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1. Introduction. Y. Tsukamoto [7] proved a theorem concerning the

characterization of complete and simply connected riemannian manifold with

sectional curvature K which have a closed geodesic of length 2π/*/ k where

1/4-^k^K^l. But the proof seems to have some gaps. Then we consider

complete, connected and class C°°-riemannian manifolds of positive curvature with

a closed geodesic of length 2^/V k where k is the minimum of sectional

curvature of the manifold we deal with. In this paper we give an affirmative

solution to the theorem in the case of even dimension.

The results obtained in this paper are as follows.

THEOREM A. Let M be an n-dimensional complete riemannian manifold

with sectional curvature K, 0<k^K9 where k is a constant. Then if M

admits a closed geodesic c of length 2τt/*J k which can be decomposed

into a quadrangle at least one pair of whose opposite sides have not same

length, M is isometric to Sn(k).

THEOREM B. Let M be an n-dimensional complete riemannian manifold

with sectional curvature K, l/4^k^K^l9 where k is a constant. Then if

M admits a simple closed geodesic c of length 2πl*Jk -which can be

decomposed into a quadrangle all of whose lengths of sides are not equal

simultaneously\ M is isometric to Sn(k).

REMARK 1. In Theorem A and Theorem B, we cannot improve the

condition "All lengths of sides of the quadrangle are not equal simultaneously."

In fact we consider G as a cyclic group of order 3 whose generator is

(R(l/S) \ / / ι x / cos 2*0 sin 2 τtθ\
I , > where R(θ) =
\ R(X/3)J \ - sin 2 nθ cos 2 πθ)

Let us regard the lens space S\k)/G as M, Let φ: S\k)-^M be the covering
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projection. The image of the great circle t —>(1/*/ k cosί, 0, 1*/ k sinί, 0) of
S3(k) under φ is a closed geodesic of M with length 2π/*J k which can be
decomposed into a quadrangle with vertices φ(0, 0, 0, 0), φ(τr/2, 0, τr/2, 0)
φ(7r, 0,7Γ, 0) and φ(β7r/2, 0, 3τr/2, 0). Then all sides of the quadrangle have the
same length TT/2V k . But as it is well-known, M is not isometric to S*(k).

THEOREM C. Let M be an even dimensional, complete and simply
connected rίemannian manifold with sectional curvature K, l/A^k^K^l,
where k is a constant. Then if there is a closed geodesic c of length 2-rtl*J k ,
M is isometric to the sphere with constant curvature k.

The author is indebted to Prof. H. Nakagawa and K. Shiohama for suggesting
her this problem and for the fruitful ideas she obtained from conversation with
them. She wishes to express her deep gratitude to them for their kind
encourag emen t.

2. Notations and definitions. Let Mbe an w-dimensional complete, connected
and class C°°-riemannian manifold. We denote by Sn(k) an w-dimensional sphere
with constant curvature k. All the geodesies considered on M and Sn(k) are
parametrized by the arc length measured from their origin. Let Λ= {λ(s)} (0^5^/)
be such a geodesic. Then λ(s) denotes its tangent vector at X(s) and L(Λ) its
length. If there exists a number L > 0 such that X(s + L) = X(s), we call Λ a
closed geodesic. The geodesic Λ is said to be simple closed if in addition λ^O^λfca)
for 0 < 5 ! < 5 2 ^ L ^ / , and L is said the length of the closed geodesic Λ. For
each point p of M we denote by C(p) the cut locus of p. Sometimes we need
the maximum of the sectional curvature of M. So we normalize it such that the
maximum is 1. We denote by d(p, q) (respectively ct(J>, q)) the distance between
two points p and q of M (respectively £ and q of S%k)) with respect to the
riemannian metric of M (respectively canonical metric of Sn(k)). If M is compact,
we denote by d(M) its diameter. By a triangle (respectively quadrangle) we
always mean a geodesic triangle (quadrangle) composed of three (four) shortest
geodesic arcs each of which is not constant geodesic. K(X, Y) stands for the
sectional curvature of the plane section spanned by X and Y. We denote by Mp

the tangent space at p of M.

3. Reviews of the known results.

THEOREM 1. (Myers [2]) Let M be a complete riemannian manifold
with sectional curvature K, 0<Ck^K, where k is a constant. Then M is
compact and we have the inequality d{M) ̂  TΓ/V k .

THEOREM 2. (Toponogov [6]) L,et M fa a complete riemannian manifold



58 M. SUGIMOTO

with sectional curvature K, 0<k^K where k is a constant. And let
d(M) = njΛJ k be satisfied. Then M is isometric to the sphere with constant
curvature k.

THEOREM 3. (Toponogov's basic theorem of triangles see Toponogov [6])
Let M be a complete riemannian manifold with sectional curvature K9

0<k^K, where k is a constant. We denote by A(p9q9r) a triangle on M
and by A(ρ,q,r) a triangle on S\k) such that d(ρ9q) = d(p9q)9 d(q,r) = d(q9r)
and d(ri

9p) = d(r, p). Then each angle of A(p, q9r) is not less than the
corresponding angle of A(ρ9 q, r).

THEOREM 4. (Convexity condition see Toponogov [6]) Let M be a
complete riemannian manifold with sectional curvature K9 0<k^K.
Consider any two shortest geodesic arcs Φ= {φ(t)} (O^t^to) and Σ={σ(s)}
(O^5ίgso) issuing from the same point p of M. Let A(p9<r(s)9φ(t)) be a
triangle on Sn{k) of the same side lengths as Δ(/>, σ(s), φ(t)). We denote by
Ύ(s,t) the angle ^(φ{t)9p 9^s)).

If the periineter of the triangle A(p9o{so)9φ(to)) is less than 2nl*Jk
then we have %sX9tΐ)^Ί{sZ9tϊ)9 where O^s^Szt^So and O^t^tz^to.

THEOREM 5. (Rauch's comparison theorem see Rauch [3]) Let M and M
be complete riemannian manifolds of dim M = dim Άf Ξ^2. Take p in M and
P in M and fix. Let L : Mφ-+Mp be an isometric isomorphism and φ : /—>MP

be a piecewise differentiate curve, where I is a finite interval of R.
Suppose the image of φ and ιφ are contained in the domain of expp

und exp^, respectively. Put S — [tφ(s)\t € [0,1),s £ / } . Suppose for all v in
S the inequality

^1 ) A ^ A

holds, where K (resp. K) is the sectional curvature of any plane section
tangent to exρp(*S) (resp. exp$(ιS)) at expp(v) (resp. exp$(ιv)).

If exp^ has the maximal rank on iS, then we have the inequality

( 2 ) L(expp-φ) ^ L(exp£ -ιφ) .

In particular, the equality holds in (2 ) if and only if the equality holds

in li).

THEOREM 6. (Shiohama [4]) Let M be a complete riemannian manifold
of dim M^2. Suppose that the sectional curvature K of M satisfies 0<k^K^l,
where k is a constant. If we have the inequality d(M)>τr/2V k , then M
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is simply connected.

REMARK 2. Owing to Theorem 6 we know the riemannian manifolds
in Theorem A and Theorem B are simply connected.

THEOREM 7. (Shiohama [4]) Let M be a complete riemannian manifold
of dim M^ 2. Suppose that the sectional curvature K of M satisfies the
inequality 0<Ck^K^l, where k is a constant. If there exist two points x
and y in M such that d(x,y)>π/2 Λ/k , then we have d{x,C{x))^7t and

4. Proof of theorems. For convenience' sake we put "Λ" over the elements
of Sn(k) corresponding to the elements of M without any other statements. In
particular we denote by A(j>,q,r) a triangle on S\k) with the same side lengths
as A(p,q,r).

I. PROOF OF THEOREM A. Suppose c is decomposed into a quadrangle
whose vertices are p, q, r and 5. We denote by al9 a2, az and aA the length
of subarcs of c between p and q, q and r, r and s, s and p, respectively. We
join p and r by a shortest geodesic arc Γ and denote by L its length. Owing
to Theorem 1, we know at and L are not greater than TΓ/V k .

If any one of at and L is equal to TΓ/V k , our theorem is concluded from
Theorem 2.

Hence we have only to consider the case all at and L are shorter than

7t/*s/k . Let us attach Δ(£, q,r) outside of Δ(?,r,S). We see the constructed

quadrangle (?,#,£,s) is convex and its perimeter is equal to 2π/*Jk . From the

assumption L being shorter than n/^k , the quadrangle (£,<7,f,s) becomes a

lune. Therefore we have

k = a2 + a3 .

On the other hand, let us join q and 5 by a shortest geodesic arc. By the same
argument we have

( 2 ) at + a2 = U/AJ k = a3 + α 4 .

From ( 1 ) and ( 2 ) we get

ax = α3 and α2 = α 4 .

This contradicts to the hypothesis of Theorem A, Hence L must be equal to Ttj*J k .
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II. In order to prove Theorem B and Theorem C, we prepare the following
two lemmas.

LEMMA 1. Let M be a complete connected and class C^-riemannian
manifold τvith sectional curvature K, 0 < k 5g K9 where k is a constant. Let
A(/>, q, r) be a triangle on it whose perimeter is less than 2π/+/k and
A(/>, q, r) a triangle on Sn(k) with the same side lengths as Δ(/>, q, r).
Suppose <£(#, P>r) = <£(<f, p, r) and take any two points x and y on the
sides between p and q, and p and r, respectively. Take x and y on the
sides between p and q, and p and r, respectively, such that d(p,x) = d(p,x)
and d(p9y) = d(p,y). Then we have d(x>y) — d(xyy).

PROOF OF LEMMA 1. In virture of Theorem 3 we get

On the other hand, from Theorem 4 we get

<(£, P, S) = vWp, X\ d(p,y))

Hence we have <£(£, P>S) = $•(*> P>y) Therefore A(p,x,y) is congruent
with A(p,x,$) and d(x,y) = d(χ,y) holds. Thus we have d(x,y) = d(x,y).

LEMMA 2. In addition to the assumption of Lemma 1, suppose
is equal to neither 0 nor π. Then thene exists a totally geodesic surface of
constant curvature k with boundaries the sides between p and q, p and r
and some shortest geodesic arc joining q and r.

PROOF OF LEMMA 2. Let r = {y(s)}(0^s^d(ρ, q)), 2 = [σ(t)} (0^t^d(ρ9 r))
and Θ = [θ(w)} (0f=^w^ d(q, r)) be the sides between p and q, p and r, and q
and r, respectively, of A(j>9 q, r) such that Ύ(0) = o (O) = p and ^(0) = r.

An idea of the proof can be the following one. Γ is a shortest geodesic
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arc, but q may be conjugate to p along Γ. Then we consider a strongly convex
normal neighborhood U of p in M. Any two points of U can be connected by
a unique shortest geodesic arc. First, using Lemma 1 and Theorem 5, we make
a small surface on a triangle A(p9x9y) in U, where x and y are any points on
Γ and 2, respectively, sufficiently near p. Next, since Tίd{PtX)td(PtQ)], the rest of
Γ, is a shortest geodesic arc and q is not conjugate to x along Γ, we can take
a suitable neighborhood V of d(x, q)%d(p9 x)) in Mx such that V is diffeomorphic
to expΛ(V) and join z9 a point on the side between x and y in expx(V) sufficiently
near x, and q by a shortest geodesic arc in expx(V). Then we can make again
a narrow surface on A(qzx) in virtue of Lemma 1 and Theorem 5. Moreover
we see two surfaces lie on a common surface because they are totally geodesic
and have the same tangent plane along a geodesic arc. By similar arguments we
make surfaces one after another.

We shall now write down in a more precise way.
For the moment, we confine our attentions to a strongly convex normal

neighborhood U of p. Take two points x and y in U sufficiently near p on Γ

and Σ, respectively, and take x and y on T and Σ, respectively, such that
d(β,ί>) = d(x,p) and d($,ρ) = d(y9p). Join x and y by a shortest geodesic arc

A={X(u)} (0^u^d(x9y))S(0)=x. We denote by Φu={φu(v)} (0^v^d(β9\(u)))

the shortest geodesic arc starting from p and ending at X(u) for u € [0, d(χ9 y)].
In order to use Theorem 5, we define an isometric isomorphism ιp : S

n(k)%-*MP by

h Φ ( β ) ) = y(0) a n d t J > ( ^ 0 ) ) = σ < 0 ) . P u t Φ * = { φ u ( v ) = f p φ u ( v ) } , w h e r e f p = e x p p \

Since φu(0) for each u € [0, d(χ, 501 belongs to the tangent plane spanned by

and σ(0), the image of the map (u9v)-+φu(v) makes a surface on M. Denote by

Λ = {λ(w) =/ 3 , λ(zf)} the orbit of end points of curves ΦM. We may consider
that λ([0, d(x9y)]) lies in U, d(x9y)^L(A) holds in general. On the other hand,

in virtue of Theorem 5 and Lemma 1 we have L(Λ):gL(Λ) = d(x9y) = d(x9y),
Therefore we have L(Λ) = d{x9y). Hence we see Λ is the unique shortest
geodesic arc and the sectional curvature determined by the tangent plane at each
point of the surface {u9v)—*φu(v) is equal to k.

Now we will show the surface is totally geodesic. For that purpose we
have only to show that the shortest geodesic arc of M joining any two points
on the surface lies again on it. Take any two points x and y on the surface.
Then x and y are joined by a unique shortest geodesic arc Ψ in U. Put
x' =fp\x) and 5> =fp~Xy') Then there exist uniquely Uι £ [Q9d(x9y)] and
vι € [09d(P9X(u1))] such that x' — φtt|(^i). Similarly there exist uniquely
u2 € [0, d(x9y)] and v2 € [0, d(ρ9 λ(w2))] such that y' = φUt(v2). Join x' and y' by a
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shortest geodesic arc Λ. Apply Theorem 5 to A' and A' = fp A.', we get

d(x',y) ^ L{A!) 5g L(A') = d(χ9 50- Making use of Theorem 5 again, we get

d(Mux), λ»(#2)) = diXiUi), λ(w2)) We can apply Lemma 1 to Δ(λ(wi), p9 λ(w2))

and Δ(λ(wi),£,λ(#2)) and get d(x,y) — a(β\ y'). Therefore A' is a shortest

geodesic arc and must coincice with Ψ. Thus we have shown the surface is

totally geodesic.
Now we turn to A(q,x9y). Because I\, the subarc of Γ between x and q9

is a shortest geodesic arc and does not contain any conjugate point to x, there

exists a neighborhood V of d(x9q)V(d(p9x)) in Mx such that V and exp^V)
are diffieomorphic under expa;|Γ. Take X(ux) in expx(V) sufficiently near x and

join λ(Wi) and g by a shortest geodesic arc ΨUι. The isometry of A{p9x9y)
and A(j>,£,y) implies <(#, x9y) = < ( # , £ , 50- Applying Lemma 1 to A(p9q9r)
and A(β,q,r), we get d(y,q)=d(y,q). We can now use Lemma 1 to A(q,x,y) and

A(q,x,y). We define tx : AS^C&^-^M,. an isometric isomorphism by *x(λ(0)) =

and t>x$(d(ρ,£)))='y(d(p,x)) and put / x = exps ^ exp*1. We may consider that

Wi is taken so small that ΨMl =fx ΨUι is contained in expa (V). In virtue of
Theorem 5 and Lemma 1, ΨUι becomes a shortest geodesic arc.

By the same argument as above, we get a totally geodesic surface of constant
curvature k with boundaries ΨUι9 Γx and A|[0,Ml] for ux £ (0, d(x, y)). Since this
surface and the surface A(p,x,y) have the same tangent space at each point of
AI [CM,], these surfaces lie on a common surface.

In this way for a sequence ux < u2 < < d(x, y), we get totally geodesic
surfaces Δ(^, λ(Wi), λ(wi+1)) lying on a common surface of constant curvature k
with boundaries ΨM<,ΨMi+1 and Λ|[Wt,ωt+l]. Then we have sup ut = d(x,y). In fact
we assume sup Ui = a < d(x,y). Choosing a subsequence, if necessary, put

Ψ0 = lim Ψi*. By the isometry of A(q, λ(wifc), λ(wijk+1)) and Δ(g,λ(wίjfc),λ(wijt+1)),

we have <(g,λ(wίι),3')=<(^,λ(M<,),5;) and d(g,Mμit)) = d(q,X(uit)). Therefore we

get <(q,X(a),y)= <(&λ(α),50. ^(g,λ(α)) = ί/((ί,'λ(α))and4λ(α),y) = ίί(λ(α),^).

Hence we can apply Lemma 1 to A(q,y, λ(α)) and Δ(<7, :y> MΛ)) Thus we can

repeat the same argument as above by using Φo for Φα. Therefore a must be

equal to d(x,y).

Now we consider about A(y9 q> r). By d(p, y) = d(ρ, y), d(y, r) = d(y, r)
holds. By the isometry of A(q,y,p) and A(q,y,P) we have <£(q,y,i~) = $i(q,y,r).
We have already known d(y9 q) = d(y9 q). Hence Δ(^, q9 r) is in the same
situation as A(j>, y,r) and we can apply Lemma 1 to A(y,q,?ή. Therefore we
get a totally geodesic surface of constant curvature k with boundaries Ψd(a;iJ/),
Σ|[ίltf,]> d(j>9y) = t1<t2, and a shortest geodesic arc Ψσ(ί f) joining q and σ(ί2).

Similarly we can make surfaces for a sequence tx < ί2 < < d(/>, r) and
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we see sup tκ = d(p, r).

REMARK 3. By the method of making surfaces, the last geodesic are Φ r

does not coincide with Θ in general.

According to Remark 3 we get the following theorem easily.

THEOREM D. Let M be a 2-dimensional complete riemannian manfiold
with sectional curvature K, 0<k^K. If there exists a simple closed

geodesic of M of perimeter 2π/ *J k which is decomposed into a quadrangle,
then M is isometric to S\k).

Hitherto we have finished preparing the proof of Theorem B and Theorem
C. We now prove them.

PROOF OF THEOREM B. Let c be decomposed into a quadrangle with
vertices p, q, r and s. Denote by I\, Γ2, Γ3 and Γ4 the subarcs between p and
q> q and r, r and s, s and p, respectively, and by at the length of Γ̂ . Join r
and p by a shortest geodesic arc Γ and denote by L its length.

Suppose L is less than πj*J' k . Then we can see the quadrangle (ρ9q, r, s)
becomes a lune as well as in the proof of Theorem A. Hence we have

$i(s,r,ρ)= <£(s,r,p), aγ — az and α2 = aA. We may only consider the case
aι>7c/2*/k and <z4<7r/2Vk without loss of generality. From Theorem 7,
we know d(p, C(p))i^7Γ>α4. On the other hand, applying Lemma 2 to A(j>9 r, s),
we get a totally geodesic surface with boundaries Γ, Γ3 and a shortest geodesic
arc Ψ$ joining 5 and p. We have <(ψ,(0), -γ3(α3)) = <(£, S, ρ)<π by L<π/*jΊΓ.
Hence we know Ψs does not coincide with Γ4. This is a contradiction to
d(p, C(p)) > α4. Therefore L must be equal to TΓ/V k .

PROOF OF THEOREM C. We can assume the closed geodesic c is simple.
In fact under the assumption of Theorem C, we have d(p,C(p))^π for any
point p of M. Hence the length of any closed geodesic of M must be equal to
or greater than 2π. If c has a self-intersection x, the subarcs become closed
geodesies because d(x, C(x)) ^ n. Hence they must be folded and each of them
must be of length 2τr/V k . This is a contradiction. We may not consider such
closed geodesic as c in Theorem C.

Let us divide c into four subarcs I\, Γ2, Γ3 and Γ4 of the same length
itβJΎ such that ^(0) = %(τr/2*Z~k ) - p, Ύi(*/2V~*~) = Ύ2(0) = g, 72(7Γ/2Λ/&~)

= γ3(0) = 7 and ΊZ{7Ϊ/2Λ/Έ) = Ύ4(0) = 5. Other notations are the same as those
in the proof of Theorem B. Since π/2*/ k ^π, Ti9 z = l, 2, 3, 4, are shortest
geodesic arcs.
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Suppose L is less than τr/V k . Let us take t on Γ2 such that d(p, t) = n.
Then there exists a totally geodesic surface with curvature k whose boundaries
are Γ, Γ21 [«-«/av*7 *AN/*5

 a n d a shortest geodesic arc Φ* = {φί(t£;)}(0^t£;^7r), φ4 (0) = ί,
joining t and />. We know L(Φt) = π. By Berger [1] we know there exists a
totally geodesic surface with constant curvature 1 whose boundaries are Φt and
the shortest geodesic arc IM^,,] extending I\ till t. In the tangent space at t
we have

This is a contradiction. Hence L must be equal to TT/A/ k .
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