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ON RINGS FOR WHICH HOMOGENEOUS MAPS ARE LINEAR

P. FUCHS, C. J. MAXSON, AND G. PILZ

(Communicated by Maurice Auslander)

Abstract. Let 31 be the collection of all rings R such that for every R-

module G, the centralizer near-ring MR(G) = {/: G —► G\f(rx) = rf(x),

reR, x EG} is a ring. We show R e 31 if and only if MR(G) = EndÄ(G)
for each /{-module G. Further information about 32 is collected and the

Artinian rings in 31 are completely characterized.

I. INTRODUCTION

Let R be a ring with identity and G a unitary left /(-module. The set

MR(G) := {f: G —► G\f(rx) = rf(x), reR, x e G} is a zero-symmetric near-

ring with identity under the operations of function addition and composition.

If G = R, MR(R) =■ R so MR(R) is a ring. If R is a field and G = R2 then

it is known that MR(R2) is not a ring [3]. On the other hand, when R is a

finite simple ring, but not a field, it was found in [2] that MR(G) is a ring for

each finite jR-module G. In this paper we investigate two questions raised by

the above remarks; namely, (1) characterize those rings R such that MR(G)

is a ring for every A-module G and (2) characterize those rings R such that

MR(G) = EndÄ G, for every i?-module G.

We let ¿At denote the collection of rings satisfying (1) and W denote the

collection of rings satisfying (2). Of course I? ç 31. We show in the next

section that in fact, % = Bî .

The problem then remains to characterize the class Aft . It is the objective

of this paper to initiate such an investigation. We collect information about £%

and present some classes of rings in AM . In particular we completely character-

ize the Artinian rings in AAl. For a ring R and an abelian group G let rx = 0

for all reR, x e G. Then MR(G) = M0(G) which is a nonring whenever
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2 P. FUCHS, C. J. MAXSON, AND G. PILZ

\G\ > 3 . Thus we make the following

Conventions. All rings have identity 1, all modules are unitary, and all homo-

morphisms are identity preserving.

II. General results

Let R be a ring and G an .R-module. It is well known that M(G) = G =

{/: G —► G} is a near-ring with respect to function addition and function

composition. (We refer the reader to the books by Meldrum [4] and P'lz [5] for

near-ring information.) The above defined near-ring MR(G) is a subnear-ring

of M(G) with the identity function as identity element. Moreover, M(G) is

an .R-module under the action (rf)(x) = r(f(x)), reR, f € M (G), x e G.

As above let §* denote the class of all rings R such that MR(G) = EndR(G)

for each i?-module G, and let 31 denote the class of all rings R such that

MR(G) is a ring for each .R-module G.

Theorem ILL  %=m.

Proof. Since f ç AM it suffices to establish the converse. Let R e £% . To each

/ e MR(G) we associate a map /: M(G) —> M(G) where f(<p) = f ° <p , <p e

M(G). Since f(r<p) = /o r<p = r(f o tp) = rf(<p) we see that / € MR(M(G)).

Now MR(M(G)) is a ring since R e 31 ; hence fo(a+ß) = foa+foß for each

a, ß e MR(M(G)). Therefore, for <p e M(G), f(a(<p) + ß(<p)) = f(a(<p)) +

f(ß(<p)) which in turn gives f(a((p)(x) + ß(<p)(x)) = f(a(<p)(x)) + f(ß(<p)(x))

for each x e G.

Now let ip e M(G). The map y7 defined by y/(9) = 9 ° ¥ > <P £ M(G) is
in MR(M(G)) since W(r(P) = r(P ° ¥ — r(<p ° ys) — rlp((p). Given any x,, x2

in G, there exist ipx, ip2 in M(G) such that y/x(x) = xx, ip2(x) = x2 for

all x e G. Thus for <p = id in M(G), ^(.(^)(x) = x¡, i = 1,2. Hence

f(xx + x2) = f(xx) + f(x2) so / e EndR(G), i.e., MR(G) = EndR(G).

We next determine some properties for the class 3? .

Theorem II.2. Let S e 3ê and let <p: S —► R be a homomorphism. Then

Re3l.

Proof. Let G be an i?-module. Then as usual, G is a (unitary) ¿'-module via

s * g = <p(s) ■ g, seS, g e G. For / € MR(G), s e S, g e G we have

f(s * g) = f(<P(s)g) = <p(s)f(g) - í * f(g) so / e MS(G). Since S e 3ê,
MS(G) is a ring and hence so is MR(G), i.e., Re 31.

Corollary II.3. (i) Let S e 31. If S can be embedded in a ring R (preserving

the identity), then R e3?.

(ii) If a subdirect product of rings Ra, a e A, is in AAÏÏ then each Ra e AM.

(iii) If Re AM then Rxe3ê for each set X.

(iv) If rad is any radical for rings then Re 3? implies that the "semisimple

parr R/ rad(R) is in 31.

Proof, (i), (ii), and (iv) follow from II.2 while (iii) follows from (i) via the

identity preserving map r i-> (r, r,... ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RINGS FOR WHICH HOMOGENEOUS MAPS ARE LINEAR 3

Theorem II.4. Let R be the group direct sum ofsubrings Rx, R2, ... , Rn which

(as rings) are in 31. Then R e AM .

Proof. Let 1 = rx + r2 -\-\-rn be the decomposition of the identity 1 e R and

let 1. denote the identity of R¡, i = 1,..., n. If G is an Ä-module then each

Gi := \fi is (unitary) R.-module. Also, for / e MR(G), f(Gt) = f'lfi) C
l,/(G)çc7,., i=l,l,...,n. Thus ®:MR(G)-*MR¡(Gx)®---(BMK(Gn)

defined by 0(/) = (f\G , ... , f\G ) is a near-ring homomorphism. If f e ker O
1 n

then / is the zero map on each Gi. Therefore for x e G, f(x) — 1 • f(x) =

r\f(x) + ■■■ + rj(x) = f(rxx) +-h f(rnx) = 0, so ker<I) = {0} and <D is an

embedding. Since MR (G¡) is a ring, for each i, MR(G) is a ring, so R eAM .

Corollary U.S. Let Rx, R2, ... , Rn  be rings and let R = Rx® ■■■ ® Rn, the

direct sum of rings. Then Re AM if and only if RteAM, i = 1,1, ... , n.

Proof. If Re 31, each Rx e 31 from II.2 while the converse follows from the

previous theorem.

Let E = {ex, e2, ... , en} be a set of mutually orthogonal idempotents of the

ring R with 1 = Xw=i A We say E is a complete set of orthogonal idempotents.

We define a relation ~ on E by e( ~ e- if e¡R and ejR are isomorphic as

i?-modules (e¡R =R e¡R). It is clear that ~ is an equivalence relation on E.

We let m(E) = min{|5| \B is an equivalence class with respect to ~}. The

following well-known result determines when the .R-modules e¡R and ejR are

isomorphic.

Lemma II.6 [1, p. 51]. Let ex, e2 be idempotents of a ring R. Then exR =R e2R

if and only if there exist ex2, e2x in R such that ex2e2x = ex, e2xex2 = e2,

exex2e2 = ex2, and e2e2xex = e2x. (As pointed out in [1], the first two conditions

suffice.)

Our next result gives a very useful criterion for determining many rings in

31.

Theorem II.7. Let R bearing. IfR has a complete set E = {e¡j} of orthogonal

idempotents with m(E) > 2, then R e3? .

Proof. For e¡¡ e E, let e¿j denote the equivalence class determined by efj e E.

Then without loss of generality we have

R = (euRe---®euR)®---® (ekxR © • • • e ekj R)

where e^ e e¡x, i — 1,2, ..., k, 1 = exx + ■ ■ ■ + ekj. , and ji > 2 for all

i. Let G be an i?-module and let (A := etjG. Then G = Gxx © • • • © (A ,

a group direct sum.  Let gxx, ... , gkJ   e G, fe MR(G) and consider g =

f(ex {gn + • • • + ekjkgkh) - f(ex {gn)-f(ekhgkj¡¡ ). Using the orthogonality,

we find for each e¡¡ e E, etjg = 0; hence 1-^ = 0. It remains to show that

f(eijS\+eij82) = f^uSO + f^^i) for a11 eij £E, gx,g2 eG. Let eA e etj,

eu ^ eu • ^or ease °f notation we let ex = ei} , e2 = eA . From Lemma II.6,
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there exist ex2, e2x in R with ex2e2x = ex, e2XeX2 = e2, exex2e2 = eX2, and

e2e2Xex = e2x . Then

f(exgx +exg2 + e2e2xg2) = f(exgx + ex2e2e2xg2 + e2e2xg2)

= (l +ex2)f(exgx+e2e2xg2)

= (l+ex2)(f(exgx) + f(e2e2xg2))

= f(eigy) + f(e2e2Xg2) + f(ex2e2e2xg2),

so we see that f(exgx + exg2 + e2e2xg2) = f(exgx) + f(exg2) + f(e2e2xg2). But

/(?.£. + exg2 + e2e2xg2) = f(exgx + exg2) + f(e2e2xg2) by the first part of the

proof, so the result follows.

As an application of this result we show that 31 is closed with respect to

arbitrary products of matrix rings of size at least two. We remark that it is

unknown to the authors if 31 is closed under arbitrary products of rings in

3Î.
To fix some notation we let Mn(5) denote the ring of n x n matrices

over S. Further, let (i, j), (k, I), i, j, k, I e {1,2,...,«} be positions

located on some diagonal of the n x «-board for matrices of M^S). Then

M((i, j), (k, I)) will denote the matrix with l's on this diagonal between and

including (i, j), (k, I), and O's elsewhere. We abbreviate M((i, i), (j, j)) by

M(i,j) and M(i, i) by M(i).

Theorem II.8. Let {Ra\a e A} be a collection of rings, {na\a e A} a collection

of integers with na>2, and let R = Yla Mn (Ra). Then Re AM . In particular,

for any ring R, if n>2, Mn(R)eAM .

Proof. We define a complete set E = {ex, ... , e5} of orthogonal idempotents

as follows. If na is odd let ek(a) = M(k) for k e {1, 2, 3} , e4(a) = 0 = e5(a)

if na = 3 and e4(a) = M(4, (na + 3)/2) and e5(a) = M((na + 5)/2, na) for

na > 3 . If «Q is even, let ek(a) = 0 for k e {1, 2, 3} , eA(a) = M(l, nJ2),

and e5(a) = M((na + 2)/2, na). One then verifies that £ is a complete set of

orthogonal idempotents. Let f, g e R be defined by

/«,)=AA~+^ '"~+32     J ' V     2     '

g( [H^—t4],(n,^—\ s odd and n   > 3,
2

f(a) = 0 = g(a)     ifna = 3,

and

/(a) = Af((l,^),(«a/2,«J

g(a) = M ((-s^— , lj , (na, nJ2)\ if na is even.

From this we see that fg = e4 and gf = e5; hence e4R =R e5R by the remark

in II.6. Moreover, exR =R e2R =R e}R so m(E) = 2, unless na = 3 for all

a e A in which case m(E) = 3 . Therefore R e AM .
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Corollary II.9. Let R be a ring. Then m(E) > 2 for some complete set E of

orthogonal idempotents if and only if R contains a subring S such that 1 € S

and S is a direct sum of ideals Ik which (as rings) are isomorphic to full matrix

rings of size at least 2.

Proof. Let E = {ex, ... , en} be a complete set of orthogonal idempotents such

that m(E) > 2 and let Ex, ... , Et denote the equivalence classes with respect

to ~. If Ik = \Z{eiRej\ei,ejeEk}, k e {1,2, ... , t} , then S = Ix<$-• •©/, is
a subring of R and 1 e S. We note that J2e €e e¡ *s me identity f°r 4 • Since

IrIs = {0} for r ^ s, each Ik is an ideal of S. Let ek e Ek . Since ekR =R ejR

for each e- e Ek , there exist ekj, ejk with the properties of Lemma II.6. We

define e¡¡ = e.,e,¡ and observe that e,, = e,e¡¡e¡ and e¡¡ = e\e\,e,; hence
U IK    KJ IJ I    IJ    J J I J    J I    I

e¡j, ejj e Ik . As in [1, p. 52] {etj} is a set of matrix units for Ik so Ik is

a matrix ring of size at least 2 since \Ek\ > 2. For the converse, it follows

from Theorem II.8 that m(E) > 1 for some complete set E of orthogonal

idempotents of S. Since 1 € S our statement follows.

We now turn to a characterization for a rather large class of rings, which

includes Artinian rings, to be in 32. We need first a lemma which gives a

necessary condition for a ring to be in 31.

Lemma 11.10. Let <p: R —> S be a homomorphism such that S is integral, i.e.,

S has no divisors of zero. Then R £ 3? .

Proof. From Theorem II.2, it suffices to show S £ 3?. Let G denote the

S-module S © S and let X = (S © {0}) \ {(0, 0)} . Then s(sx, s2) e X implies

ss2 = 0. Since (0,0) $ X, s ^ 0 so (sx, s2) e X. It is straightforward to

verify that X satisfies the conditions of Theorem II.2 of [3]. Hence MS(G) is

not a ring, so S £ 32 .

As a corollary we obtain further necessary conditions for a ring R to be in

31.

Corollary 11.11. (i) If there exists a homomorphism \p: R —> S where S is

commutative then R £ 3? .

(ii) If R has no nonzero nilpotent elements then R £ 3?.

Proof, (i) Since S is commutative, S has a nonzero integral homomorphic

image. Since S i 3Î, R £ 3Î.

(ii) If R has no nonzero nilpotent elements then again we find that R has a

nonzero integral homomorphic image [6, p. 202].

We recall [6, p. 217] that a ring R with Jacobson radical J(R) is semiperfect

if R/J(R) is semisimple Artinian and J(R) is idempotent lifting. In partic-

ular every Artinian ring is semiperfect. We use Theorem II. 7 to completely

characterize those semiperfect rings in 32.

Theorem 11.12. Let R be a semiperfect ring. The following are equivalent:

(i) Re 32;
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(ii) R/J(R)e32;
(iii) R/J(R) is the direct product of nt x ni matrix rings over division rings

D; with «,. > 2 for each i.i i —    j

Proof, (i) => (ii) follows from Corollary II.3 (iv). Since idempotents in R/J(R)

can be lifted to R and since each n¡ > 2, there is a complete set E of idem-

potents in R with m(E) > 2. Hence R e 32 and (iii) => (i). Suppose now

R/J(R) is in 32 . Since R is semiperfect, R/J(R) is the direct product of a

finite number of ni x «¿-matrix rings over division rings D¡. Since R = R/J(R)

is in 32 by hypothesis, R has no nonzero integral homomorphic images. Thus

we must have «; > 2 for all i.

III. Miscellaneous remarks

In this section we collect a few remarks about rings in 32 . We start out with

an example which shows that the converse of Corollary II.3 (ii) does not hold,

i.e., we show that a subdirect product of rings in AM need not be in AM .

Example ULI. Let R := {(Ax, A2, ...) e rjNM2(Z)|,4n is a diagonal matrix

except for finitely many « }. Then R is a subdirect product of the rings M2(Z)

which are in 32. But R i 32 since / := {(Ax, A2, ...) e R\An = 0 for all

but finitely many « } is an ideal in R and R/I is commutative.

As we have seen, no division ring is in M. One next investigates which

simple rings are in AM. If R is a simple ring with a minimal left ideal then

from [1, p. 88] or [6, p. 157] R is a matrix ring of size at least 2 over a division

ring. Thus R e 32 . However, not every simple ring which is not a division

ring is in 32 . For example, we let R be the ring of differential polynomials

over a field. Then R is a simple ring with no minimal left ideals, but R is

integral so R $ AM. On the other hand, 32 does contain some simple rings

without minimal left ideals. In fact, let V be any vector space of countable

dimension over a division ring D and let / be the ideal of EndD V consisting

of those linear transformations of V of finite dimensional range. We show

Endö V e 32. We actually show that for any vector space W over D for

which dimö W > 2, End^ W e 32 . If W is finite dimensional then the result

follows from Theorem II.8. Therefore we take W to be infinite dimensional

over D with basis B. Since B is infinite, there exist disjoint subsets Bx, B2

of B with B = Bx UB2 and a bijection a : Bx —> B2. For x e Bx , let ex (x) = x

and for x e B2, let ex (x) = 0. Extend ex linearly to obtain an endomorphism

ex e Endö W. In the same manner we get e2 e End0 W, e2(x) = 0, x e Bx

and e2(x) = x , x e B2. Then lw = ex+ e2,ex and e2 are idempotents and

e¡e, = 0 for i -é j.
I    j i     j

Similarly, define eX2 e Endfl W by eX2(x) = 0, x e Bx , eX2(x) = o~\x)

for x e B2, and e2x e Endfl W by e2x(x) = o(x), x e Bx, and e2l(x) = 0,

x e B2. Then ex2e2x = ex and e2xex2 = e2. From Theorem II.7 we see that

EndD W eR.
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We return to our special case and note that since Endö V e 32 so does

EndD(V)/I. But this is a simple ring with no minimal left ideals.

In our final result we present an interesting characterization of 2 x 2 matrix

rings. It is unknown to the authors if this result is new, but we have not been

able to locate it in the literature.

Theorem III.2. For a ring R the following are equivalent:

(i) R is a ring of2x2 matrices over some ring S.

(ii) There exist elements x, y e R such that x2 = y2 = 0 and x + y is

invertible.

Proof,   (i) =>■ (ii). If {e¡j\ 1 < i, j < 2} is a set of matrix units for R, then

e\2 = e\x=0 and (ex2 + e2x)2 = 1.

(ii) =>■ (i). Suppose that (x + y)r = r(x + y) = 1 . Then xyr = x and rxy =

y , so rx = yr. Also, ryx = x, yxr = y, hence ry = xr. Consequently xr +

rx = 1. But then xrx = x and (rx)2 = rx. Further rx ^ 1 and rx ^ 0 since

r is invertible and x ^ 0. Therefore rx is a nontrivial idempotent. Similarly

ry = xr is a nontrivial idempotent. Now let exx = rx , e22 = ry, eX2 = r y, and

e2x = x. Then eX2 = r2yrry = r2rxxr = 0, eX2e2x = rryx = rxrx = rx = exx,

e2xex2 = xrry = (ry)2 = ry = e22, and exxe22 = rxry = rxxr = 0. In fact, one

verifies that eiJekl = Sjken . Thus {eA 1 < i, j < 2} is a set of matrix units

for R . Our statement now follows from [1, p. 52].

Thus a ring satisfying condition (ii) of the above theorem must be in 32 . We

also note that all of our examples of rings in 32 have nontrivial idempotents,

hence the following question.

Question A. Are there rings in AÄ2 with no nontrivial idempotents?

We conclude with a related question.

Question B. If R e 32, is m(E) > 2 for some complete set E of orthogonal

idempotents in R ?

References

1. N. Jacobson, The structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math.

Soc, Providence, RI, 1964.

2. C. J. Maxson and K. C. Smith, Simple near-ring centralizers of finite rings, Proc. Amer.

Math. Soc. 75(1979), 8-12.

3. C. J. Maxson and A.P.J. van der Walt, Centralizer near-rings over free ring modules, J.

Austral. Math. Soc. (to appear).

4. J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Math., vol.

134, Pitman Publ. Co., London, 1986.

5. G. F. Pilz, Near-rings, 2nd ed., North Holland, Amsterdam, 1983.

6. L. H. Rowen, Ring theory, Vol. I., Pure and Appl. Math., vol. 127, Academic Press, San

Diego, 1988.

(P. Fuchs and G. Pilz) Institut für Mathematik, Johannes Kepler Universität, A-4040

Linz, Austria

(C. J. Maxson) Department of Mathematics, Texas A&M University, College Station,

Texas 77843

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


