On Riesz summability of a series of Bessel functions

By D. P. GUPTA (Allahabad) and B. P. KHOTI (Indore)

1. Introduction

Let ¢,(x, p) = J, ()Y (p)— Y (2x)J (B), where J(z) and Y, (z) denote the Bessel
functions of first and second kind of order v=0.
Let y,, denote the mth positive root of the equation

¢, (az,bz) = 0.

An arbitrary function f(x) defined for 0 <=<a<x <b can be expanded in a series
of the form

(1.1) 1)~ El by (X Tmb),
where
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E. C. TitcumARsH ([3]) studied the convergence of the series (1. 1) and gave
the following theorem:

Theorem A. If f(t) be Lebesgue integrable in the range (a, b) and has bounded
variation in the neighbourhood of the point t =x, then the series (1. 1) converges to
the sum %} {f(x+0)+f(x—0)}.

The purpose of this paper is to study the Riesz summability of the series (1. 1).
G. N. WATsON ([5], pp. 606—607) has studied the Riesz summability of the
ordinary Fourier-Bessel series

(1.3) f(x)~ E’l and, (),

where j, <j, <...j,< ... are the positive zeros of the function J,(z) and

(1.4 an =y | FOLGa0L

¥ T
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He has taken the Riesz mean as the sum

(1. 5) Lim 2"7 [1 =, .f;‘ ] am"r\-(jmx)s
N9 pyw n

where A, stands for (n+4v+4)n and j,<A,<j,.,. The asymptotic value of j,
is known to be ([5], p. 618) given as

: 1 1 ok
(1.6) Jm = [m+31-—4-]7r+0(m ).
Analogous to above, we define the Riesz sum for the series (1. 1) by
1.7 R,(x,f)~Lim > [ —%ﬂ-] by (imX; Ymb),
Ao m=1 ]

where fi, lies between y, and 7y,,, and*)

4(v*=1)(b—a)

mn

5 -3
b—a Smnab @7

(1.8) Tm =

The series (1. 1) is said to be summable-(R) if the limit in (1. 7) exists.
In § 3 we shall prove the following theorem.

Theorem: If v=0 and
]

(1.9) [ 12 f(@) dt < =,

a

and if the limits f(x +0) exist, then the series (1. 1) is summable-(R) at all points of
the open interval (a, b) to the sum

H(x+0)+/(x—0)}.

2. The following lemmas will be needed during the course of the proof of the
theorem:

Lemma 1. On the rectangle whose vertices are + fi, B, + pi in the w plane, where
B will be made to tend to infinity, we have

@.1) wc, (@x, av)c,(of, bo) | _ (e
' ¢,(aw, bw) [[# Vxt
for t=x and @ = u-+iv.
Proor. Titchmarsh ([4], p. 73) has obtained the relation
: pa It] (b=x)
_ 2sin{s(b—x)} . [e ]’

2.2 J,(bs) Y, (xs)—Y,(bs)J,(x5) = 2 3
V bx ns |s|

where s = o+it and O<x<Ah.

.‘J- See NAYLOR [2].
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Using the above relation we easily have

(2.3) ¢, (xw, aw) =

_ 2sin {o(x— a)} {e"’“‘“’_’
Vat nw i

= lel (b=
(2.4 c,(cor,wb)—zsm{w(b r)}-i-O{ }, for 0<=r<=b;

Vbt ne» |2
and
|e] (b—a)
2.5 law, oy = 220100} ¢ . for O=d<b.
Vab o o)

Also, since on the above mentioned rectangle in the @ plane [4, pp. 13—14]

sin {(b—a)}| = Ae"P=9,
we have

|mc,,(xw,aw)c‘,(rw,bw) ) [ sin {&(x—a)} sin {w(b ~1)}

‘ ¢,(aw, bo) . aVxtwsin [m (b—a)}
(2.6)

—plt=x) —vlr—x) —uvit—x)
=o[f’--,—-—]+o[E o -]=o i ]
Vxtn 0] Vxt

Thus the proof of the lemma is complete.

elel(x=0 vy
o{"or )] -

Riesz sum: The Riesz sum of the series (1. 1) is given by

(2 ?) Rn(x’f.) Z' [1 - ]b Cy (I,mx! ymb)

2 b
g Z[ } Z{Jo;((,’};ma‘;)cjz?:by)?b) [ (@) e,(rmt, yub) dt

b
2.8) = [ f(1)R,(t, x/R) dt,

where
(2.9  R,(t, x/R) = Z[ ?m] 7222 (V@) €y (VX YD) Cy (Vmts )’,,,b).

2{J2(7m@) — 2 (7mb)}

In order to study the relevant properties of the kernel function R,(7, x|R)
we observe that it is a symmetrical function in ¢ and x and hence we first suppose
that a=x-<=r=»b and subsequently the results for ¢ =f=x-<5 can be written by
an interchange of ¢ and x.
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Lemma 2. The following inequalities hold true*):

2K 1
2.10 R R —_— =x<f=b;
Sk Halls 2180 = Bu Vxt(t—x)?" A
o ol 1
2: k1 R > Rj p 3 j == {b.
( ) | u(f xl ) ﬂ,, Vx[(x—[)z l_'f a<tl<x
3K .
(2.12) IR,(t, x|R) <= -y if a=<x=t<b .or a<t=x<b.
Vixt

Proor. Consider the function

¢, (x0, aw)c, (to, bo)

This function has simple poles at y,, 7,, 73, ..., 7,. Residue at @ =17,, is given by

: K oo (xw, aw)e, (1o, bcv} B
(2.14) }gl;ll Tw [1 ﬁn] (@ =7 ¢, (aw, bo) —
= lim X
WY m

er[l——] ¢,(xw, aw)c,(tw, bo) + (v — 7,,,) [m:o[ ﬁ ]c (xw, aw)c,,(rw bw)]

& (aw, bw)

Y m [l —';"" ] cv(?mx! '}’ma)cv(?mrv ?mb)

T A{I @ Y (1nb) =T, (3mB) Y, (1@} + 6, G @) Y, (3mb) — Jo (7D Y, (7@}

Tfm [l _};_M] C,,(}',,,x, Yma)c\'(?m 5 ?mb)

a {JJ (Ym@) Y'(:"'a) - J’ﬁ;"' 4) : £ (vma)} +b{n, (b)Y, (7mb) — I (3 mDINY, (7 D)}

where

(2.15) _ L (m@ _ Y, (7ma)

~ J,(mb) Y, (7mb)’

m’..[l —-B ]c (YmXs Ym@) €y (Ymt, V) n’?ﬁ[l—-ﬁ—]c (YmXs Ym@)Cy (Ymts Ymb)

K [m] [m] b ["__]

*) K will denote a constant not necessarily the same on each occasion.

L]
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since

2.16) 1Y (- Y,()T(x) = =

ax’

Using (2. 15) again and after a little simplification we find that the residue
at o=y, Is
(2.17)

rr’?...[l - H"]J‘.(?ma)»ﬂ(?...b) [y (Y X) Y, (7m@) = I, (Y@ Y, (Y X)] €y (Vs zmb)
2002(1ua)—J2(7ub)}

n f..[ I3 (Ym@) €y (VmXs Tmb)Cy (Vmt, Ymb)
2Uﬁim I (mb)}
Therefore R,(7. x|R) is the sum of the residues of the function @®(w) at y,,
}'20 bt ?n'
Froof of incquality (2. 10). We take the contour of integration as the rectangle

with the vertices at + i, f,+ Bi in the @ plane, where f will be made to tend to ==,
Hence

o | 1= ](‘ (wx, wa)c,(wt, wb)
(2.18) R,(1,x|R) = =) [ f f] B do .

¢, (am, bw)

Bp—i= =k

as it can be easily shown in view of Lemma 1 that the other parts of the integral
tend to zero.

Now
B,+iss
¢, (wx, aw)e,(tw, bw)
R"U”\‘R)" ./ . l_ﬁ..] e bo) O
(2.19) e

il w?e,(wx, aw)c,(tw, bw)
+3 P f ¢, (aw, bw) s

—fjoa

since acy(wx, av)c,(to, bcu) is an odd function of w.
¢, (aw, bw)

Using Lemma 1, and replacing @ by p,+iv and =+iv in the first and second
integrals respcctively, we obtain

]

2k 1 2k 1 1
(2.20) R,(1, X R) = = f!-'e‘"""""dv _ 2%
( l ) Vxt ﬂn 4 ﬁn ' YI (r— x)z



278 D. P. Gupta and B. P. Khoti

which completes the proof of inequality (2. 10). The inequality (2. 11) follows by
an interchange of x and r.

Proof of inequality (2. 12). In this case we take the contour as the rectangle
whose vertices are +if, and f,+if, in the w-plane.
Using the result of Lemma 1, we find that

@.21) 1_‘;’.] wc, (x, aw)c, (o, bo) | = k s

when a<x=t<b and the same inequality will hold for a<t=x<h as can be
seen by interchanging x and 1.

Consequently
3kp
2.22 R.(t, x|R) < =,
(2.22) | Vixt
Lemma 3.

b
lim f.-"“R,,(r. xIR)dt = x* (a<x<b).

Proor. From (2.9) we have
(2.23)

b

b
vt 1l Jm _ﬂ_z_!_’é'{_z(xma)( (fm ?}mb) g v+ 1 = @
[ miman= 3 (1) PSR S [ e b

Using (2. 9) again it can be seen easily that
2[ ]_" V2SI (P @) €, (X VD) b“"[ 2 ]_a"”[ 2 ]] ¥
Bu) 202(m®)—J2GuB)] | 7w \77md)  nym \mvna)]
n [] _:}I;,: ] {b"; ()’m I)_J‘ ::: ) J'z(}’ma)ar} c|.{}'”,-1'. ?mb)

G ...2 T (m@) —J2(Ymb) 2

— E _]‘m L b_“‘!v(?ma)_arJ\-(}!mb) i e ok
= Zo(1-fe) 50 = et b

and this is evidently the sum of the residues of the function
[] ] 2b‘c (wr aw} 2a'c, (\w bw)
B. we, (aw, bo)

at ¥y, 72, «.» ¥u- Therefore transforming the sum into a contour integral as in
Lemma 2, we have

(2.29) f,vHR (t, X|R) dt = _/-[l ___] 2b* ¢, (xo, aw) —2a* ¢, (xw, bo) %

wc, (am, bw)
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where ¢’ is the contour indented at the origin in the usual manner by a semi-circle
to the right of the imaginary axis.
In view of the Lemma 1, we obtain that

. 2b'¢c, (xw, aw)—2a" ¢, (wx, bw)
(2.25) fr UR,(1 xIR) di = [ f[ ﬁ] s de +

—eoaj

Bytie=

f [[ -3 ]26‘(' y(xo, aw) - 2a* ¢, (ox, bw) dw] .

wc,(aw, bw)
Bp—ie=

2b'e (wx, aw) —2a"c"(wx, bm)
wc,(aw, bw)
of the integral on the right of (2. 25) reduces to i times the residue of the integrand
at the origin as n-—»oo.
Now, residue of the integrand at the simple pole w=0 is

Since the function

s an odd function of @, the value

. 2b'c,(wx.aw)—2a'c,(wx, wb)
lim T —
@—0 ¢, (aw, bw)

]

which gives after some simplification

IR ACORACTD { Jy(xw) Y, (mj}] 2a"{“—"'(m’) & Y‘.(xw_)_}

(2.26) lim J,(bw) Y, (bw) | J,(aw) Y, (aw) J,(bw) Y, (bw)
=0 J(aw) Y, (aw)
J,(bo) Y, (bw)

Using now the asymptotic values ([1]. p. 135)

5]

J,(xt) ~ - : v=0;
\-b-l
and
Vv " )
Y, (xt) ~ — s v=0;

as x—=0 and r fixed, we obtain

J(aw) a'

2 1 -
@ Iy 360y = 5
and
(2.28) lim Y,(aw) b

w-=0 ?‘(bw) T (_1';
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Consequently (2. 26) becomes

LAY L % B A
2b b a* ['d\' = x\] 0 20__[3\' =N i\]

o

' A

which ultimately reduces to the value —2x".
Coming back to (2. 25) we find that

b Botioe
[rorgapa=ril [ |1-2)Eotnm-daano ,,,
i B we,(aw, bw)
a Po—ic
(2.29)
+ios
1 b,c,(xm, aw)—a'c,(xw, bw)
i i i Sl il R = 1L
+ﬁ,,ﬂ' f ¢, (am, bo) = A b Ly
say. '

Now by Lemma 1

oo oo

v+1/2 v+ 1/2
[Lll - _z_kb__ __./.l.e-—(b-x)vdb._l_ 2ka fve—(.t—alvdv X,
0

2= BYx
0
T skif3 A
(2. 30) — _2_§b - e’(b"t}l‘ds_i_ _2_ka i e_(x_a}b.dv -
ﬂnyx ﬁan
2kbv+1)’2 Zkav+1.l'2 2kbv+lln’2 2%ka*t 1/2
= + _

BVxb-x @ BVx(-a) @ Blx®+x) @ B¥x(—a) "

From (2. 29) and (2. 30) we get the result of the lemma.
Lemma 4. For any x¢<(a, b)

lim [+ R,(t, x|R)dt = {x*

b
lim [ R, (1, x|R) di = }x*

PROOF. TITCHMARSH ([3]) has shown that

lim [t**'R,(t,x)dt = }x*  (a<x=<b),

n-+=oo
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where R, (1, x) denotes the convergence kernel of the series (1. 1). The result of
the lemma follows from the fact that convergence implies Riesz summability.

3. PROOF OF THE THEOREM. In order to prove the theorem it is sufficient to show
that

| § o ?”' L) —_

G.1) SGiR = 2 |1 ﬂ,]b"'c"(""x’ Ta?)
x b

= [ R xR f(x = 0)dt— [1¥+ Ry(8, x[R)x™f(x+0) di = 0(1).

a X

Now
b

S\(x[R) = [1f(0)R,(t, x|R) dt —
x b
—f:mR,,(:,x;R)x-"f(x—O)dr—fr"ﬂR,(:,xgn)x-vf(.x+0)dr=

a X

(3.2)
- f:"“{r"‘j(r)—x“‘f(x—O)}R,,(r,x!R)a‘t+
b
+ [ e () =X f(x + O} R, (¢, X RY dt = I + 1,
say, where 3
1
x=d x_ﬂ.._ x
(3.3) L=f+ [ + [=P+P+P,,
a & 1
*“bn
say where ¢ = 3 for sufficiently large n,
and i
1
Rl x+d b
G-9 ]z=f + f + f=Q1+Qz+st
x 1 x+d
B
say. Using (2. 11) we have
x—3&
Py = | [ 0117 f(@) = x~"f(x~ O} Ry(t, x|R) dt =
= 2% .1
3.5 = 2= () - x""f(x—0)} ———«
3.5 J A= = s

x—4
& ﬁ(:f i 0= e 0 dr = o),
n ‘X a
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Similarly
(3.6) Q3] =o(1).

Now
3. 7)

1 1
[ 0 alz [eeime—2% g

Pl= v - —_— i Rﬂ 4 R —- v+1/2]
P, fr [t~ f()=x""f(x = O)] R, (t, X|R) dt f S

where £¢=0 is an arbitrarily small number and 4 =0 has been chosen such that

[t f(()=x""f(x—0)| <e, x-d=t=x,
and
[t~ (1) —x""f(x+0) <e, if x=t=x+0.
Therefore
1

2ke x—h“- PaRs 1/2
{3. 8} 1P2| - i_rﬁ_ 6;_—?j2 = ka‘.e = 0(1).
Ay x—8

Similarly
3.9 @, =0(l), if we use the inequality (2. 10).
Now using (2. 12) we find that

X

(3.10) Pl =| [ 0 SO =3 fx = O R, (1, x) dt | =
&
X : 3kﬁ x
= f”.l —I,T"':df{k" df= ])
hj: st{ B sx_fl of
bn Bn
Similarly
(3.11) Q1] =0(M).

Combining (3. 5). (3. 6). (3. 8). (3.9), (3. 10) and (3. 11) we get the result.
This completes the proof of the theorem.
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