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On Robin’s criterion for the Riemann hypothesis

par YoungJu CHOIE, Nicolas LICHIARDOPOL, Pieter MOREE
et Patrick SOLÉ

Résumé. Le critère de Robin spécifie que l’hypothèse de Riemann
(RH) est vraie si et seulement si l’inégalité de Robin σ(n) :=∑

d|n d < eγn log log n est vérifiée pour n ≥ 5041, avec γ la
constante d’Euler(-Mascheroni). Nous montrons par des méthodes
élémentaires que si n ≥ 37 ne satisfait pas au critère de Robin il
doit être pair et il n’est ni sans facteur carré ni non divisible exac-
tement par un premier. Utilisant une borne de Rosser et Schoen-
feld, nous montrons, en outre, que n doit être divisible par une
puissance cinquième > 1. Comme corollaire, nous obtenons que
RH est vraie ssi chaque entier naturel divisible par une puissance
cinquième > 1 vérifie l’inégalité de Robin.

Abstract. Robin’s criterion states that the Riemann Hypothesis
(RH) is true if and only if Robin’s inequality σ(n) :=

∑
d|n d <

eγn log log n is satisfied for n ≥ 5041, where γ denotes the Euler(-
Mascheroni) constant. We show by elementary methods that if
n ≥ 37 does not satisfy Robin’s criterion it must be even and is
neither squarefree nor squarefull. Using a bound of Rosser and
Schoenfeld we show, moreover, that n must be divisible by a fifth
power > 1. As consequence we obtain that RH holds true iff every
natural number divisible by a fifth power > 1 satisfies Robin’s
inequality.

1. Introduction

Let R be the set of integers n ≥ 1 satisfying σ(n) < eγn log log n. This
inequality we will call Robin’s inequality. Note that it can be rewritten as∑

d|n

1
d

< eγ log log n.

Ramanujan [8] (in his original version of his paper on highly composite
integers, only part of which, due to paper shortage, was published, for the
shortened version see [7, pp. 78-128]) proved that if RH holds then every
sufficiently large integer is in R. Robin [9] proved that if RH holds, then
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actually every integer n ≥ 5041 is in R. He also showed that if RH is false,
then there are infinitely many integers that are not in R. Put A = {1, 2,
3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180, 240,
360, 720, 840, 2520, 5040}. The set A consists of the integers n ≤ 5040
that do not satisfy Robin’s inequality. Note that none of the integers in A
is divisible by a 5th power of a prime.

In this paper we are interested in establishing the inclusion of various
infinite subsets of the natural numbers in R. We will prove in this direction:

Theorem 1.1. Put B = {2, 3, 5, 6, 10, 30}. Every squarefree integer that is
not in B is an element of R.

A similar result for the odd integers will be established:

Theorem 1.2. Any odd positive integer n distinct from 1, 3, 5 and 9 is in
R.

On combining Robin’s result with the above theorems one finds:

Theorem 1.3. The RH is true if and only if for all even non-squarefree
integers ≥ 5044 Robin’s inequality is satisfied.

It is an easy exercise to show that the even non-squarefree integers have
density 1

2 −
2
π2 = 0.2973 · · · (cf. Tenenbaum [11, p. 46]). Thus, to wit, this

paper gives at least half a proof of RH !
Somewhat remarkably perhaps these two results will be proved using

only very elementary methods. The deepest input will be Lemma 2.1 be-
low which only requires pre-Prime Number Theorem elementary methods
for its proof (in Tenenbaum’s [11] introductory book on analytic number
theory it is already derived within the first 18 pages).

Using a bound of Rosser and Schoenfeld (Lemma 3.1 below), which ulti-
mately relies on some explicit knowledge regarding the first so many zeros
of the Riemann zeta-function, one can prove some further results:

Theorem 1.4. The only squarefull integers not in R are 1, 4, 8, 9, 16
and 36.

We recall that an integer n is said to be squarefull if for every prime
divisor p of n we have p2|n. An integer n is called t-free if pt - m for every
prime number p. (Thus saying a number is squarefree is the same as saying
that it is 2-free.)

Theorem 1.5. All 5-free integers greater than 5040 satisfy Robin’s inequal-
ity.

Together with the observation that all exceptions ≤ 5040 to Robin’s
inequality are 5-free and Robin’s criterion, this result implies the following
alternative variant of Robin’s criterion.
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Theorem 1.6. The RH holds iff for all integers n divisible by the fifth
power of some prime we have σ(n) < eγn log log n.

The latter result has the charm of not involving a finite range of integers
that has to be excluded (the range n ≤ 5040 in Robin’s criterion). We note
that a result in this spirit has been earlier established by Lagarias [5] who,
using Robin’s work, showed that the RH is equivalent with the inequality

σ(n) ≤ h(n) + eh(n) log(h(n)),

where h(n) =
∑n

k=1 1/k is the harmonic sum.

2. Proof of Theorem 1 and Theorem 2

Our proof of Theorem 1.1 requires the following lemmata.

Lemma 2.1.

(1) For x ≥ 2 we have∑
p≤x

1
p

= log log x + B + O(
1

log x
),

where the implicit constant in Landau’s O-symbol does not exceed
2(1 + log 4) < 5 and

B = γ +
∑
p

(
log(1− 1

p
) +

1
p

)
= 0.2614972128 · · ·

denotes the (Meissel-)Mertens constant.
(2) For x ≥ 5 we have ∑

p≤x

1
p
≤ log log x + γ.

Proof. 1) This result can be proved with very elementary methods. It is
derived from scratch in the book of Tenenbaum [11], p. 16. At p. 18 the
constant B is determined.
2) One checks that the inequality holds true for all primes p satisfying
5 ≤ p ≤ 3673337. On noting that

B +
2(1 + log 4)
log 3673337

< γ,

the result then follows from part 1. �

Remark. More information on the (Meissel-)Mertens constant can be
found e.g. in the book of Finch [4, §2.2].
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Remark. Using deeper methods from (computational) prime number the-
ory Lemma 2.1 can be considerably sharpened, see e.g. [10], but the point
we want to make here is that the estimate given in part 2, which is the
estimate we need in the sequel, is a rather elementary estimate.

We point out that 15 is in R.

Lemma 2.2. If r is in A and q ≥ 7 is a prime, then rq is in R, except
when q = 7 and r = 12, 120 or 360.

Corollary 2.1. If r is in B and q ≥ 7 is a prime, then rq is in R.

Proof. of Lemma 2.2. One verifies the result in case q = 7. Suppose that r
is in A. Direct computation shows that 11r is in R. From this we obtain
for q ≥ 11 that

σ(rq)
rq

= (1+
1
q
)
σ(r)

r
≤ 12σ(r)

11r
=

σ(11r)
11r

< eγ log log(11r) ≤ eγ log log(qr).

�

Proof. of Theorem 1.1. By induction with respect to ω(n), that is the num-
ber of distinct prime factors of n. Put ω(n) = m. The assertion is easily
provable for those integers with m = 1 (the primes that is). Suppose it
is true for m − 1, with m ≥ 2 and let us consider the assertion for those
squarefree n with ω(n) = m. So let n = q1 · · · qm be a squarefree number
that is not in B and assume w.l.o.g. that q1 < · · · < qm. We consider two
cases:
Case 1: qm ≥ log(q1 · · · qm) = log n.

If q1 · · · qm−1 is in B, then if qm is not in B, n = q1 . . . qm−1qm is in R (by
the corollary to Lemma 2.2) and we are done, and if qm is in B, the only
possibility is n = 15 which is in R and we are also done.

If q1 · · · qm−1 is not in B, by the induction hypothesis we have

(q1 + 1) · · · (qm−1 + 1) < eγq1 · · · qm−1 log log(q1 · · · qm−1),

and hence

(q1 + 1) · · · (qm−1 + 1)(qm + 1) < eγq1 · · · qm−1(qm + 1) log log(q1 · · · qm−1).

We want to show that

eγq1 · · · qm−1(qm + 1) log log(q1 · · · qm−1)

≤ eγq1 · · · qm−1qm log log(q1 · · · qm−1qm) = eγn log log n.
(2.1)

Indeed (2.1) is equivalent with

qm log log(q1 · · · qm−1qm) ≥ (qm + 1) log log(q1 · · · qm−1),
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or alternatively
(2.2)

qm(log log(q1 · · · qm−1qm)− log log(q1 · · · qm−1))
log qm

≥ log log(q1 · · · qm−1)
log qm

.

Suppose that 0 < a < b. Note that we have

(2.3)
log b− log a

b− a
=

1
b− a

∫ b

a

dt

t
>

1
b
.

Using this inequality we infer that (2.2) (and thus (2.1)) is certainly satisfied
if the next inequality is satisfied:

qm

log(q1 · · · qm)
≥ log log(q1 · · · qm−1)

log qm
.

Note that our assumption that qm ≥ log(q1 · · · qm) implies that the latter
inequality is indeed satisfied.
Case 2: qm < log(q1 · · · qm) = log n.

Note that the above inequality implies qm ≥ 7 since log 2 < 2, log 6 < 3
and log 30 < 5. It is easy to see that σ(n) < eγn log log n is equivalent with

(2.4)
m∑

j=1

(log(qj + 1)− log qj) < γ + log log log(q1 · · · qm).

Note that

log(q1 + 1)− log q1 =
∫ q1+1

q1

dt

t
<

1
q1

.

In order to prove (2.4) it is thus enough to prove that

(2.5)
1
q1

+ · · ·+ 1
qm

≤
∑

p≤qm

1
p
≤ γ + log log log(q1 · · · qm).

Since qm ≥ 7 we have by part 2 of Lemma 2.1 and the assumption qm <
log(q1 · · · qm) that∑

p≤qm

1
p
≤ γ + log log qm < γ + log log log(q1 · · · qm),

and hence (2.5) is indeed satisfied. �

Theorem 1.2 will be derived from the following stronger result.

Theorem 2.1. For all odd integers except 1, 3, 5, 9 and 15 we have

(2.6)
n

ϕ(n)
< eγ log log n,

where ϕ(n) denotes Euler’s totient function.
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To see that this is a stronger result, let n =
∏k

i=1 pei
i be the prime

factorisation of n and note that for n ≥ 2 we have

(2.7)
σ(n)

n
=

k∏
i=1

1− p−ei−1
i

1− p−1
i

<
k∏

i=1

1
1− p−1

i

=
n

ϕ(n)
.

We let N (N in acknowledgement of the contributions of J.-L. Nicolas to
this subject) denote the set of integers n ≥ 1 satisfying (2.6). Our proofs
of Theorems 1.2 and 2.1 use the next lemma.

Lemma 2.3. Put S = {3a ·5b ·qc : q ≥ 7 is prime, a, b, c ≥ 0}. All elements
from S except 1, 3, 5 and 9 are in R. All elements from S except 1, 3, 5, 9
and 15 are in N .

Proof. If n is in S and n ≥ 31 we have
σ(n)

n
≤ n

ϕ(n)
≤ 3

2
· 5
4
· q

q − 1
≤ 3

2
· 5
4
· 7
6

< eγ log log n.

Using this observation the proof is easily completed. �

Remark. Let y be any integer. Suppose that we have an infinite set of
integers all having no prime factors > y. Then σ(n)/n and n/ϕ(n) are
bounded above on this set, whereas log log n tends to infinity. Thus only
finitely many of those integers will not be in R, respectively N . It is a finite
computation to find them all (cf. the proof of Lemma 2.3).

Proof of Theorem 2.1. As before we let m = ω(n). If m ≤ 1 then, by
Lemma 2.3, n is in N , except when n = 1, 3, 5 or 9. So we may as-
sume m ≥ 2. Let κ(n) =

∏
p|n p denote the squarefree kernel of n. Since

n/ϕ(n) = κ(n)/ϕ(κ(n)) it follows that if r is a squarefree number satisfy-
ing (2.6), then all integers n with κ(n) = r satisfy (2.6) as well. Thus we
consider first the case where n = q1 · · · qm is an odd squarefree integer with
q1 < · · · < qm. In this case n is in N iff

n

ϕ(n)
=

m∏
i=1

qi

qi − 1
< eγ log log n.

Note that
qi

qi − 1
≤ 3

2
and

qi

qi − 1
<

qi−1 + 1
qi−1

,

and hence
n

ϕ(n)
=

m∏
i=1

qi

qi − 1
<

3
2

m−1∏
i=1

qi + 1
qi

=
σ(n1)

n1
,

where n1 = 2n/qm < n. Thus, n/ϕ(n) < σ(n1)/n1. If n1 is in R, then
invoking Theorem 1.1 we find

n

ϕ(n)
<

σ(n1)
n1

< eγ log log n1 < eγ log log n,
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and we are done.
If n1 is not in R, then by Theorem 1.1 it follows that n must be in S.

The proof is now completed on invoking Lemma 2.3. �

Proof of Theorem 1.2. One checks that 1, 3, 5 and 9 are not in R, but 15 is
in R. The result now follows by Theorem 2.1 and inequality (2.7). �

2.1. Theorem 2.1 put into perspective. Since the proof of Theorem
2.1 can be carried out with such simple means, one might expect it can be
extended to quite a large class of even integers. However, even a superficial
inspection of the literature on n/ϕ(n) shows this expectation to be wrong.

Rosser and Schoenfeld [10] showed in 1962 that
n

ϕ(n)
≤ eγ log log n +

5
2 log log n

,

with one exception: n = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23. They raised the
question of whether there are infinitely many n for which

(2.8)
n

ϕ(n)
> eγ log log n,

which was answered in the affirmative by J.-L. Nicolas [6]. More precisely,
let Nk = 2 · 3 · · · · pk be the product of the first k primes, then if the RH
holds true (2.8) is satisfied with n = Nk for every k ≥ 1. On the other hand,
if RH is false, then there are infinitely many k for which (2.8) is satisfied
with n = Nk and there are infinitely many k for which (2.8) is not satisfied
with n = Nk. Thus the approach we have taken to prove Theorem 1.2,
namely to derive it from the stronger result Theorem 2.1, is not going to
work for even integers.

3. Proof of Theorem 1.4

The proof of Theorem 1.4 is an immediate consequence of the following
stronger result.

Theorem 3.1. The only squarefull integers n ≥ 2 not in N are 4, 8, 9, 16,
36, 72, 108, 144, 216, 900, 1800, 2700, 3600, 44100 and 88200.

Its proof requires the following two lemmas.

Lemma 3.1. [10]. For x > 1 we have∏
p≤x

p

p− 1
≤ eγ(log x +

1
log x

).

Lemma 3.2. Let p1 = 2, p2 = 3, . . . denote the consecutive primes. If
m∏

i=1

pi

pi − 1
≥ eγ log(2 log(p1 · · · pm)),

then m ≤ 4.
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Proof. Suppose that m ≥ 26 (i.e. pm ≥ 101). It then follows by Theorem
10 of [10], which states that θ(x) :=

∑
p≤x log p > 0.84x for x ≥ 101, that

log(p1 · · · pm) = θ(pm) > 0.84pm. We find that

log(2 log(p1 · · · pm)) > log pm + log 1.68 ≥ log pm +
1

log pm
,

and so, by Lemma 3.1, that
m∏

i=1

pi

pi − 1
≤ eγ

(
log pm +

1
log pm

)
< eγ log(2 log(p1 · · · pm)).

The proof is then completed on checking the inequality directly for the
remaining values of m. �

Proof of Theorem 3.1. Suppose that n is squarefull and n/ϕ(n) ≥
eγ log log n. Put ω(n) = m. Then

m∏
i=1

pi

pi − 1
≥ n

ϕ(n)
≥ eγ log log n ≥ eγ log(2 log(p1 · · · pm)).

By Lemma 3.2 it follows that m ≤ 4. In particular we must have

2 · 3
2
· 5
4
· 7
6

=
35
8
≥ eγ log log n,

whence n ≤ exp(exp(e−γ35/8)) ≤ 116144. On numerically checking the
inequality for the squarefull integers ≤ 116144, the proof is then completed.

�

Remark. The squarefull integers ≤ 116144 are easily produced on noting
that they can be uniquely written as a2b3, with a a positive integer and b
squarefree.

4. On the ratio σ(n)/(n log log n) as n ranges over various sets
of integers

We have proved that Robin’s inequality holds for large enough odd num-
bers, squarefree and squarefull numbers. A natural question to ask is how
large the ratio f1(n) := σ(n)/(n log log n) can be when we restrict n to
these sets of integers. We will consider the same question for the ratio
f2(n) := n/(ϕ(n) log log n). Our results in this direction are summarized in
the following result:

Theorem 4.1. We have

(1) lim sup
n→∞

f1(n) = eγ , (2) lim sup
n→∞

n is squarefree

f1(n) =
6eγ

π2
, (3) lim sup

n→∞
n is odd

f1(n) =
eγ

2
,



On Robin’s criterion 365

and, moreover,

(4) lim sup
n→∞

f2(n) = eγ , (5) lim sup
n→∞

n is squarefree

f2(n) = eγ , (6) lim sup
n→∞

n is odd

f2(n) =
eγ

2
.

Furthermore,

(7) lim sup
n→∞

n is squarefull

f1(n) = eγ , (8) lim sup
n→∞

n is squarefull

f2(n) = eγ .

(The fact that the corresponding lim infs are all zero is immediate on
letting n run over the primes.)

Part 4 of Theorem 4.1 was proved by Landau in 1909, see e.g. [1, Theorem
13.14], and the remaining parts can be proved in a similar way. Gronwall
in 1913 established part 1. Our proof makes use of a lemma involving t-free
integers (Lemma 4.1), which is easily proved on invoking a celebrated result
due to Mertens (1874) asserting that

(4.1)
∏
p≤x

(
1− 1

p

)−1

∼ eγ log x, x →∞.

Lemma 4.1. Let t ≥ 2 be a fixed integer. We have

(1) lim sup
n→∞

t−free integers

f1(n) =
eγ

ζ(t)
, (2) lim sup

n→∞
odd t−free integers

f1(n) =
eγ

2ζ(t)(1− 2−t)
.

Proof. 1) Let us consider separately the prime divisors of n that are larger
than log n. Let us say there are r of them. Then (log n)r < n and thus
r < log n/ log log n. Moreover, for p > log n we have

1− p−t

1− p−1
<

1− (log n)−t

1− (log n)−1
.

Thus, ∏
p|n

p>log n

1− p−t

1− p−1
<

(
1− (log n)−t

1− (log n)−1

) log n
log log n

.

Let pk denote the largest prime factor of n. We obtain

σ(n)
n

=
k∏

i=1

1− p−ei−1
i

1− p−1
i

≤
k∏

i=1

1− p−t
i

1− p−1
i

<

(
1− (log n)−t

1− (log n)−1

) log n
log log n ∏

p≤log n

1− p−t

1− p−1
,(4.2)

where in the derivation of the first inequality we used that ei < t by
assumption. Note that the factor before the final product is of size
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1 + O((log log n)−1) and thus tends to 1 as n tends to infinity. On in-
voking (4.1) and noting that

∏
p≤log n(1− p−t) ∼ ζ(t)−1, it follows that the

lim sup ≤ eγ/ζ(t).
In order to prove the ≥ part of the assertion, take n =

∏
p≤x pt−1. Note

that n is t-free. On invoking (4.1) we infer that

σ(n)
n

=
∏
p≤x

1− p−t

1− p−1
∼ eγ

ζ(t)
log x.

Note that log n = t
∑

p≤x log p = tθ(x), where θ(x) denotes the Chebyshev
theta function. By an equivalent form of the Prime Number Theorem we
have θ(x) ∼ x and hence log log n = (1 + ot(1)) log x. It follows that for
the particular sequence of infinitely many n values under consideration we
have

σ(n)
n log log n

=
eγ

ζ(t)

(
1 + ot(1)

)
.

Thus, in particular, for a given ε > 0 there are infinitely many n such that

σ(n)
n log log n

>
eγ

ζ(t)
(1− ε).

2) Can be proved very similarly to part 1. Namely, the third product in
(4.2) will extend over the primes 2 < p ≤ log n and for the ≥ part we
consider the integers n of the form n =

∏
2<p≤x pt−1. �

Remark. Robin [9] has shown that if RH is false, then there are infinitely
many integers n not in R. As n ranges over these numbers, then by part 1
of Lemma 4.1 we must have max{ei} → ∞, where n =

∏k
i=1 pei

i .

Proof of Theorem 4.1.
1) Follows from part 1 of Lemma 4.1 on letting t tend to infinity. A direct
proof (similar to that of Lemma 4.1) can also be given, see e.g. [3]. This
result was proved first by Gronwall in 1913.
2) Follows from part 1 of Lemma 4.1 with t = 2.
3) Follows on letting t tend to infinity in part 2 of Lemma 4.1.
4) Landau (1909).
5) Since f2(n) ≤ f2(κ(n)), part 5 is a consequence of part 4.
6) A consequence of part 4 and the fact that for odd integers n and a ≥ 1
we have f2(2an) = 2f2(n)(1 + O((log n log log n)−1)).
7) Consider numbers of the form n =

∏
p≤x pt−1 and let t tend to infinity.

These are squarefull for t ≥ 3 and using them the ≥ part of the assertion
follows. The ≤ part follows of course from part 3.
8) It is enough here to consider the squarefull numbers of the form n =∏

p≤x p2. �
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5. Reduction to Hardy-Ramanujan integers

Recall that p1, p2, . . . denote the consecutive primes. An integer of the
form

∏s
i=1 pei

i with e1 ≥ e2 ≥ · · · ≥ es ≥ 0 we will call an Hardy-Ramanujan
integer. We name them after Hardy and Ramanujan who in a paper entitled
‘A problem in the analytic theory of numbers’ (Proc. London Math. Soc.
16 (1917), 112–132) investigated them. See also [7, pp. 241–261], where
this paper is retitled ‘Asymptotic formulae for the distribution of integers
of various types’.

Proposition 5.1. If Robin’s inequality holds for all Hardy-Ramanujan in-
tegers 5041 ≤ n ≤ x, then it holds for all integers 5041 ≤ n ≤ x. Asymptot-
ically there are exp((1+o(1))2π

√
log x/3 log log x) Hardy-Ramanujan num-

bers ≤ x.

Hardy and Ramanujan proved the asymptotic assertion above. The proof
of the first part requires a few lemmas.

Lemma 5.1. For e > f > 0, the function

ge,f : x → 1− x−e

1− x−f

is strictly decreasing on (1,+∞].

Proof. For x > 1, we have

g′e,f (x) =
exf − fxe + f − e

xe+f+1(1− x−f )2
.

Let us consider the function he,f : x → exf − fxe + f − e. For x > 1, we
have h′e,f (x) = efxf

(
1− xe−f

)
< 0. Consequently he,f is decreasing on

(1,+∞] and since he,f (1) = 0, we deduce that he,f (x) < 0 for x > 1 and so
ge,f (x) is strictly decreasing on (1,+∞]. �

Remark. In case f divides e, then
1− x−e

1− x−f
= 1 +

1
xf

+
1

x2f
+ · · ·+ 1

xe
,

and the result is obvious.

Lemma 5.2. If q > p are primes and f > e, then

(5.1)
σ
(
pfqe

)
pfqe

>
σ
(
peqf

)
peqf

.

Proof. Note that the inequality (5.1) is equivalent with

(1− p−1−f )(1− p−1−e)−1 > (1− q−1−f )(1− q−1−e)−1.

It follows by Lemma 5.1 that the latter inequality is satisfied. �
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Let n =
∏s

i=1 qi
ei be a factorisation of n, where we ordered the primes

qi in such a way that e1 ≥ e2 ≥ e3 ≥ · · · We say that ē = (e1, . . . , es)
is the exponent pattern of the integer n. Note that Ω(n) = e1 + . . . + es,
where Ω(n) denotes the total number of prime divisors of n. Note that∏s

i=1 pi
ei is the minimal number having exponent pattern ē. We denote

this (Hardy-Ramanujan) number by m(ē).

Lemma 5.3. We have

max
{

σ(n)
n

| n has factorisation pattern ē

}
=

σ(m(ē))
m(ē)

.

Proof. Since clearly σ(pe)/pe > σ(qe)/qe if p < q, the maximum is assumed
on integers n =

∏s
i=1 pi

fi having factorisation pattern ē. Suppose that n
is any number of this form for which the maximum is assumed, then by
Lemma 5.2 it follows that f1 ≥ f2 ≥ · · · ≥ fs and so n = m(ē). �

Lemma 5.4. Let ē denote the factorisation pattern of n.
(1) If σ(n)/n ≥ eγ log log n, then σ(m(ē))/m(ē) ≥ eγ log log m(ē).
(2) If σ(m(ē))/m(ē) < eγ log log m(ē), then σ(n)/n < eγ log log n for

every integer n having exponent pattern ē.

Proof. A direct consequence of the fact that m(ē) is the smallest number
having exponent pattern ē and Lemma 5.3. �

Lemma 5.5. Let ē denote the factorisation pattern of n. If n ≥ 5041 and
m(ē) ≤ 5040, then n is in R.

Proof. Suppose that m(ē) ≤ 5040. Since max{ω(r) : r ≤ 5040} = 5 we
must have n = pe1

1 pe2
2 pe3

3 pe4
4 pe5

5 and so

σ(n)
n

≤
∏

p≤11

1− p−5

1− p−1
= 4.6411 · · ·

Assume that n 6∈ R and n ≥ 5041. We infer that

4.6411 · · · =
∏

p≤11

1− p−5

1− p−1
≥ eγ log log n,

whence log n ≤ 13.55. A MAPLE computation now shows that n ∈ R,
contradicting our assumption that n 6∈ R. �

On invoking the second part of Lemma 5.4 and Lemma 5.5, the proof of
Proposition 5.1 is completed.

6. The proof of Theorem 1.5

Our proof of Theorem 1.5 makes use of lemmas 6.1, 6.2 and 6.3.
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Lemma 6.1. Let t ≥ 2 be fixed. Suppose that there exists a t-free integer
exceeding 5040 that does not satisfy Robin’s inequality. Let n be the smallest
such integer. Then P (n) < log n, where P (n) denotes the largest prime
factor of n.

Proof. Write n = r · q with P (n) = q and note that r is t-free. The mini-
mality assumption on n implies that either r ≤ 5040 and does not satisfy
Robin’s inequality or that r is in R. First assume we are in the former case.
Since 720 is the largest integer a in A with P (a) ≤ 5 and 5 · 720 ≤ 5040, it
follows that q ≥ 7. By Lemma 2.3 we then infer, using the assumption that
n > 5040, that n = qr is in R; a contradiction. Thus we may assume that r
is in R and therefore r ≥ 7. We will now show that this together with the
assumption q ≥ log n leads to a contradiction, whence the result follows.

So assume that q ≥ log n. This implies that q log q ≥ log n log log n >
log n log log r and hence

q

log n
>

log log r

log q
.

This implies that

(6.1)
q(log log n− log log r)

log q
>

log log r

log q
,

where we used that
log log n− log log r

log q
=

1
log n− log r

∫ log n

log r

dt

t
>

1
log n

.

Inequality (6.1) is equivalent with (1 + 1/q) log log r < log log n. Now we
infer that
(6.2)

σ(n)
n

=
σ(qr)

qr
≤
(

1 +
1
q

)
σ(r)

r
<

(
1 +

1
q

)
eγ log log r < eγ log log n,

where we used that σ is submultiplicative (that is σ(qr) ≤ σ(q)σ(r)). The
inequality (6.2) contradicts our assumption that n 6∈ R. �

Lemma 6.2. All 5-free Hardy-Ramanujan integers n > 5040 with P (n) ≤
73 satisfy Robin’s inequality.

Proof. There are 12649 5-free Hardy-Ramanujan integers n with P (n) ≤ 73,
that are easily produced using MAPLE. A further MAPLE computation
learns that all integers exceeding 5040 amongst these (12614 in total) are
in R. �

Remark. On noting that
∏

p≤73 p4 <
∏

p≤20000 p and invoking Robin’s re-
sult [9, p. 204] that an integer n 6∈ R with n > 5040 satisfies n ≥

∏
p≤20000 p,

an alternative proof of Lemma 6.2 is obtained.
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Lemma 6.3. For x ≥ 3 and t ≥ 2 we have that∑
p≤x

log

(
1− p−t

1− p−1

)
≤ − log ζ(t) +

t

(t− 1)
x1−t

+ γ + log log x + log
(

1 +
1

log2 x

)
.

The proof of this lemma on its turn rests on the lemma below.

Lemma 6.4. Put Rt(x) =
∏

p>x(1− p−t)−1. For x ≥ 3 and t ≥ 2 we have
that log(Rt(x)) ≤ tx1−t/(t− 1).

Proof. We have

Rt(x) = −
∑
p>x

log
(

1− 1
pt

)
=
∑
p>x

∞∑
m=1

1
mptm

≤
∑
p>x

∞∑
m=1

1
(pm)t

≤
∑
n>x

1
nt
≤ 1

xt
+

∑
n>x+1

1
nt
≤ 1

xt−1
+
∫ ∞

x

du

ut
=

t

t− 1
x1−t.

�

Proof of Lemma 6.3. On noting that
∏

p≤x(1 − p−t) = Rt(x)/ζ(t) and in-
voking Lemma 6.4 we obtain∑

p≤x

log
(

1− 1
pt

)
= − log ζ(t) + log(Rt(x)) ≤ − log ζ(t) +

t

t− 1
x1−t.

On combining this estimate with Lemma 3.1, the estimate then follows. �

Lemma 6.5. Let m be a 5-free integer such that P (m) < log m and m does
not satisfy Robin’s inequality. Then P (m) ≤ 73.

Proof. Put t = 5. Write Pt(x) =
∏

p≤x(1 − p−t)/(1 − p−1). Put z = log m.
The assumptions on m imply that σ(m)/m ≤ Pt(z). This inequality in
combination with Lemma 6.3 yields

log
(

σ(m)
m

)
≤ − log ζ(t) +

t

(t− 1)zt−1
+ γ + log log z + log

(
1 +

1
log2 z

)
.

Once

− log ζ(t) +
t

t− 1
z1−t + γ + log log z + log

(
1 +

1
log2 z

)
< γ + log log z,

Robin’s inequality is satisfied. We infer that once we have found a z0 ≥ 3
such that

t

t− 1
z1−t
0 + log

(
1 +

1
log2 z0

)
− log ζ(t) < 0,

then Robin’s inequality will be satisfied in case z ≥ z0. One finds that
z0 = 196 will do. It follows that z < 196 and hence σ(m)/m < P5(193) =
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9.18883221 . . .. Note that if eγ log log m ≥ P5(193), then Robin’s inequality
is satisfied. So we conclude that log m ≤ exp(P5(193)e−γ) = 174.017694 . . ..
Since 173 is the largest prime < 175 we know that m must satisfy σ(m)/m <
P5(173) = 8.992602079 . . .. We now proceed as before, but with P5(193)
replaced by P5(173). Indeed, this ‘cascading down’ can be repeated several
times before we cannot reduce further. This is at the point where we have
reached the conclusion that z = log m ≤ 73. Then we cannot reduce further
since exp(P5(73)e−γ) > 73. �

Proof of Theorem 1.5. By contradiction. So suppose a 5-free integer ex-
ceeding 5040 exists that does not satisfy Robin’s inequality. We let n be
the smallest such integer. By Lemma 6.1 it follows that P (n) < log n,
whence by Lemma 6.5 we infer that P (n) ≤ 73. We will now show that n
is a Hardy-Ramanujan number. On invoking Lemma 6.2 the proof is then
completed.

It thus remains to establish that n is a Hardy-Ramanujan number. Let
ē denote the factorisation pattern of n. Note that m(ē) is 5-free and that
m(ē) ≤ n. By the minimality of n and part 1 of Lemma 5.4 it follows that
we cannot have that 5041 ≤ m(ē) < n and so either m(ē) = n, in which
case we are done as m(ē) is a Hardy-Ramanujan number, or m(ē) ≤ 5040,
which by Lemma 5.5 leads us to conclude that n ∈ R, contradicting our
assumption that n 6∈ R. �

By the method above we have not been able to replace 5-free by 6-free in
Theorem 1.5 (this turns out to require a substantial computational effort).
Recently J.-L. Nicolas kindly informed the authors of an approach (rather
different from the one followed here and being less self-contained) that
might lead to a serious improvement of the 5-free.
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