let O = G.µ be the coadjoint orbit through µ, equipped with its usual Kirillov
Kähler structure, and let O− denote O with the opposite Kähler structure. The
action of G on O is Hamiltonian, with moment map Ψ the embedding into g∗. Then
M̃ = M × O− is a Kähler manifold, and the diagonal action of G is Hamiltonian,
with moment map J̃ = J −Ψ. There are canonical identifications

Mµ = J−1(µ)/Gµ ∼= J−1(O)/G ∼= J̃−1(0)/G.(9)

By Kostant’s version of the Borel-Weil-Bott theorem, one also has a natural quan-
tizing bundle Ξ→ O, and the irreducible representation Vµ corresponding to µ gets
realized as the space of holomorphic sections of Ξ. (The higher order cohomology

groups Hi(O,O(Ξ)) vanish.) The tensor product L̃ := L ⊗ Ξ∗ quantizes M̃ , and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



376 ECKHARD MEINRENKEN

there is an isomorphism

Hi(M̃,O(L̃)) ∼= V ∗µ ⊗Hi(M,O(L)).(10)

Hence N(µ) = Eul(L̃), which is the quantum counterpart of the shifting-trick.
Using the shifting-trick, it is enough to consider the case µ = 0. The reduced

space M0 inherits a natural Kähler structure from M (see [16]), and the reduced
bundle L0 = (L|J−1(0))/G yields a quantizing orbifold-line bundle. Note however
that L0 need not be an honest line bundle, not even over the smooth part of M0.
Sections of an orbifold bundle are defined as coming from invariant sections for the
local orbifold charts, so all sections of L0 have to vanish at points were the fiber is
not C.

Let us regard P = J−1(0) as an orbifold-principal bundle over M0 = J−1(0)/G.
Following [20, 12], we introduce

P̃ = {(x, g)|x ∈ P, g.x = x} ⊂ P ×G,(11)

and its quotient Σ = P̃ /G under the locally free action h.(x, g) = (h.x, h g h−1).

The projection of P̃ to the second factor descends to a locally constant mapping

τ : Σ→ Conj(G)(12)

to the set of conjugacy classes. For g ∈ G, let (g) = Ad(G).g denote the correspond-
ing conjugacy class, and Σg its preimage under τ . There is a natural identification
Σg = P g/Zg, where P g = Mg∩P is the fixed point manifold and Zg the centralizer
of g in G. Since the fixed point set Mg ⊂M is a Kähler submanifold, and the action
of Zg on Mg is Hamiltonian with the restriction of J serving as a moment map,
this makes it clear that Σ is a Kähler orbifold (with several components of different
dimensions). Note that this Kähler structure does not depend on the choice of the
representative for (g). Observe also that Σe ∼= M0.

The collection of bundles (L|P g)/Zg defines a quantizing orbifold line bundle
LΣ → Σ. As above, let cL(g) ∈ S1 be the locally constant action of g on L|P g,
denote by cΣ : Σ → S1 the function defined by the cL(g)’s, and let ChΣ(LΣ) be
the cohomology class defined by

ChΣ(LΣ) = c−1
Σ eωΣ(13)

where ωΣ is the Kähler form on Σ.
Consider now the natural mapping f : Σ → M0, sending G.(x, g) → G.x. In a

local orbifold chart, the tangent space to Σ at G.(x, g) is isomorphic to

Tx(Mg ∩ J−1(0))/Tx(Zg.x),

while the tangent space to M0 at G.x is Tx(J−1(0))/Tx(G.x). From this, it is easy
to see that f is a Kähler immersion. Let NΣ → Σ be the normal bundle of this
immersion, and denote by g] the automorphism of NΣ|Σg induced by the action of
g. Then the collection of differential forms

det(I − (g]) e−
i

2πF (NΣ)),(14)

where F (NΣ) is the curvature of NΣ, defines a characteristic class DΣ(NΣ).
Finally, for each connected component Σi of Σ, let di be the number of elements

in a generic stabilizer for the G-action on the corresponding component P̃i, and
dΣ : Σ→ N the function defined by the di’s.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON RIEMANN-ROCH FORMULAS FOR MULTIPLICITIES 377

For general values µ ∈ Λ∗+, let Σµ, Lµ etc. be defined by means of the shifting-
trick. The main result of this paper is the following.

Theorem 2.1 (Multiplicity Formula). If µ ∈ Λ∗+ is a regular value of J , the mul-

tiplicities N (m)(mµ) are for m >> 0 given by the formula

N (m)(mµ) =

∫
Σµ

1

dΣµ

Td (Σµ)ChΣµ(LmΣµ)

DΣµ(NΣµ)
.(15)

If the image of the moment map, J(M), is contained in g∗reg (the set of regular
elements of g∗), one may set m = 1 in this formula:

N(µ) =

∫
Σµ

1

dΣµ

Td (Σµ)ChΣµ(LΣµ)

DΣµ(NΣµ)
,(16)

In particular, this is the case if G is abelian.

Remarks. (1) Comparing the right hand side of (16) to Kawasaki’s Riemann-Roch
formula for orbifolds [20], the theorem says that N(µ) is equal to the Euler number
of the orbifold-bundle Lµ →Mµ. In particular, N(µ) is zero if the fiber of Lµ over
the smooth stratum of Mµ is a nontrivial quotient of C.

(2) Let ∆ = J(M) ∩ t∗+, which is a convex polytope by a result of Guillemin-
Sternberg and Kirwan, and ∆∗ ⊂ ∆ the set of regular values. By the Duistermaat-
Heckman theorem [9], the diffeotype of the reduced space Mµ (and of course also
of Σµ) does not change as µ varies in a connected component of int(t∗+) ∩∆∗, and
the cohomology class of the symplectic form ωµ varies linearly. In particular, the
symplectic volume Vol(Mµ) is a polynomial on these connected components. If the
action of Gµ on J−1(µ) is free, so that Σµ = Mµ, the right hand side in (16) is equal
to a polynomial as well, since all that varies is the Chern character Ch(Lµ) = eωµ .
In the orbifold case, the behaviour is slightly more complicated: For µ ∈ Λ∗+ in any
given connected component of int(∆∗), and any connected component Σµ,j of Σµ,

ChΣµ(LΣµ)|Σµ,j = ρµ(gj) cL(g−1
j ) eωΣµ ,(17)

where gj ∈ Gµ represents τ(Σµ,j), and ρµ : Gµ → S1 is defined by ρµ(exp(ξ)) =

e2πi〈µ,ξ〉. Hence, the right hand side of (16) is of the form

N(µ) =
∑
j

ρµ(gj) cL(g−1
j ) pj(µ),(18)

where the pj are polynomials of degree 1
2 dim(Σµ,j).

(3) Since Ch ((Lm)mµ) = emωµ , the right hand side of (15) is a polynomial in m
if the Gµ-action on J−1(µ) is free. In the orbifold-case, this is not true in general
since

ChΣµ(LmΣµ)|Σµ,j = ρµ(gj)
m cL(g−1

j )m emωΣµ .(19)

Definition 2.1 (Ehrhart [11]). A function f : N→ C is called an arithmetic poly-
nomial, if for some k ∈ N, all the functions

qj(m) = f(km− j), j = 0, . . . , k − 1,(20)

are polynomials. k is called the period of f .
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Equivalently, f is an arithmetic polynomial if and only if it can be written in
the form

f(m) =
k−1∑
l=0

exp(2πi
lm

k
) pl(m),(21)

where the pl are polynomials. Taking k such that gk = e for all (g) ∈ τ(Σµ), the
right hand side of (15) clearly has this property.

(4) Our proof of Theorem 2.1 does not really use the assumption that M is
Kähler. Everything will be derived from the equivariant Riemann-Roch formula
(3), which is of course valid in much more general situations. Suppose for instance
that M is an arbitrary compact symplectic manifold, equipped with a Hamilton-
ian G-action, and that these data are quantizable. Then one can always choose
a compatible, invariant almost Kähler structure, and replace the virtual space∑

(−1)iHi(M,O(L)) with the index space of the Spinc-Dirac operator associated
to L → M (see [7, 13]). As an immediate consequence of the Berline-Vergne for-
mula for the character, Theorem 3.1 below, the multiplicities N(µ) defined in this
way do not depend on the choice of the almost Kähler structure or of the quantizing
line bundle L.

(5) Suppose that M is an almost complex manifold, L → M an Hermitian line
bundle with connection, and ω defined by ω = i

2πF (L). Suppose G acts on L→M ,
preserving the connection, and let J be the corresponding moment map. Even if
ω is degenerate, it is still true that the action of Gµ on J−1(µ) is locally free if µ
is a regular value of J , and one can form a reduced space (Mµ, ωµ). In general,
there is no natural ‘reduced’ almost complex structure on Mµ, but our proof will
show that Theorem 2.1 is true for this setting, provided one replaces Td(Mµ) by
κµ(Tdg(M) jg) (the notation will be explained below).

Example . Let M = CP (2), equipped with the Fubini-Study Kähler form ωFS.
Let G = S1 act by

eiφ.[z0 : z1 : z2] = [eiφz0 : e−iφz1 : z2].

This action is Hamiltonian, and has a moment map

J([z0 : z1 : z2]) =
|z1|2 − |z0|2

|z0|2 + |z1|2 + |z2|2
.

The dual of the tautological line bundle serves as a quantizing line bundle L. We
also consider the tensor powers Lm, which are quantizing line bundles for M (m) =
CP (2), with symplectic form ω(m) = mωFS . By Kodaira’s vanishing theorem,
Hi(M,O(Lm)) = 0 for all i > 0, m ∈ N. If we identify the spaces Γhol(M,Lm)
with the homogeneous polynomials of degree m on C3, the representation of S1

is induced by the action eiφ.(z0, z1, z2) = (eiφz0, e
−iφz1, z2) on C3. The isotypical

subspace of Γhol(M,Lm) corresponding to the weight l ∈ Z is, for l ≥ 0, spanned
by

zl0 z
m−l
2 , zl+1

0 z1 z
m−l−2
2 , . . . , zl+r0 zr1 z

m−l−2r
2

with r =
[
m−l

2

]
. For l ≤ 0, the roles of z0 and z1 are reversed. Thus

N (m)(l) =

{
1 +

[
m−|l|

2

]
if |l| ≤ m

0 otherwise
,

for all l ∈ Z, m ∈ N.
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On the other hand, the image of the moment map J (m) = mJ is the interval
−m ≤ µ ≤ m, with critical values at −m, 0, m. If 0 < |l| < m, the level set
(mJ)−1(l) consists of two orbit type strata: On the set where z2 6= 0, the action is
free, and on the set where z2 = 0, the stabilizer is Z2 = {e, g}. Hence, the reduced

space M
(m)
µ is an orbifold with a Z2 singularity (the “teardrop-orbifold”), and Σ

(m)
µ

consists of two connected components: a copy of M
(m)
µ and a copy of the singular

point.
Using the Duistermaat-Heckman theorem [9], it is easy to compute the sym-

plectic volume of M
(m)
µ , with result

∫
ω

(m)
µ = (m − |µ|)/2 for |µ| ≤ m. For the

Todd number of the Z2 teardrop orbifold one has
∫

Td(M
(m)
µ ) = 3/4 (this can be

seen for example by writing down Kawasaki’s Riemann-Roch formula for the trivial

bundle). Therefore, the contribution of M
(m)
µ to (16) becomes

p(m)
e (µ) =

∫
M

(m)
µ

Td(M (m)
µ ) eω

(m)
µ = 3/4 + (m− |µ|)/2.

For the singular point, we have the multiplicity dg = 2, and the action of g on the
normal bundle NΣ is multiplication by (−1). Hence

p(m)
g (µ) =

1

2
(1− (−1))−1 =

1

4
.

Since cLm(g−1) = (−1)m and ρl(g) = (−1)l, this gives

N (m)(l) = 3/4 + (m− |l|)/2 + (−1)m−l/4 = 1 + [(m− |l|)/2]

for |l| ≤ m, in agreement with the above calculation.
Note that for m−|l| even, the fiber of Lml at the singular point is C, whereas for

m − |l| odd it is C/Z2. This means that for m − |l| odd, all holomorphic sections
of Lml have to vanish at the singular point. Again, this fits with the above explicit
formulas.

3. Some equivariant cohomology

We start by reviewing Cartan’s model for equivariant cohomology, following
Berline and Vergne [6]. Let M be a compact manifold, G a compact Lie group,
and Φ : G×M →M a smooth action. Denote by AG(M) the space of G-invariant
polynomial mappings σ : g → A(M), that is, σ(ξ) depends polynomially on ξ and
satisfies the equivariance property

σ(Adg(ξ)) = Φ∗g−1(σ(ξ)).(22)

The elements of AG(M) are called equivariant differential forms, and the space
AG(M) is preserved under the equivariant differential

dg : AG(M)→ AG(M), (dgσ)(ξ) = d(σ(ξ)) + 2πi
(
ι(ξM )σ(ξ)

)
.(23)

Here, ξM denotes the fundamental vector field, i.e. the generating vector field of
the flow (t, p) 7→ exp(tξ).p.

Equivariance together with Cartan’s identity for the Lie derivative, LY = ιY ◦
d + d ◦ ιY , implies d2

g = 0. The cohomology HG(M) of the complex (AG(M), dg)
is called the equivariant cohomology. One can show that if the action of G on M
is locally free, the pullback mapping A(M/G) → A(M)Ghor ↪→ AG(M) gives rise
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to an isomorphism H(M/G)→ HG(M). After choosing a principal connection on
M →M/G, the inverse is induced on the level of forms by the mapping

AG(M)→ A(M)G → A(M)Ghor
∼= A(M/G)(24)

given by substituting i
2π times the curvature in the g-slot, followed by projection

onto the horizontal part (for a proof, see [10]).
For what follows, it will be necessary to relax the polynomial dependence on

ξ to analytic dependence, possibly defined only on some neighborhood of 0 ∈ g.
We will denote the corresponding space of equivariant forms by AωG(M), and the
cohomology by Hω

G(M).
Suppose now that V → M is a G-equivariant Hermitian vector bundle over M ,

with fiber dimension N . Let A(M,V) be the bundle-valued differential forms, and
AG(M,V) their equivariant counterpart. For each G-invariant Hermitian connec-
tion ∇ : A(M,V) → A(M,V), the moment map µ ∈ AG(M,End(V)) of Berline
and Vergne is defined by

µ(ξ).σ := ξ.σ −∇ξMσ,(25)

where σ → ξ.σ denotes the representation of g on the space of sections. Geometri-
cally, µ(ξ) is the vertical part (with respect to the connection) of the fundamental
vector field ξV on V . Let F (V) ∈ A2(M,End(V)) denote the curvature of ∇. The
equivariant curvature is then defined by

Fg(V , ξ) = F (V) + 2πiµ(ξ),(26)

and it satisfies the Bianchi identity with respect to the equivariant covariant de-
rivative ∇g = ∇ + 2πiι(ξM ). Suppose now that A → f(A) is the germ of a
U(N)-invariant analytic function on u(N). Then f(Fg) ∈ AG(M) is dg-closed, and
one can show that choosing a different connection changes f(Fg) by a dg-exact
form. The corresponding cohomology classes are called the equivariant character-
istic classes of V → M . If the action on M is locally free, one can choose ∇ in
such a way that µ = 0, which shows that the mapping Hω

G(M) → H(M/G) sends
the equivariant characteristic classes of V to the usual characteristic classes of the
orbifold-bundle V/G.

The following characteristic classes will play a role in the sequel:
(a) The equivariant Chern character, defined by

Chg(V , ξ) = tr(e
i

2πFg(V,ξ)).(27)

In the above geometric quantization setting, V = L is a line bundle, and for the
equivariant curvature one has i

2πFg(V , ξ) = ω + 2πi〈J, ξ〉, thus

Chg(L, ξ) = eω+2πi〈J,ξ〉.(28)

More generally, if g ∈ G acts trivially on the base M , one defines

Chgg(V , ξ) = tr((g−1)V e
i

2πFg(V,ξ))(29)

where gV ∈ Γ(M,End(V)) is the induced action of g. In the line bundle case, this
is simply cL(g−1)Chg(L, ξ) where cL(g) ∈ S1 is the action of g on the fibers.

(b) The equivariant Todd class,

Tdg(V , ξ) = det
( i

2πFg(V , ξ)
1− e− i

2πFg(V,ξ)

)
.(30)
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The Todd class of a complex manifold is defined as the Todd class of its tangent
bundle.

(c) The class

Dg
g(V , ξ) = det(I − gVe− i

2πFg(V,ξ)),(31)

for g ∈ G acting trivially on M .
All of this also makes sense for symplectic vector bundles, since the choice of a

compatible complex structure reduces the structure group to U(n), and any two
such choices are homotopic.

We now turn to the equivariant Hirzebruch-Riemann-Roch theorem, in the form
due to Berline and Vergne [6]. Let M be a compact complex manifold, equipped
with a holomorphic action of G, and let L → M be a G-equivariant holomorphic
line bundle. Define the character χ ∈ R(G) as in (3).

Theorem 3.1. For ξ sufficiently close to zero,

χ(eξ) =

∫
M

Tdg(M, ξ)Chg(L, ξ).(32)

More generally, if g ∈ G, one has for all sufficiently small ξ ∈ k, the Lie algebra of
the centralizer Zg of g:

χ(g eξ) =

∫
Mg

Tdk(M
g, ξ)Chg

k
(L|Mg, ξ)

Dg
k
(Ng, ξ)

,(33)

where Mg is the fixed point set and Ng →Mg its normal bundle.

To be precise, Berline and Vergne have shown how to rewrite the equivariant
Atiyah-Segal-Singer index theorem for Dirac operators in this style, with the equi-
variant Â-genus appearing on the right hand side. This formula, however, implies
the above theorem in the same way as the usual Atiyah-Singer Index theorem leads
to the Hirzebruch-Riemann-Roch formula; see [7], p. 152 for the calculations.

Let us now suppose that (M,ω) is a Hamiltonian G-space, such that 0 is a regular
value of the moment map J : M → g∗. (We do not necessarily assume that ω is
nondegenerate.) Let M0 = J−1(0)/G be the symplectic quotient, π : J−1(0)→M0

the projection and ι : J−1(0)→M the embedding. Consider the mapping

κ : HG(M)→ H(M0),(34)

given by composing pullback to J−1(0) with the mapping Hω
G(J−1(0))→ H(M0).

On the level of forms σ ∈ AωG(M), the form π∗κ(σ) is by definition equal to the
horizontal part of ι∗σ( i

2πdθ), where θ ∈ A1(J−1(0), g)G is some connection.
Let dξ be the measure on g corresponding to the normalized measure on G. The

following version of Witten’s localization theorem [25] is due to Jeffrey and Kirwan
[19] (see also Duistermaat [8] and Vergne [24]).

Theorem 3.2. Let σ ∈ AG(M) be a dg-closed equivariant differential form. Then
the integral

f(ξ) =

∫
M

σ(ξ) eω+2πi 〈J,ξ〉(35)

defines a tempered distribution on g. Its Fourier transform

f̂(α) =

∫
g

f(ξ) e−2πi 〈α,ξ〉 dξ

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



382 ECKHARD MEINRENKEN

is equal to a polynomial near α = 0, with value at α = 0 given by

f̂(0) =
1

d

∫
M0

κ(σ) eω0 .(36)

where d is the number of elements in the generic stabilizer for the G-action on
J−1(0).

Unfortunately, this theorem is only true for polynomial equivariant differential
forms, and cannot be applied to the case σ = Tdg(M) ∈ AωG(M). We will instead
use the following stationary phase version. Let σ ∈ AωG(M) be dg-closed, and let
∆ ∈ C∞0 (g) be a cutoff-function, with σ(ξ) defined for ξ ∈ supp(∆), and ∆ = 1 in
a neighborhood of 0. Consider the integral∫

g

∫
M

∆(ξ)σ(ξ)em(ω+2πi 〈J,ξ〉) dξ.(37)

Since emω is simply a polynomial in m, all contributions to the integral which
are not O(m−∞) come from a neighborhood of the critical set of the phase function
e2πim〈J,ξ〉.

Stationarity in the g-direction gives the condition J = 0, and stationarity in the
M -direction the condition d〈J, ξ〉 = 0, or ξ = 0 since the action on J−1(0) is locally
free.

Theorem 3.3. For m→∞,∫
g

∫
M

∆(ξ)σ(ξ)em(ω+2πi〈J,ξ〉) dξ =
1

d

∫
M0

κ(σ) emω0 +O(m−∞).(38)

Proof. Since 0 is a regular value of J , there exists a G-invariant ball U around
0 ∈ g∗ and a G-equivariant diffeomorphism φ : J−1(0) × U → J−1(U), such that
φ∗J = pr2 is projection onto the second factor. Let χ ∈ C∞0 (U) be equal to 1 near
0. Using the mapping φ and the stationary phase theorem, the above integral is
equal to ∫

g

∫
X

∆(ξ)χ(α)φ∗σ(ξ)em(φ∗ω+2πi〈α,ξ〉)dξ +O(m−∞),

where X = J−1(0)×U . Since X retracts to J−1(0), there exists a form τ ∈ AωG(X)
such that φ∗σ − pr∗1ι

∗σ = dgτ . By Stokes’ theorem,∫
X

χ dgτ(ξ) em(ω+2πi〈J,ξ〉) = −
∫
X

(dgχ) τ(ξ)em(ω+2πi〈J,ξ〉) = O(m−∞)

because dgχ = 0 near 0, so we can replace φ∗σ by pr∗2ι
∗σ. Similarly, there exists

a G-invariant form β ∈ A1(X) such that φ∗ω − pr∗1π
∗ω0 = dβ, and such that the

pullback of β to J−1(0) is zero. Since

−d〈φ∗J, ξ〉 = φ∗ι(ξM )ω = ι(ξX)φ∗ω = ι(ξX)dβ = dι(ξX)β,

we know that ι(ξX)β = −〈α, ξ〉, and therefore ρ := β + 〈α, θ〉 is basic on X . In
particular, dgρ = dρ. Since emdρ−1 is a dg-exact polynomial in m, we may replace

emφ
∗ω by em(π∗ω0+d〈α,θ〉) in the integral. We hence find that the integral is equal

to

mdimG

∫
J−1(0)

∫
g∗

∫
g

∆(ξ)χ(α)(ι∗σ)(ξ) em(π∗ω0+〈α, dθ+2πiξ〉) dξ dαdg +O(m−∞).
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Here, dg denotes the (vertical) volume form on the fibers of J−1(0) → M0, corre-
sponding to the canonical identification Tx(fiber) ∼= g by means of the G-action.
Now apply the stationary phase theorem (see e.g. [18], Theorem 7.7.5) to the
α, ξ-integral, the relevant phase function being e2πim〈α,ξ〉. Since em〈α,dθ〉 is simply
a polynomial in α, the stationary phase expansion terminates after finitely many
terms, and the result is∫
J−1(0)

emπ
∗ω0

∞∑
r=0

1

r!

( i

2πm

)r (∑
j

∂

∂ξj

∂

∂αj

)r∣∣∣∣∣∣
ξ=0
α=0

ι∗σ(ξ) em〈α, dθ〉 dg +O(m−∞)

=

∫
J−1(0)

π∗ (emω0) ι∗σ(
i

2π
dθ) dg +O(m−∞).

Since ι∗σ( i
2πdθ) gets wedged with dg, only its horizontal part, which by definition of

κ is π∗κ(σ), contributes to the integral. The result (38) now follows by integration
over the fiber; the factor 1/d appears since this is the volume of a generic fiber.

4. The stationary phase approximation

In this section, we will prove the first part of Theorem 2.1. By the shifting-trick,
it is sufficient to consider the case µ = 0. The idea is to substitute the expressions
from the equivariant Hirzebruch-Riemann-Roch Theorem 3.1 for χ(m) in

N (m)(0) =

∫
G

χ(m)(h)dh,(39)

and apply the localization formula, Theorem 3.3. For this, we need to know what
happens to the equivariant Todd class of M under the mapping (34):

Lemma 4.1. Let

jg(ξ) = det
(

1−e−ad(ξ)

ad(ξ)

)
(40)

be the Jacobian of the exponential mapping exp : g→ G. Then

κ(Tdg(M)jg) = Td (M0).(41)

Proof. Identify the vertical subbundle of TJ−1(0) with the trivial bundle g, and the
symplectic bundle g⊕ Ig (where I is the complex structure of M) with gC. Then

ι∗(TM) = π∗(TM0)⊕ gC.

Since the equivariant Todd class of gC is just j−1
g , this shows that κ(Tdg(M)) =

Td (M0)κ(j−1
g ), q.e.d.

We will now consider the contribution to (39) coming from a small Ad-invariant
neighborhood of a given orbit (g) = Ad(G).g. Let σ ∈ C∞(G) be an Ad-invariant
cutoff-function, supported in a sufficiently small neighborhood of (g) and equal to
1 near (g). Consider the integral

Ig(m) =

∫
G

σ(h)χ(m)(h)dh.(42)

Since (33) only holds for ξ ∈ k, we want to replace this integral by an integral over
Zg. (Of course, this step is void in the abelian case.)
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Let r ⊂ g be the orthogonal complement of k with respect to some invariant
inner product (or, more intrinsically, the annihilator of (g∗)g ∼= k∗). For k ∈ Zg, let
kr denote the action of k on r.

Lemma 4.2. Let f ∈ C∞(G) be Ad(G)-invariant, with support in a small neigh-
borhood of Ad(G).g. Then, for a suitable Ad(Zg)-invariant cutoff-function σ̃ ∈
C∞0 (Zg), supported near e ∈ Zg and identically 1 near e,∫

G

f(h)dh =

∫
Zg

f(gk) det(I − (g k)r) σ̃(k) dk.(43)

(For a proof, see e.g. [10].) Using the lemma, we find that

Ig(m) =

∫
Zg

σ̃(k)χ(m)(gk) det(I − (g k)r) dk.(44)

Replacing this with an integral over the Lie algebra k, and using (33) gives

Ig(m) =

∫
k

∫
Mg

∆(ξ)
Tdk(M

g, ξ)Chg
k
(Lm|Mg, ξ)

Dg
k
(Ng, ξ)

det(I − (g eξ)r)jk(ξ)dξ,(45)

with ∆(ξ) = σ̃(eξ). Let κg : HZg (Mg) → H(Σg) be the mapping defined by (34),
with M replaced by Mg and G by Zg. By Lemma 4.1,

κg(Ch
g
k
(Lm|Mg))κg(jk) = ChΣ(LmΣ )|Σg.(46)

For x ∈ P g = Mg ∩ J−1(0), let rM (x) := {ξM(x)|ξ ∈ r} ∼= r. Then

Ng(x) = NΣ(y)⊕ rM (x) ⊕ IrM (x) = NΣ(y)⊕ rC,(47)

where y = G.(x, g). But Dg
k
(rC, ξ) = det(I − (g eξ)), hence

κg(D
g
k
(Ng, ξ)) = κg(det(I − (g eξ)r)) DΣ(NΣ)|Σg.(48)

With these preparations, we apply Theorem 3.3 to the integral (45), and obtain

Ig(m) =
∑′

j

1

dj

∫
Σj

Td (Σj)Ch
Σ(LmΣ )

DΣ(NΣ)
+O(m−∞),(49)

the sum being over the connected components of Σg. Summing over all contribu-
tions, we get (15) up to an error term O(m−∞). As we remarked above, the right
hand side of (15) is an arithmetic polynomial as a function of m. But if f : N→ Z
is an integer-valued function with limm→∞(f(m)− p(m)) = 0 for some polynomial
p, then f(m) = p(m) for large m. This shows that the error term is zero for large
m, and finishes the proof of the first part of Theorem 2.1.

5. Counting lattice points

To prove the second part of Theorem 2.1, i.e. that we can set m = 1, all we have
to show is that m→ N (m)(mµ) is an arithmetic polynomial.

Theorem 5.1. Suppose that J(M) ⊂ g∗reg. Then the function m 7→ N (m)(mµ) is
an arithmetic polynomial for all µ ∈ Λ∗+.

Before we prove this, we convert the computation of the multiplicities into a
problem of counting lattice points. The next steps are based on work of Guillemin-
Lerman-Sternberg [14] and Guillemin-Prato [15], except that we replace their use
of the Atiyah-Bott Lefschetz formula with the equivariant index theorem, since we
do not want to assume isolated fixed points. Consider the action of the maximal
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torus T ⊂ G, with its moment map JT equal to J followed by projection to t∗. The
following is a special case of (5):

Proposition 5.1. Let ξ ∈ t be generic in the sense that the zero set of ξM is equal
to the fixed point set of the T -action. Then

χ(eξ) =
∑
F

∫
F

Td(F)eω+2πi〈JF ,ξ〉

det(I − e− i
2πFt(NF ,ξ))

,(50)

the sum being over the fixed points manifolds of the T ⊂ G-action, NF the corre-
sponding normal bundles, and JF the constant value of J on F .

Although the left hand side of (50) is an analytic function of ξ, the individual
summands on the right hand side have poles. Since they are not in L1

loc, they do
not a priori define distributions on t. This problem can be fixed as follows [8]. By
using the splitting principle (or simply a partition of unity on F) if necessary, we
can assume that NF splits into a direct sum of invariant line bundles N1

F , . . . , N
r
F .

Let αjF be the weight for the T -action on N j
F , that is, eξ ∈ T acts by the character

exp(2πi〈αjF , ξ〉). Each αjF determines an orthogonal hyperplane in t; let C be any
fixed connected component in the complement of the union of all these hyperplanes.
If we replace ξ by ξ − iη in (50), with η ∈ C, the terms on the right hand side
are analytic for all ξ. It is therefore possible to regard (50) as an equality of
distributions, with the summands on the right hand side defined as a limit for
η → 0 in C.

Let us now first discuss the abelian case, i.e. assume that G = T is a torus.
Denote by F (N j

F) the components of the curvature. By expanding

det(I − e− i
2πFt(NF ,ξ−iη))−1

into its Taylor series with respect to F (N j
F ), we can write it as a finite sum

det(I − e− i
2πFt(N,ξ−iη))−1 =

∑
s∈Nr

ps(F (N1
F ), . . . , F (Nr

F ))∏
j(1− e−2πi〈αjF ,ξ−iη〉)sj

,(51)

where for all s = (s1, . . . , sr), ps is a polynomial. We now invoke the “polarization

trick” used in [14, 15]. For each αjF , write

α̌jF =

{
αjF if 〈αjF , η〉 > 0

−αjF if 〈αjF , η〉 < 0
(52)

for any, hence all, η ∈ C. Let l0j = 0 if α̌jF = αjF , 1 otherwise. Then

χ(eξ−iη) =
∑
F

∑
s∈Nr

cF ,s
e2πi〈JF−

∑
l0jsj α̌

j
F ,ξ−iη〉∏

j(1− e−2πi〈α̌jF ,ξ−iη〉)sj
(53)

with

cF ,s = (−1)kF,s
∫
F
Td (F) eωps(F

1(NF ), . . . , F r(NF)),(54)

where kF ,s =
∑
l0jsj is the number of sign changes.
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For given F , s, write (a1, . . . , aN) for the list of α̌jF ’s, appearing with respective
multiplicities sj . Since

(1− e−2πi〈aj ,ξ−iη〉)−1 =
∞∑
lj=0

e−2πi〈lj aj ,ξ−iη〉,(55)

we get

χ(eξ) =
∑
F ,s

cF ,s
∑
l∈ZN

+

e2πi〈JF−
∑

(lj+l
0
j )a

j ,ξ〉(56)

(the sum over ZN+ := {l ∈ ZN : lj ≥ 0} is a well-defined periodic distribution).
Comparing this to

χ(eξ) =
∑
µ∈Λ

N(µ)e2πi〈µ,ξ〉(57)

yields

N(µ) =
∑
F ,s

cF ,sPF ,s(JF − µ−
∑

l0ja
j)(58)

where the partition function PF ,s(ν) is the number of solutions k ∈ ZN of
∑
kja

j =
ν, kj ≥ 0.

Starting from this expression, we will now show that N (m)(mµ) is an arithmetic

polynomial. We have to replace ω by mω, µ by mµ and J by mJ . Since c
(m)
F ,s is a

polynomial in m, it is sufficient to show that the number of integer solutions of

m(JF − µ) =
∑

(lj + l0j )a
j , lj ≥ 0,(59)

is an arithmetic polynomial as a function of m. Let us write ν = JF − µ, and
consider A = (a1, . . . , aN) as a Z-linear mapping ZN → Zp, where p = dim(T ). We
are thus looking for integer solutions of

mν = A l, lj ≥ l0j .(60)

We will need the following

Theorem 5.2 (Ehrhart [11]). Let L be a lattice, with underlying vector space LR =
L⊗Z R, and ∆ ⊂ LR a lattice polytope, i.e. a polytope whose vertices are all lattice
points. Then, for all r ∈ N, the counting function

f(m) = #
(m
r

∆ ∩ L
)

(61)

is an arithmetic polynomial, with period r.

Let now x0 ∈ RN be any solution of Ax = ν. The general solution of Ax = mν
is thus given by the affine plane Em = mx0 + ker(A). Let r ∈ N be the smallest
number such that the vertices of the polytope ∆ := Er ∩ RN+ are lattice points. If

l0 = 0, the set of solutions of (60) is the intersection m
r ∆ ∩ ZN , so the number of

solutions is an arithmetic polynomial by Ehrhart’s theorem. If l0 6= 0, let ∆j be
the face of ∆ defined by xj = 0, and let ∆′ be the union of all ∆j for which l0j = 1.
Then the solution set of (60) is

m

r
∆ ∩ ZN − m

r
∆′ ∩ ZN ,

and this gives again an arithmetic polynomial by Ehrhart’s theorem. This proves
Theorem 5.1 in the abelian case.
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Suppose now that G is nonabelian, but that J(M) is contained in the set of
regular elements, g∗reg = G.int(t∗+). We will show how this reduces to the abelian

case. By the symplectic slice theorem [17], Y+ = J−1(int(t∗+)) is a symplectic (but
not necessarily Kähler) submanifold of M , and is in fact a Hamiltonian T -space,
with the restriction of J serving as a moment map. The above assumption implies
that Y+ is a closed submanifold, and M = G ×T Y+. The restriction L+ = L|Y+

yields a quantizing bundle for Y+. Consider the expression

χ′(eξ) :=

∫
Y +

Tdt(Y+, ξ)Cht(L+, ξ).(62)

We claim that this is of the form

χ′(eξ) =
∑
µ∈Λ

N ′(µ) e2πi〈µ,ξ〉,(63)

where N ′(µ) 6= 0 for only finitely many lattice points, and N ′(µ) = 0 unless µ ∈
J(Y+) ∩ Λ ⊂ Λ∗+. Indeed, one can check directly that χ(eξ) comes from a function
on T , given near any point g ∈ T by the formula (33), and then repeat the above
analysis. (One can also pick a T -invariant almost Kähler structure on M , and
then realize χ(eξ) as the equivariant index of the Spinc-Dirac operator associated
to L|Y+ → Y+.)

Lemma 5.1. For all µ ∈ Λ∗+, N(µ) = N ′(µ).

Since we know that N ′
(m)

(mµ) is an arithmetic polynomial, this will finish the
proof of Theorem 2.1.

Proof. Let us go back to the formula (50) for the character. Notice that the Weyl
group W = NG(T )/T acts on MT by permuting the connected components, and
that MT consists of its portion in Y+ and the W -transforms thereof. Let F ⊂ Y+

be a connected component of MT . The normal bundle NF of F in M splits into
its part in Y+, N ′F := NF ∩ TY+, and the symplectic orthogonal complement of
TY+|F , which is canonically isomorphic to the trivial bundle g/t. The weights for
the T -action on g/t are of course simply the positive roots β ∈ t∗ of G. Therefore,
by taking the trivial connection on g/t,

det(I − e− i
2πFt(NF ,ξ)) =

∏
β>0

(1− e−2πi〈β,ξ〉) det(I − e− i
2πFt(N ′F ,ξ)),

hence

χ(eξ) =
∑
w∈W

1∏
β>0(1− e−2πi〈β,w−1(ξ)〉)

∑
F⊂Y+

∫
F

Td (F)eω+2πi〈JF ,w−1(ξ)〉

det(I − e− i
2πFt(N ′F ,w

−1(ξ)))
.

We can apply the localization formula to the sum∑
F⊂Y+

∫
F

Td (F)eω+2πi〈JF ,ξ〉

det(I − e− i
2πFt(N ′F ,ξ))

,

this time in the opposite direction, and find that it is equal to the above expression
χ′(eξ).

Hence

χ(eξ) =
∑
w∈W

χ′(ew
−1(ξ))∏

β>0(1− e−2πi〈β,w−1(ξ)〉)
.
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But ∏
β>0

(1− e−2πi〈β,w−1(ξ)〉) = det(w) e−2πi〈w(δ)−δ,ξ〉
∏
β>0

(1− e−2πi〈β,ξ〉),

where δ = 1
2

∑
β>0 β is the magic weight. Weyl’s character formula hence shows

that

χ(eξ) =
∑
µ∈Λ∗

+

N ′(µ)
∑
w∈W

det(w)
e2πi〈w(δ+µ)−δ,ξ〉∏
β>0(1− e−2πi〈β,ξ〉)

=
∑
µ∈Λ∗

+

N ′(µ)χµ(eξ),

where χµ is the character of the irreducible representation corresponding to µ. This
proves N(µ) = N ′(µ).

Remarks. (1) If J(M) 6⊂ g∗reg, it is still possible to derive a formula for N(µ) sim-
ilar to (58), following part II of Guillemin-Prato [15]. However, this formula
involves an additional “shift”, so that (60) gets replaced by an equation of
the form

Al = mν + σ, lj ≥ l0j .
In general, the number of integer solutions of such an equation is not an
arithmetic polynomial for all m ∈ N, even though this is true for large m.

(2) On the other hand, Theorem 5.1 does not require that µ is a regular value
of J . Even in the singular case, it is therefore sufficient to prove multiplicity
formulas under the assumption m >> 0.
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23. M. Vergne: Quantification géométrique et multiplicités, C. R. Acad. Sci., 319, 327–332 (1994).
CMP 94:16

24. M. Vergne: A note on Jeffrey-Kirwan-Witten’s localization formula, Preprint DMI, École
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Abstract. A theorem of Guillemin and Sternberg about geometric quanti-
zation of Hamiltonian actions of compact Lie groups G on compact Kähler
manifolds says that the dimension of the G-invariant subspace is equal to
the Riemann-Roch number of the symplectic quotient. Combined with the
shifting-trick, this gives explicit formulas for the multiplicities of the various
irreducible components. One of the assumptions of the theorem is that the
reduction is regular, so that the reduced space is a smooth symplectic mani-
fold. In this paper, we prove a generalization of this result to the case where
the reduced space may have orbifold singularities. The result extends to non-
Kählerian settings, if one defines the representation by the equivariant index
of the Spinc-Dirac operator associated to the quantizing line bundle.
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