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ON RINGS OF CONTINUQUS fUNCTIONS

Dedicated to Professor K. Morita, on his sixtieth birthday

Jun-iti Nagatg
Ansterdam

In the following discussions all topological spaces are at least
Tychonoff, and all mappings are continuous. C(X) (C*(X)} denotes the
ring of all real-valued continuous functions (real=-valued bounded
continuous functions) on a Tychonoff space X.

v As pointed out by late Professor Tamano, a remarkable property

" of rings of contimious functions is that they have infinite operati-
ons like infinite sum, infinite join etc., and thus it is desirable
to study them together with infinite operations. For example, one
cannot characterize very important topological properties like metri-
zability or paracompactness of X in terms of C(X) or C¥*(X) as long
a9 they are regarded as ordinary rings with finite operations, but
one can give nice characterizations of those properties once infinite
operations are taken into consideration. From this point of view the
author [ 7] characterized metrizability and paracompactness in terms
of C(X) with operations u and N for infinitely many elements. H.
Tamano [12], Z. Frolfk [ 3] and J. Guthrie [ 4] also got interesting
characterizations of parscompact spaces, Gech complete spaces and ot-
her spaces in terms of C(X) and C*(X) though they did not necessari-
ly aim characterizations by purely internal properties of C(X) or
C*(X). The purpose of this paper is to extend characterization to
some generalizations of metric spaces and also to discuss relations
between C*(X) and uniformities of X.

Remark. Only C*(X) will be used in the following though many re-
sults can be extended to C(X) with no or slight modification of their
forms. For a (not necessarily finite) subset §f_ J]x € 4% of C¥(X),
Q fe(, and LJC £, are defined as usual; namely '

tNe, )(z) =inf {£, (x) lc € 4% (Yz ) (x) =supif  (x) lc e &%,
In those theorems where 1 £ (or () £_) is involved, it is imp-
lied that &i £, (or CLI;O ) is bounded and continuous; alsoc note
that N, Q and R denote the natural numbers, the rational numbers and
the real numbers, respectively.
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As for standard symbols and terminolcgies of general topology, see
f1o1.

Definition 1: A subset L, of C*(X) is celled normal if [) £ and
lg‘ f, belong to L, for every subset { £ |oce 4% of L,. A sequen-
€ Ly,Ly,... of normal subsets of C*(X) is called a pormal sequence.
A subset L of C*(X) is 6 ~normslly generated by the normal sequence
1L 14 =1,2,000 % 4£ L = {£feC*(X) | for every & > O there are
subsets {f, [Be B} and {f, |7eC? of u,, L; such that

il ﬂﬁfﬂ -fil<e and llUf,x,- £l <e%. (We may simply say that
L is generated by {L;} when the latter is known to be a normal se-
quence.

In the following is a slight modification of an old theorem pro-
ved in [71.

Theorem O. A Tychonoff space X is metrizable iff C¥(X) is 6 =por-

mall enerated by a normal sequence.

Proof. The "if" part of this theorem is implied by Corollary 8 of
[7]. The proof of "only if" part 1s also not so difficult if we put
L, = {fe¢ c*(x)) N£hh4n, |£(x) - £(y)| £ n p(x,y) for all x, y¢
€ X?. Some works are necessary to choose, for given fe C*(X) and
€ >0, asubset ££3 [Be B} of UL, such that Mtg e C+(X)
and such that [N £y - £ < e , but the detail is left to the
reader. (In view of Corollary 8 of [ 7] we know that a weaker condit-
ion is sufficient for the metrizability of X.

The author, however, needs the stronger'condition for L as given in
Definition 1 to characterize other spaces in the following, and he
does not know if the condition can be weakened there or not.)

Among the various generalizations of metric spaces which are
actively being studied M-space due to K. Morita [%] and p~space due
to A.V. Archangelskii [1] are some of the most important ones. M and
P coincide and are especially good if combined together with para-
compactness. In fact,

Theorem (K. Morita - A.V. Arch lskii). The following conditions
for X are eguivalent: '
(1) X is psracompact and M,

(2) X is paracompact_sand p,
(3) X is the pre-image of s metric space by a perfect mapping.




138

Thus our first aim is to characterize paracompact M-gpaces in
terms of C*(X),

Definition. A maximal ideal J in C*(X) is called fixed iff for eve-
ry subset {f  |ce A} of J such that U £ e C*(X), Ut ed
holds. A subset K of C*(X) is fixed iff there is a fixed maximal i-
deal which contains K; otherwise K is called free. 4 subset H of

C *(X) is called gtrongly free iff there is a subset i3 |Be Biof
H such that U £, € ¢ *(X) and U/Sfﬂ > € for some positive num-

ber € . ﬁ‘s

Remark. It is easy to see that Ke C*(X) is fixed iff there is xeX
for which f(x) = 0 for all feK.

The following theorem suggests us what form of theorem we can
expect to characterize paracompact M-spaces.

Theorem l. Let f be a map from X onto Y. Then f induces an imbedding
of C*(Y) into C*(X) if geC*(Y) is associsted with g ofe C*(X).
Then £ is rfect he induced imbedding i that

very free maximal ideasl J in C*(X), Jn C™(Y) is free in C¥(X).

To prove this theorem we need the following lemma whose proof
is left to the reader.

Lemma 1l Let f be a mgp from X ontgo Y. Then f is g perfect map iff
for _every free ( = has no cluster point) maximal z-filter (_= filter
congisting of zero sets where we mean by a zero get the set of gll
zeros of & resl-valued continuous function) F 4in X, £(F) ={£(F |
|F e 3t is free in Y.

Proof of Theorem l. The first half of the claim is obvious, so only
the last half will be proved.

Assume that f is a perfect map and J is a given free maximal i-
deal in C*(X). For each ¢ € C*(X) and € > 0, we put 2, ($) =
= &x| [px)| 2 e .

(This symbol will be used throughout the rest of the paper).
further, let

F () = 412[Z is a zero set in X which contains Zg, (§) for some
$ € J and for some € = 0}.
Then JF (J) is obviously a free z-filter.
Expand T (J) to a maximal z-filter "y’o, Then since f is perfect,
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by Lemma 1 £(3 ) is free in Y, Let x be an arbitrary point of X, and
let £(x) = y. Then there is Z e ¥, such that y¢ £(2).
Since £(Z) is a closed set, there is & e C*(Y) such that

¢ (y) >0, & (u) =0 for all uerf(z).
Then o £(x)>0, and o £eC*(Y), where C*(Y) is considered to
be imbedded in C* (X).
To prove G o £6J, let Pof =19 . Thend = C*(X)yp +J is an
ideal of C*(X) containing J. For each §e€ J, and ¢ > 0, Z2.(§ )n
n Z#% P, because these sets both belong to 3.
Since ¥ (Z) =0, this implies [ccy + §| 4 € for every «< e C¥(X)
and at some point of X. Thus J 4 C*(X), which implies J = J because -
J is maximal. Thus < e J. Namely o & Jn C*(Y). Hence Jn C*(Y)
is free in C*(X).

Conversely, to prove the "if" part of the theorem, let F be a
free maximal z~-filter in X, Put

J=dy e C*X) [ Z,(y)e F forall e=> 0}.
Then J is a free maximal ideal in C* (X). To see that J is maximal,
let J° be an ideal such that J§ J’. Select ¢ € J° - J; then

e (d)&¢ F for some ¢ > O. Since 3’ is maximal, this implies
¢ (®)InNZ =0 for some Z ¢ F . Put ¥ = min (0, NPI - € ), then

'qrc J, because 245(3¥)>7Z for all & > 0. Thus & +'qr e J° and
4)2 + 'qr 2 -%—2- , which imply J° = ¢*(X). Therefore J is maximal.
Now, we claim that £(%) has no cluster point in Y. To see it, let
y &Y be arbitrary and select xe f_l(y). Since by the condition of
the theorem Jn C*¥(Y) is free in C* (X), there is ¢ € C*(Y) such

that ¢ o feJ and $ o £(x)>0. Let ¢ o £(x) = . Then
Zg (o £)nE (y) #, which implies yt{sf(Z;(QJa £)). On the other

hand Zg (po £f) e ¥ <follows from the definition of J. Since
f(Z%(cbe £) =2¢g (), Idu) |« i holds for all

uef(Zg_(Cbo £)). Let V= {fueY| ¢(u) > -——} ; then V is an open
nbd of y which is disjoint from f(Z%(<}> e £)). Thus y is no cluster

point of £(%); nemely £(%F) is free. Hence by Lemma 1, f is a per-
fect map. ) '

Now, we can characterize paracompact M-spaces in terms of C*(X) as
follows.

Theorem 2. A Tychonoff space X is pergcompact.and M iff there is &
6 -normally generated subring L of C*(X) guech that
meximal ideal J in C*(X), JnL is free.
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e "only if" part. Let X be paracompact and M; then by
the previously mentioned Morita-Archangelskii's theorem there is a
perfect map from X onto a metric space Y. By Theorem 1 this map indu-
ces an imbedding C*(Y)= Lc C*(X) satisfying the condition of this
theorem. It easily follows from Theorem O that L is & -normally gene-
rated in C* (X).

To prove the "if" part we need some lemmas.

Lemma 2, Let ¥ = 4V, |cc<w 3} he a well-ordered open cover of X
such that Vo =4dx | £ (x)>0¢nfx | g (x)>02 , x =« = , where £,
g€ C¥(X) for 911 <<=, (s and © denote ordinal numbers). If
p%JBfﬂ* gg_clﬂybg{s belong to C*(X) for every subset B of 4¢| 0 £
4o <= wy, then 7 has _a 6=-discrete open refinement consisting of
cozero open gets (_= complements of zero sets).

Proof. Note that V= x| he(x)>0% for h =£_n 8o and that
ec<% h, e C*(X) for every (3 £ © easily follows from the assump-

tion of lemma. Let

Vig = 1 x|hx(x)>%’-§ ’

vnx-‘-.‘ix\hcc(x))%-gzL-ootzﬁL} n=2,3,....

Then V€ V.1 € Voc » Further, let

m = Tnis N
= i_ 1. - i
W= ix|xeV, ., pkéJ‘ he (x)= 5 -2 cos 2n+l}'

Then each W, 1s a cozero set. It is also obvious that £W, jn=
=1,2,i0.; ¢ < © ¥ covers X. Since W, C V_ , this cover refines v.
Thus it suffices to show that {Wn«‘ | < = % is discrete for each
fixed n.

Let x€X satisfy x€eV

ln,,,_lw and x¢vn+m for all (3 < cc , where o« £
1 1
éfc.Thenhﬂ(x)é-z--—;z—-...- 2n -2}14_1 ,[3<oo o

: P S U S
.Thus @nghﬁ(x)éz ;_v- e T ToE and hence x has a nbd W on

Which ')< l-' - _l.— T eee - ;*li- holds.

(aLZac hp (x 2 52
Hence WnW, , = g for all B < o .
On the other hand if o > o¢ , then V .1 . 1s a nbd of x which is

disjoint from Wpp * Therefore {W, |« < =3 1s discrete.
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Lemma 3. Every open cover VW sgatisfying the condition of Lemma 2 is

normal; namely there is s sequence 7, ’2/’2,... of open covers such
that V>V = UV, =V >, .

Proof. The proof directly follows from Lemma 2 and a known theorem
(Proposition D) on page 254 of [101).

Proof of the "if" part of Theorem 2., #First of all we define some no-
tations, Assume that L is (6 '-normally) generated by the normal se-
quence Ll! zrce Then

Lm= ££F [ fely %, where £¥ = fuo,

L;={f|feLm§,wheref = £n o,
— + -

Km = LmU (=~ Lm)u

For x€¥X and n, meN,

Akx) = f£|feky, x)>2 ¢,

Uax) = Ly [Nfe() | reapi> L .
VR = {y [N{e() | feal0i> |
W) = 4y [N{e(p | realx)d> L |

Then Ug‘(x), Vﬁ(x) and Wﬁ(x) are open sets satisfying
m m n
Wa(x)e Vp(x)e U (x),
because N{f| fe Ag(x) ? is continuous.

The proof will be carried out in several steps.
Claim 1. Let 3 be a free maximal z-filger in X.
Then for each x¢ X, there are ny,meN and Z ¢ ¥ such that Ug(x)n Z =
=@ . To prove it, let

J=4ye C*X)|Z (y)e F forall e > 0%.
Then as proved before for Theorem 1, J is a free maximal ideal in
C*(X). Hence JnlL is free by the condition of the present theorem.
Namely there is f € Jn L such that f_ (x)=0 or -£, (x)> 0.
Assume that the former is true; then there is £ e U,r L, such that
£{x)>0, £4f, because L is generated by 4Ly %. (Recall Definition
1). Thus there are n,me N for which fe L, f*e L and f+(x)>% .
Then z (£, )c zd-(f )f: z 5(£%), for every o = 0. Since f & J,
Zde(f )e ¥ and accordingly zd-(f e ¥ for every d"> 0, which
implies f'e J. On the other hand £ e Am(x) follows from the above ob-
servation on £¥. Hence U, Mx)a syl £ (y)>—l— ¢. This implies U, B(x)n

r\Z_L_ (£%) = ¢, Since Z4 (£*) ¢ 3 , our claim is proved. Even if
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-fo(x)>0 is assumed, we can prove our claim in g similar way.
Claim 2. Let YcX to define

MI(Y) = Int [NEULN(x) [ x€ X311 N Int L N{X - Walx) | xeX = ¥31,

Mﬂ ={M§(X) | YcX %, where myne N. Then each J/Lﬁ is a normal open
cover of X.
To prove it, define for m, ne N and x'e X,

PRx") =4y |U4e(y) | £e Ky, £x ) <55 3< 2 3Niy|Niey) | £eky

£lx” )> 5= }>3l-3.

Furthermore, define .’Pg = { Pﬁ(x') | x“ex%.

Then by Lemma 3, @g is a normal open cover, because each Pm(x') sa~
tisfies the condition of V. in Lemma 2, since L  is a normal set.
For each x € ¥, let Y = §x|N4flx )|faAm(x)}> -3 .

.Then it is not difficult to prove that Pp(x’)c Mm(Y). Thus & 7
< -M.n, and hence .M_ is also a normal open cover.

Claim 3, sS(x, M ) c Um(x) at each point x of X.

To prove it, let Mm(Y) be an arbitrary element of .M. which contains
x. Then it follows from the definition of M.ﬁ(Y) that xs Y.

Thus the same definition implies Mﬁ(Y)cUm(x). Therefore S(x, A m) c
c Uy B(g).

Now, we are in a position to complete our proof. Combine claim 1
and claim 3; then we see that for every free maximsl z-filter ¥ and
for each x& X there are m, neN and Z € 3 such that S(x, .M,g)nz =
= @#. Since each .M,g is normal by claim 2, there is a sequence U,
Uysee0 of open covers of X such that for each (m,n) and for some i,
Uy=< .Mg and such that U, >‘u,’; >Uy > 'IL’;>... . Then for every

free maximal z-filter ¥ and for each x& X, there are some i1 and so-
me Z e ¥ such that S(x,U;)n2 =0&. Assume that Fj>F,>... is a
decreasing sequence of nonempty closed sets in X such that for & fix-
ed point x, S(x, %;)> Fy holds for each 1 and for some k. Let ¥ be
a maximgl z~-filter which is obtained by expanding the collection
12 | 2 is & zero set containing F, for some K }. Then S(x, Uy)IN 250
for every i and every Z € ¥ . Hence by the above observation we
know that ’}" converges. Since N{F|F e %3 Cx«."\q Fy follows
from complete regularity of X, we have jf§4 Fk=l=¢, which proves that
X is an M-space.

Let €, = ;N4 S(x, Uy); then as shown in [ 5], there is a closed
map g from X onto a metric space Y such that for each ye¥, g “liy) =
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= C, for some x&€X. To prove compactness of the closed set Cy, let
‘f o be a collection of closed subsets of Cy with finite intersection
property. Let ‘}"' be a maximal z-filter which is obtained by expand-
ing the collection €Z | Z is a zero set containing some element of
yo} . Then obviously S(x,%i)n Z#+P for every i and every Z € F” .
Thus ¥ converges, and hence (N{F|F e ¥ 3 + B. Therefore C, is
compact, i.e. g is a perfect map. This proves that X is paracompact,
and now the proof of Theorem 2 is complete.

Now, let us turn to another generalization of (complete) metriec
spaces. Paracompact, Gech complete spaces are characterized as foll-
OWS e

Theorem (Z. Frolfk [£21). X is s paracompact, Tech complete space iff
it is the pre-imsge of a complete metric space by a perfect map.

This theorem is in its appearance similar to the previously men-
tioned Morita-Archangelskii'e theorem and indicates that all paracom-
pact Cech complete spaces ere paracompact M. In fact the latter theo-
rem is a sort of generalization of the former. Thus it is natural to
try to characterize paracompact Gech complete spaces in a similar way
as we did for paracompact M-spaces. As a result we obtain the follow-
ing theorem.

Theorem 3, A _Tychonoff space X is paracompact and Qgch complete iff
there is a normal sequence Lj,L,,... of gsubgets of C*(X) guch that

Zor every free maxipal ideal J in C*(X), JnL_ is stronmgly free for
gsome Il.

Proof. To prove the "only if" part, let X be paracompact and fech
complete. Then by Frolfk’s theorem there is a perfect map £ from X
onto a complete metric space Y. Let

L, = {doz|dec*k(V, N6l &n. [d(y) - 6(z2)| £ nely,2)
for every y,ze¥ %,
where we assume @ is a metric of Y such that [
Then each L, is a normal subset of C*(X).
Let ¥ be a maximal z-filter in X which contains Z (¢) for all
4 a J and for all € » O, Since J is free, so is ¥ . Since f is
perfect, by Lemma 1 £(F) is free. Since Y is a complete metric spa-
ce, there 1s & > O such that S¢ (y)P£(Z) for all yeY and for all
Z e Y . For each yeY define & y¢ c*(Y) by

Qy(2) = p(2,Y - Sg(y)).
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Let vy = ¢yof; then yyeLy. Since 2(y In2Z g (§ )8 for all
€ >0andall §€ J, yyeJ follows from maximality of J, where

Z(qry) = {xe¥X | 'qry(x) =0%.

(See the proof of Theorem l.) Thus yyedn L, for every ye Y. On the

other hand @%)Y Yy =¢ is obvious, and hence Jn1l; is strongly
free.

To prove the "if" part, first note that by Theorem 2, X is at
least paracompact and M. Thus it suffices to prove that X is Gech co-
mplete. For each xeX and n,me N we define Aﬁ(x) and Uﬁ(x) exactly in
the same way as in the proof of Theorem 2.Now,let 3 be an arbitrary
free maximgl z-filter in X; then we shall prove that there are n,meN
such that X - Um(x) e ¥ for all x € X. This would prove Tech comple~
teness of X by N A. Shanin’s theorem [111: X is Cech complete iff
there is a sequence $G4 |1 =1,2,...% of collections of zero-sets
with finite intersection property such that i) N {G|G e G ¢ =4,
1) for every free maximal z-filter F , there is i for which Gjc
c ¥ . For this end, let

= fye C*(x)|Z(y)e F forall e> 03%.
Then as proved before for Theorem 1, J is a free maximal ideal. Hence
Jn L, is strongly free for some m. Namely there is a subset < belx e
¢ £} of JnL, such that (J, §c = € for some positive number € .

Choose n& N for which §>%. Then for each x€ X there is o & A such
that ¢ (02§ & Thus ¢Feal(x).

Since 0 £ ¢*_4.§— on z4 (d)s
Upx)ciy | ¢;<y)> fex - Z4_ ().
Thus X = u’“(x):z4 (¢ e T . (Note that ¢ JI).

This proves that X - Uﬁ(x) e ¥ for every x, and accordingly X is
Gech complete.

Next, let us turn to a class of generalized metric spaces which
contains all paracompact M-spaces as & proper subclassi.

Definition 3. A Tychonoff space X is called a G, =space iff it is
homeomorphic to a Gy ~set in the product of a metric space and a com~

pact TZ‘-space .

G~—space was defined in '[9] as a natural generalization of pag-
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racompact M-spaces, because in [8] a paracompsact (TZ) M-space was
characterized as a closed Gy -set in the product of a metric space
and a compact T2-space.

In [9] the author gave the following characterizations to G -spaces.

Definition 4. Let f be a continuous map from X onto Y.

Then £ is called a complete map if there is a sequence QLl, 1L2,...
of covers of X by cozero sets such that for every free maximal z-fil-
ter F in X satisfying G, = iX-U(U e« ?¢ § , n=1,2,...,
£f(¥F) is free in Y,

Theorem A. X is g Gy -space iff it is the pre-image of s metric spag-
ce by a complete mapping.

Theorem B, X 1ig o Gy -space iff there are sequences {Wj li=1,
2ye005and U5 |1 =1,2,...% of open covers of X such that

1) U, = UT =U, UL

(2) if 9 is s maximal closed filter such that

Fye WynSlx,Uy), 1 =1,2,... for some F;¢ F , W ¢ (Y
and a fixed point x of X, then ¥ gonverges.

Remark., As for Theorem A a somewhat different (and more complicated)
form of condition was considered for the map £ in [9], but it is easy
to prove that the original condition is equivalent with completeness
of £ as long as X and Y are Tychonoff.

Thig theorem should be compared with the previously mentioned
theorem of Morita-Archangelskii on paracompact M~spaces. Definition 4
should be compared with Lemma 1 to recognize that complete map is a
natural generalization of a perfect map. Thus a complete map may be
defined more generally for topological spaces X and Y while replacing
cozero sets and zero sets in the present definition with open sets
and closed sets, respectively.

The following diagram is to clarify relstions between generali-
zed metric spaces being discussed in the present paper.




paracompact m—
and Gech complete
perfect pre-image
of a complete metric
space

il

closed Gy -set

in the product of
a complete metric
space and a compact
Tz—space.

146
paracompact —_>
and M (or p)

perfect pre-image
of a metric space

|

closed G4 -set in
the mpoduct of a
metric space and
a compact Tz-space

de —_— o]
complete pre-image
of a metric space

I

Gy -set in the pro-
duet of a metric
space and a compact
Tz-space.

It wes proved in [9] that an M-space X is a G =space iff it is
a p~space but it is not known if the same is true without the assump-
tion that X is an M—-space though a negative answer is supposed. Name-

1y

Eroblem.

Give an example of a p-space which is no Gy -space.

As suggested by Theorems A& and B we can easily characterize the G -
spaces in terms of C*(X) in a similar way as we did for two other
spaces in Theorems 2 and 3.

A _Tychonoff gpace X 1ls g Gg =gpage Iff there is & 6 -nor-

mally geperated subring L of C*(X) and a sequence Gy,Gyy... of free
gubsetg of C*(X) guch that for every free maximal jdeal J in C* (X)
satisfying 6, ¢J, n = 1,2,..., JnL is free in C*(X).

Broof.

The proof is similar to that of Theorem_z, so only a sketch

will be given 1in the following. Let X be a G4 —-space; then by Theorem
& there is a metric space ¥ and a map £ from X onto Y, which is comp-

lete with respect to open covers

ru'i, i= 1’2’--0 of X, Put Gn =

= {dp|{p & C*(X), X -2(¢) &€ U, 3. Then each G, is a free subset
of €*(X). Now, suppose that J is a given free maximal ideal in C¥(X)
such that G,¢J, n =1,2,... . Then let ¥ be a maximal z-filter

. containing Zg, (¢ ) for all ¢ e J and € > O. Then we claim that
Gn={fX-U|UeU, 3¢ F , n=1,2,... . Since G ¢ J, there is
¢ e G, -J. Then Z(p) € G,. 2(P) & F follows from maximality
of J, because otherwise JE C*(X)$ + J#C*(X) would hold. Thus ¥
is a free maximal z-filter satisfying G, ¢ ¥, n=1,2,... . Sin-
ce £ is a complete map, this implies that £(%F) is free in Y.

Thus we can use an argument like the one in the proof of Theorem 1
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to conclude that Jn L is free in C* (X), where L is the isomorphic
image of C¥*(Y) in C™(X) induced by the map f. Since L is 6 -norm-
ally generated, necessity of the condition is proved.

Conversely assume that C*(X) satisfies the condition of the
theorem. To prove that X is a Gy -space, define a normal sequence
U, > '”-"2', > ‘uz > ‘lL;‘;-," of open covers of X in the same way as in
the last part of the proof of Theorem 2. Further we define 'urn =
= 4X = 2g(y) |y € G, €>0%; then W, is an open cover of X.
Assume that ¥ 1s a given free maximal closed filter in X such that
for every n there is W € % and F ¢ ¥ satisfying FcW. Put J =
={y | ye c*X), zZ,(yy)e3F for all ¢ > O}. Then as in the
proof of Theorem 1, we can prove that J is a free maximsgl ideal. Mo-
reover we can show that G ,¢J, n=1,2,... . Because W =X = Z¢ (¢)
5F e ¥ for some y € G, and € > O. Hence Zo(y) & F proving
that 3 € J. Therefore JnL is free in C*(X), Thus in a similar way
as in the proof of Theorem 2 we can prove that for each xe X there
are Z ¢ ¥ and i such that S(x,%;)n 2 = @#. This means that
F¢S(x, U;) holds for all F e ¥ . Hence by TheoremB X is a Gy~
space.

It would be easy to characterize (general) Gech complete spaces
and perhaps general M-spaces, too, in terms of C*(X) by use of a si-
milsr method. How about p=-spaces? There is snother group of generali-
zed metric spaces which can be characterized as jimages of metric spa-
ces by certain types of maps, e.g. La3nev space ( = closed continuous
image of metric space), stratifiable space, 6 -space, etc. Is it pos-
sible to characterize them by simple properties of C* (X) as we have
done for pre-images of metric spaces? In any case one may need a new
technique which is different from the one we have used.

Now, let us turn +to an extension of Theorem O to another direec-
tion. If X is metrizable, then by that theorem C*(X) is generated
by a normal sequence. Then what is the relation between various norm=-
al sequences generating C*(X) and metrie uniformities of X 7 We
shall see in the following that they correspond to each other in cer-
tain manner.

{Ly\n=1,2,..0% ggneragigg C* (X) such m A({L t) "-{fe C*t(x\]
iiorgvgrx € > O there is g € U1L for ym,}_uuf—gn<e§1_
equal to the get V* (X) bounded uniforml ntin
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lued) functions on X. Moreover we can select € L,} ti t
following condition.
() ILcL,c...,

fe Ln implies fuO, aneLn,

feLn_a_ng o € R jpply £ + <, ocfeLm

for some m = m(n,oc).

Proof. Let Ly = {feC*(X)) £ h4n, l2(x) - £(y) | £ n @ (x,y) for

all x,yeX?. Then {I,ln=1 2,... ? is a normal sequence satisfy~-

ing the required conditions.

A(-(.Ln})cV*(X) is obvious because each element of mU L, is boun-

ded and uniformly continuous. To prove V*(Xlc A(f1IL,3%) assume that

the metric @ of X is bounded and also let fe V*(X) and € > 0.

Further suppose |l £l £ A. Select ke N such that @ (x, y)<i‘c implies
@ (£(x). f(y)) <€ . Thenput Fy =4x |ne<f(x)«ln+1le i ,n=
=0,%1, £2,... . (We define F only for such n that satisfies
Cne, (n+1elnlL —A,AJ#ﬁ.

For each n¢ N, let p e N be such that

n - 1< k(A - ns)épn.

Put fn(x) = py @(Fp,x) + ne ; then fy e L, for some qneN, £,(x)
n

=ng for xeFy and £,(x)2A for x¢F Vv F UF ;. Thus (n - 1)e

£ £ (x)£ne holds for each x€F.

Therefore llf - )£, 1 £2€ . Note that /) f &Ly for some m ( = the

4
largest n for which F, is defined). This proves V*(X)c A( iL,3 ) and
eventual coincidence of these two sets.

In

Theorem 6. Let 4L,in=1,2,...% be s pormal sequence generating

c*(X) n tisfyi cond A e _prev theorem, Then

Progf. 1l. First note that ¥ is metrizable.

For each xe X, neN and v,v'e @ (the rationals) such that v<v’, we
define

Bpgyt (X) = ££|fel, £lx)zTx2 },
'gnwl(X) = {f\feLn, f(x)ﬁyz—_é,
Unyy (x) = tyeXx| Nig(y)| £eB o, (x)% > v and
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U«if(y) | £e gnv,v,(x)§< v'?';v'
yge(X) 3> 24— and

Vieyp | fe'ﬁnvv,(x)f< 1—%‘513:

vnvv-(x) = {yeX | ﬂ'{i‘(y)lfeB

Spyve (x) = fyex | N4 2(y) | £6 B, (x)} > 2.%"'—-‘1- and
Ude | seB ., 03 < L5223,
Then S

nvv.‘(X)Cano(X)C Upyy-(x), and they are all oben nbds of x.
For any (n’v,v')'ﬁ N Q‘xQ With Ve V' and for any Yc X we define

Unywe (¥) = Int LN {Upyus(x)| x6 T3 A (N{X = Spyqe(X) [ x€ X -
-¥3)1,

nvws =4 U, (Y| YeXE,

Then unvv' is obviously an open cover of X. Furthermore we claim:

(a) For every (n,v,v )& NxQxQ, there are (s,s”) and (t,t") e QxQ
such that

1Uneer (¥)n Upieo (9) | ye¥$ < Uy »
To see it, let y be a fixed point of X.
Then for each x€ X, either ¥ € Vgl (x) or y¢.Vnw,(x) holds.
I£ 7€ Vpgy. (x), then it is easy to see that U'(y) = Upge. (¥)a Upgy, (y)

+ - . - _
‘:Unvvo(X), where 8 =!—6—5-L-1—131, s =1_3_§L,,_v12 v ,t o=
+ ‘ '_ . P ,_
) -y v’t=5v2v +v12v.
If Y€ Voyyr(x), then either N4 2£(y)| feB,  .(x)} £ iy_%_v_ or

’

UL£(p) | 2e B, . (x) 32 L322,

If the former is the case, then for every € > O there is £, €
€ Byooe(X) such that £¢ (y)& 57—" £Y s . Let £= /1) £ ; then
reB vw*(X), f(y)éiv-é—"-'-l . Hence fe 'ﬁntt,(y), and hence for .each
ueU (y) £(yst’, On the other hand, since f£& Byyy,(x), £lw) >
>g!—-§-l->t' for each we S (x)e

Thus U’(y)n Sy, (x) = 8.
Even if the latter is the case, we can prove the Same in g similar
way. Thus we obtain

U'(y)cUnvv,,(Y), where

Y= 4{xeX |yeVpu X} -

This proves that £Upgg.(¥)n Upnttr (YD | yext< U nyye, a8 claimed in

'l

nvv”’
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(a). On the other hand the following relation is almost obvious:
(b) for every (n,v,v’) € NxQxQ and xe X,

Slxy Upgy, ) € Upyg. (XD

As easily seen, {Up,..(x) ] {n,v,v)e NxQxQ, v<v'} forms a nbd ba-
se at each xe X, and therefore (b) implies that
£ s(x, 'unvv,)l (n,v,v’)e NxQ@xQ, v<v'? is also a nbd base at x.

Now we can conclude this section of the proof with the following
observat:&eon:
@= {“_ ,{U.niv v \ (ni,vi,vi)e NxQxQ, v4< vi, i=leeel; £ =
= 1,2,000 ¢
is a countable ( = metrie) uniform:lty base agreeing with the topology
of X.

Let Upyy, € @ be given; then there are (s,8") and (t,t7) sa-
tisfying (a). Put U= Upgge A Upgys 5 then by (b) U+ < U nype
while % e @ . This proves that @ 1s a uniformity base while we
have seen before that this uniformity agrees with the topology of X.

2. From now on we regard X as a (metrizable) uniform space with the
uniformity defined by w .

The objective of the present section is to prove that A({Ln}) <
cV* (X)., It suffices to show that every f e \.J,1 is uniformly con=-
tinuous with respect to @ . Assume feLn aéf‘b and a,be Q. Given

€ > 0; then choose ke N for which h—i—-ﬁ <€ .Puta =a .,..LE_.&. i,

i =«1,0,1l,000yky,k *+ 1. Assume that x and y are points of X satisfy-
ing
yeUy, 18 (x)t‘\Una 08>

Then assume that ag4 f(x)< 84415 then

(x)nT

nala3(x)f\ ...nUnak_zak(X)n Unak- (x)o

1%%+1
feB (x)nB (x), and hence
na lai+1 naiai 2 ?

Unai 1854 (x) ciyl| £(y)> a1 ¥y iee. £(y)> 85.7°

Similarly we can show f(y)< 84.40¢
Thus | £(x) - £(y) | = 2¢ proving that £ is uniformly continuous.

3. Finally we are going to prove V*(x)cA(-{Ln} e

Note that condition (4) will be fully used for the first time in this
section. Let us begin with simple remarks, of which only the last one
Is given a proof.

(1) Let vy<v,= v3<v, be rationals satisfying
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V. *+ v Ve + V
2 -4 = ‘2—2'—} 3 then Uy, o (x)c Unvlv (x) for every neN and x€ X
2°3 4

(11) Let m<n be Natural numbers; then
Umvv,(x)cUnvv.(x) for every v,veQ and xeX.

(1ii) Let v,v] x € Q and ne N; then there is me& N (independent from
x) such that

Un, ymee, v =cx (x)e Upgq.(x) for all xeX.

To see it, let m = m(n,~oc) in the condition (A), i.e. fe L, implies
£f-o L. Let yeUy n, Voo v,_x(x); then

ﬂ{f(y)\ff-Bmsv «, vim (FNBZV —x+ E>V -« and
Viely) | 2By o vt e ()3 2 v~ =~ E< v'-x for some

€ > 0.

Let feB (x); then

nvv’
f-x € Bm,V'ec.,V"‘ec(X)’ and hence

fly) -2V~ + &, i.e. flylzv*r e .
Thus N4£(y) | fe B W (X)3zv+e=>v.

Similarly U{z£(y) | fegnw,(x)i £v-¢g<v’,
Hence y & Upyy/(x), proving Uy v__g‘,v,_o‘_(x)c: Upyeelx)e

Combining (i),(ii) end (iii) we can conclude that for every U &
€ 4 there is (n,v,v’)e N»Q»Q such that Up ., (x)c S(x,%) for all
xe X,

Now we are in a position to prOVe that for every fe V*(x) and
for every © > 0, there is ¢ U,' L, such that f -y ll<e .
Assume £l £ K. Since f is uniformly continuous there is (m,v,v’)e
e B Q=xQ for which
$Upgo.(x) | xeX3< £ £ (ne,(n+20e)) In=0, ¥1,... 3.

Let x be a given point of X, and suppose that ng £ f(x)<(n+ 1)e .
Then

Uy et -1e , (n+2)e))
Thus for each y¢£ 1(((n =~ 1)e , (n+2)e)), y¢U W.Ex)-
Namely either there is f e L, satisfying fyy (x)% L_L, fxy(y)—’-' v’

or else there is fxyeL sat:.sfy:.ng f (x)z L"—Y—, fxy(Y)év. '

Hence there are o , (3 & R such that 8y = Ouv(eefy, +A) satisfies

20, gx;y(X) =0, gxy(y)ZK -ne , and Byy© Lp for some p indepen-
dent from y. Let h,, = g, + né el _, where q is independent from y.
Thus ¢, = U4 hxy | y*“mvv“(x)} gatisfies

¢x € Lq’ ¢x—n€/ ’ ¢X(X) ¢ (y)> K for all y%Umvv’

(x)o
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Observe that q may be assumed to be common to all xef X Ine , (n+
+1)e)). Thus

¥p= N {¢x\xef'l([ne,(n+1)e))! satisfies
zy'neLq, qrn(x) =ne for all xef£ M [ne ,{n+1e)),
yo2ne , and ¥ (y)2K for all y¢£ (((n - 1)e ,(n + 2)e ).

Finally put ¥ = f)ﬁ ¥, then ye L, for some £e N.
Moreover it is easy to see that ||£ - y | ¢ 2¢ .
Therefore V* (x)c Al 4 Lyt ), which completes the proof of the theorem.

As proved in [6] (Lemma 2), V*(X) determines a metric uniformi-
ty of & metrizable space X, and hence Theorems 5 and 6 indicate that
normal sequencea generating C*(X) and satisfying (A) and metric uni-
formities of X are corresponding to each other though the correspon-
dence is not one-to-one, because different normal sequences can indu=-
ce the same V* (X),
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