
ON RINGS IN WHICH EVERY IDEAL IS THE
ANNIHILATOR OF AN ELEMENT

CLEON R. YOHE1

Let P be a semisimple Artin ring (i.e. P is a direct sum of matrix

rings over division rings). Then if A is a left ideal of R, L = Re where e

is an idempotent and so L is exactly the left annihilator of the element

1 — e. We investigate the structure of rings having this property. If 5

is a subset of a ring P, let e(S) and r(S) denote the left and right

annihilators of S. The notation eii(S) will be used when it is necessary

to specify the ring P.

Definition. P is a left elemental annihilator ring (l.e.a.r.) if, when-

ever L is a left ideal of P, there exists an element aER such that

L = e(a). A right elemental annihilator ring (r.e.a.r.) is defined analo-

gously.

Notice that if P is any ring (always assumed to have a unity

element) and S is a subset of P, then e(S) =e(r(e(S))) and r(S)

= r(e(r(S))). Hence if P is a l.e.a.r., and L is a left ideal, we have in

particular that L = e(r(L)). If P is a r.e.a.r., and I a right ideal, then

I = r(e(I)).

We consider first the commutative case. It is known [l, Theorem

1.1 ] that if P is completely primary (local with nilpotent maximal

ideal), then P has the property that every ideal is the annihilator of

some subset of P if and only if R has a unique minimal ideal. Using

the methods of Theorem I below, it is possible to derive from this the

fact that if P is a commutative noetherian ring, then every ideal of P

is the annihilator of some subset if and only if P is a direct sum of

completely primary rings each of which has a unique minimal ideal.

By imposing the more strenuous condition that P actually be an

elemental annihilator ring, we obtain a similar result without the

hypothesis of the chain condition.

Theorem I. Let Rbe a commutative ring with unit element. Then R

is an elemental annihilator ring if and only if R is a direct sum of com-

pletely primary principal ideal rings.

Proof. Let P be a completely primary principal ideal ring, with

maximal ideal (m), where mk = 0. Any rER has an expression

r=um', where u is a unit of P and t is an integer, O^t^k. It is clear
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from this that the only ideals of 7? are im), im2), • • • , imk) = (0) and

that for any /, (ml) =eimk~'). Thus 7? is an elemental annihilator ring.

Let R = S® T, where S and T are e.a.r.'s, and suppose that / is an

ideal of R, so I = J® L, where J is an ideal of 5 and L is an ideal of T.

There exist aES and bET so that J = esia) and L = eTib). Then

I = es(a) ®eT(b) =eii(a + b), which means that 7? is an e.a.r. This com-

pletes the proof of the sufficiency of the condition.

To prove the necessity, let 7? be an e.a.r., and 7 be an ideal of 7?.

Then e(I) =e(x) =e(xR) lor some xER- Since 7? is an e.a.r.,

I = r(e(I)) =r(e(xR)) =xR, so that any commutative e.a.r. is a prin-

cipal ideal ring.

In particular, 7? is noetherian and so [2] R is a subring of a ring 5

which has descending chain condition on ideals, and hence specifically

on annihilators. The latter chain condition is inherited by subrings,

so 7? has descending chain condition on annihilators. But every ideal

of 7? is an annihilator, so 7? has descending chain condition on all

ideals. Such a ring is well known to be decomposable into a direct

sum of completely primary rings.

Suppose that R is an e.a.r. and R = S®T. Let 7 be an ideal of 5.

Then 7 is an ideal of 7?, so I = eit(a) for some aER- In the direct sum

decomposition, let a = b+c. Then it is a triviality that I = es(b), which

shows that a direct summand of an e.a.r. is again an e.a.r. Hence all

of the completely primary summands of 7? are e.a.r.'s and conse-

quently principal ideal rings, completing the proof of the theorem.

The theorem shows that in the commutative case, where a ring is

both a 1.e.a.r. and a r.e.a.r., if it has either condition, elemental

annihilator rings have both chain conditions. The next theorem shows

that this is also the case when 7? is noncommutative, under the addi-

tional assumption that 7? is semiprime (has no nonzero nilpotent

ideals).

Theorem II. Let R be a semiprime ring. Then the following are

equivalent:

(1) R is both a r.e.a.r. and a l.e.a.r.

(2) R is a l.e.a.r. and, has ascending chain condition on right anni-

hilators.

(3) Ris a direct sum of matrix rings over division rings.

Proof. That condition (3) implies both conditions (1) and (2)

is clear.

To prove that (2) implies (3), let 7? be a l.e.a.r. with ascending

chain condition on right annihilators. Suppose that Lr~iL2/3 • • • is

a descending chain of left ideals in 7?. For each i, Li = e(r(L/)) since 7?
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is a l.e.a.r. and it is clear that r(Lx) C>(Z,2) C • • • . Hence there is an

integer k such that r(Lk)=r(Ln) for all n^k. Thus for n^k,

Lk = e(r(Lk)) =e(r(Ln)) =Ln so that P is a left Artin ring. Then /, the

Jacobson radical of P, must be nilpotent and hence zero since P is

semiprime. The conclusion now follows from Wedderburn's theorem.

Finally, we prove that (1) implies (3). Let P be both a l.e.a.r. and

a r.e.a.r. Note that since P is semiprime, it has no total left anni-

hilators, and therefore if x£P, e(x) =e(xR). Let / be a right ideal of P.

Since P is a r.e.a.r., I = r(e(I)). Also, since P is a l.e.a.r., e(I) =e(x)

= e(xP) for some x£P. Then I = r(e(I)) =r(e(xR)) —xR, whence P

is a right principal ideal ring. But a semiprime right principal ideal

ring is a finite direct sum of prime rings [3]. Each of these is again

both a r.e.a.r. and a l.e.a.r. by an argument similar to that used in

Theorem I, and so the argument above applies to show that they are

principal right ideal rings also. Any prime right principal ideal ring

[3] is a matrix ring Dn over an Ore domain D. Let L be a left ideal

of D, then Ln, the w by w matrices over L, is a left ideal of D„. Since

Dn is a l.e.a.r., there is an element A = (atj) in Dn such that Ln =e(A).

This means that L = en(S), where 5 is the set of a.-,-. Thus every left

ideal of D is an annihilator, and in like manner every right ideal of D

is an annihilator. Since D is an integral domain, this clearly forces D

to be a division ring, completing the proof of the theorem.

Note that the proof of the fact that (2) implies (3) uses only the

fact that every left ideal of P is a left annihilator, since this is suffi-

cient for L = e(r(L)). This leads to the following.

Corollary. Let R be semiprime with ascending chain condition on

right annihilators. Then R is a l.e.a.r. if and only if every left ideal of R

is the annihilator of some subset.

It would clearly be of interest to investigate the relation between

the two classes of rings more closely, and to consider the consequences

of removing the e.a.r. condition from one side in the statement of

Theorem II.
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