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Introduction. In this paper we deal with an n-dimensional (n^2) connected
and compact Riemannian manifold M of class C°° whose sectional curvatures
take the maximal value 1 with respect to the Riemannian metric of M. It has
been studied by L. W. Green [3]*, S. Kobayashi [4], T. Otsuki [8] and F. W. Warner
[11] to investigate the manifold structure of M with the first conjugate locus
Q(/>) of an arbitrary point p in M satisfying suitable conditions. In particular, F. W.
Warner [11] has shown that if there exists a point p in a compact and simply
connected Riemannian manifold M for which each point of the spherical
conjugate locus in Mp is regular, then that has the same multiplicity as conjugate
points which is greater than or equal to 1, and M is homeomorphic to a sphere
or has the integral cohomology ring of one of compact irreducible symmetric
spaces of rank 1. For a submanifold N of M, the cut locus N' of N is by
definition the set of minimal points of each point q in N along every geodesic
which starts from q and whose initial tangent vector is orthogonal to N.
Recently, H. Omori [7] has proved that if a real analytic M has a real analytic
submanifold N such that the cut locus N' of N has the constant distance from
ΛΓ, then N' is a real analytic submanifold of M and M has a decomposition
M = DN\jφDN>, where DN and DN, are normal disc bundles of N and N'
respectively. Since it is well known that the cut locus C(p) of a point p is not
necessarily closely related to the first conjugate locus Q(p), it might be significant
to investigate the manifold structure of M having a point p in such a way
that the cut locus of p is spherical.

In §1, we prepare the notations and definitions. In §2, we study the general
properties of M with a spherical cut locus. Further additional conditions for M
with a spherical cut locus are stated in §3 and §4.

1. Preliminaries. Let there be given an n(n i^2)-dimensional connected
and compact Riemannian manifold M of class C°° whose sectional curvature
takes maximal value 1 with the metric of M. For a point p in M we denote
the cut locus and the first conjugate locus of p in M by C(p) and Q(p)
respectively. Let Mp be the tangent space at p and expp the exponential map of

*) Numbers in brackets refer to the bibliography at the end of this paper.
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Mp onto M. We denote by Cp the set of all tangent vectors X in Mp such

tX
that the point expp X is the cut point to p along the geodesic expp γyT\ > where

||X|| is the norm of X and t^O. Cp is called the cut locus of p in Mp. We
denote also by Qp the set of all tangent vectors Y in Mp such that expp Y is

tY
the first conjugate point to p along the geodesic exppψγ^, ί^O. Throughout

this paper let a geodesic be parametrized by its arc length, unless otherwise

stated.

For two points p and q in M, let T(p, q) be the set of all shortest geodesic

segments which start from p and end at q. A geodesic loop γ at p is by

definition a closed geodesic segment having the same end points as p without

self intersection except p. The geodesic sphere in M with a center at x and of

radius r is denoted by S(x, r), and the sphere of dimension m in Mx with a

center at the origin and of radius r is denoted by S™(r).

We denote by P = P(X, Y) the plane section spanned by two vectors X and

Y linearly independent on each other in Mp> and by K(P) = K(X, Y) the

sectional curvature corresponding to a plane section P — P{Xf Y), which is given

by K(X,Y)= -<R(X,Y)X,Y>/«X,X> <Y,Y>-<X,Y>2) where < , >

is the inner product with respect to the Riemannian metric on M and R is

the Riemannian curvature tensor on M.

2. Spherical cut locus. We assume now that there exists a point p in

M in such a way that each point of the cut locus C(p) of p has the constant

distance, say /, with respect to the Riemannian metric mentioned above. Under

the condition the cut locus C(p) in M is the image of an (n—l)-dimensional

sphere Sp~\l) with a center at the origin and of radius / in Mp under the

exponential map, that is, the cut locus Cp in Mp is Sp~\ί). From the assumption

above it follows that

( 1 ) d{p,q) = d(p,C{P)) = l,

for any point q of C(p), where d denotes the distance function on M. First of
all, we prove the following

LEMMA 2.1. If there exists a point p for which the cut locus Cp in

Mp is an (n—iydimensional sphere with a center at the origi?ι and of

radius /, i.e.9 Cp = Sp~\l)9 and that Kπ, then all the geodesic segments starting

from p and of length 2/ are geodesic loops at p.

PROOF. By virtue of the hypothesis of the metric on M, we have ||Y||3^7r
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for any Y <= Qp, which implies together with the assumption /<τr that CPC\QP — 0.

For an arbitrary geodesic segment y starting from p and of length 2/, y(/) is a

point in C(p)9 say q. Taking account of an elementary property of the cut locus

we see that there exists a geodesic segment y* in T(p,q) different from y|[0,/]

such that the angle ^.(yX0,yψ(l)) at q is equal to 7Γ, where y'(/) denotes the

tangent vector to y at y(/). This implies that y|[/,2/] coincides with the inverse

geodesic segment y*"1 of y*. Thus y is a geodesic loop at p which does not

intersect itself except p. Q. E. D.

PROPOSITION 2. 2. If there exists a point pfor -which Cp=Sl'\l)9 then

I is greater than or equal to τr/2.

PROOF. If /<7r/2, the assumption of Lemma 2.1 is satisfied, from which

it follows that all the geodesic segments y starting from p and of length 2/ is

geodesic loops at p. For such a structure of geodesic segments it is seen [5]

that y(2/) is conjugate to y(0) along y with multiplicity n—1. But this is a

contradiction. Q. E. D.

In the case / < TΓ, taking account of the property of Lemma 2. 1 and

developing the similar discussion to that of the proof of Proposition 2. 2, we see

that for any geodesic segment y starting from p and of length 2/, p=y(2l) is

the first conjugate point to p=y(0) along y with multiplicity n — 1. Making

use of the result obtained in [6], we have immediately,

THEOREM 2. 3. If there exists a point pfor which Cp = Sn

p-\τc/2\ then

M is isometric to an n-dimensional real protective space PRn(l) with

constant curvature 1.

THEOREM 2.4. If there exists a point p for which Cp=Si'\0 such

that π/2<l<π9 then M has the same {cό)homology group as that of PR71

and the universal covering manifold M of M is homeomorphίc to Sn.

By virtue of Lemma 1. 4 in [5], we have

COROLLARY 2.5. If M is simply connected and there exists a point p

for which Cp=Sp

t~χ[), then I is greater than or equal to π.

THEOREM 2. 6. If there exists a point p in M for which Cp = Sj'X/)

and the cut locus C(p) in M is not contained entirely in Q(p) in M, then

CpΓιQp= 0and M has the same {co)homology group as that of PRn and M

is homeomorphic to Sn.
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*>̂
PROOF. Let Qp be the set of all points in Mp for each point of which

has not maximal rank. It is evident that Qp is closed and we have

ί) = QPnSn

p-χi)c:Qp- This fact means that Qpn5;-X0 is a closed subset
in S -ty). By the assumption C(/>)< Q(/>) there exists a point q^ C(p)f]Q(p)c,
that is, for any y £ Γ(/>, g), q is not conjugate to p along γ. Then we have Xλ

and X2 in M p such that HXJ = ||X2|| = /, X ^ X g and exp^Xx = exp^Xj = g.
Putting jiit) = expp(tXi/1) (i = 1,2), we have < (γί (/), γί(0) = ^ By the closedness
of QJ,Π5;-1(/) there exists neighborhoods C/t of X t in S^XO such that
UiΠQp=ΰ for ί = l,2, and exp/Λ = expp!72, where expp restricted to Ut is a
diffeomorphism of C/t onto the image exp^L^. Hence for any Y1^UίΓi Cp, there
exists Y2 € C/2 Π Cp such that exp^Yx = exppY2 ^ C(/>) and the geodesic segment
σ defined by σ(t) = exχ>p(tYi/l) is a geodesic loop at >̂ of length 2/, along which
ρ=σ(2l) is the first conjugate point to p=σ(0) along σ with multiplicity n — 1.

On the other hand, we suppose that there were a point Z in CPΠQP. We
denote the great circle of Sp"\ί) connecting X and Y by [X,Y]. Then there
exists a point X in Qp on the great circle [Xί9 Z] (or [X2> Z]) in such a way
that X is nearest to Xx (or X2) on [Xx, Z] (or [X2> Z]) and for any interior
point YΊ of [Xx, X], the vector Y2 and the neighborhoods Ux and U2 mentioned
above exist. By virtue of the hypothesis of X, exp^X is the first conjugate
point to p along the geodesic yx defined by yx(t) = eκpp(tX/ /). We have the
Jacobi field Jx along yx such that Jχ(0) = Jχ(l) = 09 which is orthogonal to
yx. For any Y € [Xx, X] we have a family of Jacobi fields Jγ along yγ defined
by yγ(t) = expp(tY/l) such that JF(0) = 0, JΎ(O) = JX(Q) and Jγ is orthogonal
to yY9 where J'γ(t) is the covariant derivation of Jγ(f) with respect to y'γ(t).
Since p itself is the first conjugate point to p with multiplicity n — 1 along yγ

for any interior point Y of [Xx, X] because of the choice of X, we have Jγ(l)φ0
and JF(2/) = 0. But the first conjugate point of p along yγ depends continuously on
the initial condition of yγ. This is a contradiction. Consequently the first
assertion of the theorem holds, and furthermore all geodesic segments starting
from p of length 2/ are geodesic loops at p with index 0. This implies that M
is not simply connected by Lemma 1. 4 in [5] and then the proof is completed.

As a direct consequence of the theorem above, we have the following

COROLLARY 2. 7. If there exists a point p in a simply connected M

where Cp = Sp~\l) is satisfied, then the cut locus C(p) in M is contained in

the first conjugate locus Q(p) in M.

REMARK. It is not certain whether the following statement is true or
not : If there is a point p in M for which the cut locus Cp in Mp is a sphere
and C(p) coincides with Q(p), then M is simply connected. Recently A. D.
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Weinstein [12] has shown that the following conjecture given by Rauch [9] is
false in general : In a compact and simply connected Riemannian manifold, Cp

and Qp will have a common point. Corollary 2. 7 shows that in our case the
conjecture is affirmative.

3. Spherical cut locus of positive curvature. In this section we consider
the additional condition that M has the positive curvature such that

( 2 ) 0 < k ^ K(P) ^ 1,

where K(P) denotes the sectional curvature of an arbitrary plane section P. By
virture of the theorem due to Myers we have d(M)^n/*J k , where d(M) is
the diameter of M. By the assumption that there exists a point p for which
CP = S$-\O> i t : ί s evident that l<Ld(M). The theorem of Morse-Schoenberg
shows that along any geodesic γ the first conjugate point to γ(0), say 7(ίo)>
satisfies the inequality n g t0 ig π/^ k . Making use of Corollary 2.5, we have

LEMMA 3.1. // there is a point p for which Cp = Sl~\ί) hold, then
we have π^l^π/^/ k if Mis simply connected and we have π/2^l^π/2yS/ k
if M is not simply connected.

PROOF. The case where M is simply connected is trivial. We suppose

that M is not simply connected. There are at least two different points pι and

p2 on the universal covering manifold M such that τr(^i) = τr(p2) = p9 where π

is the covering map. By means of the properties of the universal covering

manifold we have Ύ € Γ(pl9 ]>2) such that L(ίϊ) = d(pl9 />,) and L(Ύ)^d(M)^τt/*/~k,

where L(Ύ) denotes the length of 7. The projection Ύ of Ύ under the covering

map 7Γ is a closed geodesic segment with the same extremals as p, because px

and p2 are contained in the inverse image of p under n. Hence we have

. Q. E. D.

Now by the theorem of Toponogov [10], we have

THEOREM 3. 2. If there exists a point p in M of positive curvature
satisfying ( 2 ) for which Cp is a sphere with radius 7T/A/ k , then M is
isometric to S\k) with constant curvature k.

THEOREM 3. 3. If there exists a point p in M of positive curvature
satisfying ( 2 ) at which Cp^S^1 (/) and I satisfies π/2^~k~<l<π/«S~k~, then
M is homeomorphic to Sn.
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PROOF. It suffices to show that the cut locus C(p) in M consists of only
one point. Take a point q in C(p) and let B{q9S) be the open ball in M with
a center at q and of radius £, where 6 = 1—n/2\/ k . Suppose that there were
a point r in C(p)PιB(q98) different from q. For any geodesic segment σ in
Γ(q9 r), we take a point y on σ such that d(p9y) = d(p9σ). We may assume that
y lies in the interior of the segment σ because of d(p9σ)^L Making use of the
triangle inequality for p9q and y9 we get l=d(p9q)^d(p9y) + d(y9q)<d(p9y) + £9

and hence we have d(p9y)>l—ε=π/2^/k . By virtue of Proposition 3 in Berger
[1], there is a point z on σ such that d(p9y)> d(p9z). This is a contradiction.
By the connectedness of C(p) the theorem is proved completely. Q. E. D.

4. Spherical cut locus of positive curvature with ί=π/2*/~k . In this
section we assume now that M is a compact and connected Riemannian manifold
of positive curvature satisfying ( 2 ) and there exists a point p in M for which
the cut locus Cp in Mp is a sphere of radius /=7r/2V k . In the rest of this
section we develop the similar discussion to that of Berger [2], who has showed
the following important theorem : If an even dimensional compact and simply
connected Riemannian manifold N of (l/4)-pinching is not homeomorphic to a
sphere of the same dimension as JV, then N is isometric to a compact symmetric
space of rank 1. We shall prove that all of the geodesic segments starting
from p with length π/^/ k are geodesic loops at p If C(p) consists of only one
point, the statement above is trivial. Then we shall consider the case C(p)^ {q}.
At first we prove the following

LEMMA 4.1. For any two points q and r in C(β9 the geodesic segment
σ in T(q9r) lies entirely in C(p).

PROOF. Let σ be a shortest geodesic in Y(q9 r) such that σ(0) = q and
σ(α) = r. Then we have a^π/^/ k =2/ because of the Myers' theorem. When
q = r9 the proof is trivial and hence we suppose that q is different from r.
In the case a = 7t/ss/ k , M is isometric to Sn(k) by the Toponogov's theorem
[10], which contradicts our assumption Cp = S^~\n/2^/ k ). We have therefore
a<7t/+/ k . Suppose that there were a point x on σ lying in the interior of the
geodesic segment σ such that d(p9 x) = d(p9 σ) < τr/2V k . Without loss of
generality, we may consider that d(q9 x)^a/2<τt/2^/ k . Making use of the
basic theorem on triangles of Toponogov [10], we must have d(p9q)<l because
the angle of segments at x is equal to n/2. Then d(p9q) = ί implies d(p9x)=L
This shows that d(p9σ{t))=l for all ί^[0,α]. Q. E. D.

For any two points q and r in C(p) and any σ £ Γ(q9 r) such that
^ ^L(cr) = α<τr/ Λ /^ and for any fixed t £ (0, a) we have Ίt £ Γ(p9σ(t)) such that
yt(0)=p9 yt([)=σ(t) and <%{t)9<r(t)> = 0 . Let Xt be a unit parallel vector field
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along yt defined by Xt([) = σ'(t)9 then we get < Xt(s), 7ί(s) > = 0 for all s € [0, /].
Putting Yt(s) = Xt(s) sin τts/21, we have a 1-parameter variation V(s,u) of 7*
defined by V(s, u) = expΎt{8)(uYt(s)) for all uz (—£,£), where £ is a sufficiently
small positive number. Taking account of the fact that the variation vector
field Yt(s) of the variation V(s9u) is orthogonal to 7'(s), we see that the first
variation formula with respect to the variation shows that L'(0) = 0. For the
second variation L"(0) we have

( 3) L"(0) = ί (<YXs), Yt(s)> -K(Yt(s), Yt(s)) < Yt(s), Yt(s) > )ds
J n

2 o 7t , . β 7t s\ ds = 09

where K(Yt(s), 7ί(s)) is the sectional curvature of the plane section spanned by
Yt(s) and 7ί(5).

On the other hand, V(/, w) is contained entirely in C(p) because of the
construction of the variation, and we have therefore L"(0)i^0. This shows
that the equality of ( 3 ) holds, i.e., we have K(Yt(s),Ϋt(s))=k for all s€[0,/].
Since k is an eigenvalue of the quadratic form X—><i?(X, 7ί)7ί,X>, it follows
that R(Yt(s)9yfe))y't(s) = kYt(s) for all 5<Ξ[0,/]. This implies that Yt(s) is a
Jacobi field along Ίt and YVIIYίll is parallel along Ύt.

As £n tends to 0, we can choose a subsequence of a sequence {Ύίπ (0)}
converging to a unit vector V in Mp. Putting Ύ0(ί) = exp^V, we have yo([) = q.
Now let Xo be a unit parallel vector field along Ύo defined by XQ([)=σ'(0), and
put Yo(s) = ̂ o(A)sin7rs/2/. Because of lim Xtn=X0 it follows that Yo is a Jacobi

field along Ύo and K(X0(x)9 y'0(s)) = k for all 5 € [0, /] . Then we shall prove the
following

LEMMA 4. 2. For any Ί € Y(p, q), we have

( 4 ) < r ( / ) , σ ( 0 ) > = 0 .

( 5 ) Let X be a unit parallel vector field along 7 defined by X(ί) = cr(0),
then we get K(X(s\ Y(s)) = k for all s z [0, /].

( 6) Y(s) = X(s) sin τts/21 is a Jacobi field along 7.

PROOF. Suppose that there were a geodesic segment 7 in Γ(p, q) such
that <7'(/), σ'(0)>^0. We shall derive a contradiction. Let θ be the angle
between 7'(/) and cr'(O) at q. Since it follows from Toponogov's theorem that θ
is equal to or less than τr/2, we suppose that θ is less than τt/2. For the
geodesic segment 70 and Xo>Yo stated above we may consider that the length
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of all variational curves V0(s,u) whose variation vector field is Yo are
just equal to /. We may also consider that the variational curve V0(s, u) is
a geodesic segment for all w €(—£,£), that is to say, V0(s,u) is defined by

V0(s, u) = expps I 7ί(0)cos —γ~ + X0(0) sin —r- 1 . Because of exp^Sv^XoCO) ^ 0,

there is a small number £ > 0 such that for every u e ( — £, £),

i(γo'(o)cosjL+χo(o)sinjL) I — ̂ (COsin ~η- + X0(0)cos —j~ 1 =*F0 is satisfied, where

3ΪZ means the parallel translation along z from Mp to (Mp)z, z £ Mp.
The curve/ u —• V0(l, u) can be considered as a regular curve and putting
this curve τ(u) = Vo(/, w), we get τ(u) = o(u) for u £ [0, £), τ'(0) = σ'(0) and
τ(w) is contained in C(p) for all u € ( — £, £). Let β(^, δ) be a normal
convex ball with a center at g and of radius δ. Take a point y on 7
such that y=y(l—a)^B(q,8) and take a point 2 on T such that z^B(q,S) and
d(y9z) = d(yyτ). Then we can consider that z=τ(—b), £>b>0 and as 3/ tends
to q, z also tends to q. Consider the triangle Δα(ςf, 2,y) in i?2 such that
d(q, z) = d(qy z), d(z, y) = rf(«, y\ and J(y, §) = d(y, q) = α. For a sequence of
geodesic triangles Aa = (q, z,y) in M shrinking to q as α tends to 0 in such a
way that the angles of Δ α approach limits equal to neither 0 nor τrf we have
lim«(g, z,y) - <(?, S,y)) = lim«(2,y, g) - <(2,y,§)) = Hm«Cy,g,«) - <(y,?,2)) = 0,
o-»0 α->0 α->0

by virtue of an elementary property of Riemannian manifolds. Hence we have
lim<$i(y,q,z) = θy lim<£(#, z,y) = n/2 and lim<£(z,3>, q) = τt/2 — θ, from which it
a-*0 a->0 α->0

follows that for sufficiently small ^>0 there exist C 0 >0 and Ci>0 such that
C0^sin<(3;, q, z^C^l for all a z (0, η). Then we have J(/>, z)^d{p,y) + d(y, z)
^(/—α) + C1 α=/—(1—C^α. This is a contradiction. Then the first assertion
( 4 ) is proved.

By means of the discussion above, it can be shown that τ | ( —£, 0] coincides
with σ |(-£,0] and is also contained in C(p) and <cr(0),7'(/)>=0. Thus an
analogous argument for 7 leads the other assertions (5) and (6). Q.E.D.

Taking account of two lemmas obtained above and developing the same
discussion as that of Lemmas 6 and 8 in [2], where we replace 1/4 in [2] by
k, we can prove the following two lemmas :

LEMMA 4.3. For an arbitrary fixed point q in C(p), let M°Q be a
subset of Mq consisting of all tangent vectors at q of curves in C(p) passing
through q. Then Ml is a subspace of MQ.

LEMMA 4. 4. Let Mj- be the orthogonal complement of Ml in Mq. Then
we have expqlX = p for any X^M^ and ||X|1 = 1.
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As a direct consequence of Lemma 4. 4, we have

LEMMA 4.5. All of the geodesic segments starting from p and of

length 7t/*J k are geodesic loops at p.

This lemma shows that by virtue of the results obtained in [5], all geodesic
loops at p are of the same index λ, where λ = 0 , 1 , 3,7, n—1, and λ is equal to
0 if and only if M is not simply connected and λ is positive if and only if M
is simply connected. Consequently if λ>0, then C(p) coincides with Q(p). For
any q £ Q{p) the multiplicity of p and q as conjugate points must be equal to
λ. By means of the main theorem in [5] we have

THEOREM 4. 6. Let there be given a point in M satisfying the condition

that Cp=Sn

p-
λ(τr/2^/T) and (2). Then we have

( a ) For any q z Q(p), the multiplicity of p and q as conjugate points
is constant λ, where λ=0,1 , 3,7, n—1.

( b ) If M is simply connected, then the integral cohomology ring
H*(M, Z) is a truncated polynomial ring generated by an element. In
particular when λ is equal to n — 1, M is homeomorphic to Sn.

( c ) If M is not simply connected, then M is isometric to a real
projective space PRn(k) with constant curvature k.

The case X = n—1 in the assertion (b) is obtained by the Warner's theorem
and the assertion (c) is due to the Toponogov's maximal diameter theorem. As
a straightforward consequence of the theorem above, we have

COROLLARY 4. 7. C(p) is a totally geodesic submanίfold.
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