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ABSTRACT OF THE DISSERTATION

On Robust and Energy-Limited Joint Source-Channel Coding

by

Erman Koken

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2017

Dr. Ertem Tuncel, Chairperson

In this thesis we investigate the lossy transmission of single and bivariate Gaussian sources

over bandwidth-mismatched additive Gaussian white noise and broadcast channels. For

these scenarios we proposed novel hybrid digital/analog based joint source-channel coding

schemes which generalize or outperform existing schemes. In the first scenario we assume

that side information is available at the receiver, channel state information of additive

interference is available at the transmitter, and power is limited. For this scenario we

proposed hybrid digital/analog schemes, for both bandwidth expansion and bandwidth

compression cases, which can attain the optimum reconstruction levels. For bandwidth

expansion we showed that the scheme can attain optimum distortion levels for a set of

receivers with di↵erent side information and channel qualities simultaneously with a single

set of scheme parameters. In the second scenario, where no side information or interference

are present, we consider the robustness of scheme where it must attain the optimal distortion

at a target signal-to-noise-ratio and we would like to attain the best distortion pair for two

possible receivers one with better and the other with worse channel quality. We extended

vi



Tian et al.’s result to a set of non-integer bandwidth expansion ratios. Then we investigate

the transmission of bivariate sources over broadcast channels. For this scenario we proposed

a scheme which outperforms the known schemes which are either purely digital or hybrid

schemes. Finally we analyzed energy-distortion tradeo↵ for lossy transmission of a Gaussian

source over bandwidth-unlimited channel. We performed asymptotical analyses as signal-

to-noise-ratio goes to infinity. We also considered zero-delay transmission of the source.
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Chapter 1

Introduction

In lossy transmission of a source over a noisy point-to-point bandwidth-mismatched

channel, it is shown in Shannon’s landmark paper [37] that the minimum distortion can

be achieved asymptotically, i.e., as both source and channel codewords goes to infinity,

by using separate source and channel codes. However separable schemes su↵er from the

threshold e↵ect, i.e., when the channel quality is lower than expected the codewords cannot

be decoded reliably and the performance degrades drastically. They cannot benefit from

an occasional increase in the channel quality either, which is called the leveling-o↵ e↵ect.

Naturally a direct mapping from the source sequence to the channel input, which is called

joint source-channel coding, is expected to perform at least as good as separate coding.

One of the prominent class of joint source-channel coding schemes is hybrid dig-

ital/analog (HDA) coding. HDA schemes are robust in the sense that they mitigate the

detrimental e↵ects of the ambiguity in the channel signal-to-noise-ratio (SNR).

HDA schemes prove useful not only in point-to-point communication systems. It
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is known that separation of source and channel codes cannot o↵er optimal distortion in

most of the multiple user scenarios such as broadcast channels, multiple access channels,

interference channels, etc., where many sources are transmitted to many receivers. HDA

coding increases the reconstruction quality of the source at the receivers in such scenarios.

In this thesis we propose novel HDA based joint source channel coding schemes

for di↵erent scenarios. Our schemes essentially rely on typicality arguments.

Another scenario we address in the thesis is the case where the energy per source

symbol is limited but the channel uses per source symbol is unlimited, which corresponds

to unlimited bandwidth. We use aforementioned schemes to characterize the achievable

distortion exponents. Our analyses are also extended to zero-delay transmission.

In Chapter 2 lossy transmission of a Gaussian source over an additive white Gaus-

sian (AWGN) channel with a noncausal side information (SI) at the decoder and channel

state information (CSI) at the encoder is tackled under bandwidth mismatch. A previously

known scheme, hybrid digital/analog Wyner-Ziv (HDA-WZ) coding is shown to remain

optimal when extended from the bandwidth matched case to the bandwidth mismatched

case. The extended scheme also exhibits similar robustness properties under mismatched

side information and/or channel quality under the regime of bandwidth expansion. Finally,

under the criterion of min-max distortion loss, the extended HDA-WZ scheme is shown to

outperform a purely-digital scheme known as the common description scheme (CDS).

Chapter 3 is devoted to the robustness analysis of the proposed scheme with respect

to the variations in SNR. For transmission of memoryless Gaussian sources over channels

with AWGN, the tradeo↵ between the distortion levels when the channel quality is good

2



and bad is investigated under the constraint that the distortion is optimal when the channel

has the targeted median quality. The problem was proposed by Tian and Shamai who

subsequently proved remarkable achievability results for bandwidth expansion ratios  which

are integers or unit fractions, i.e.,  = 2, 3, 4, ... or  = 1/2, 1/3, 1/4, ... Their result is

extended here to all  � 2 and   1/2 by generalizing the HDA scheme of Wilson et al. to

the case of bandwidth mismatch. Finally, novel schemes are proposed for 1/2   < 1 and

1 <   2 achieving nontrivial tradeo↵s outperforming all known schemes. These latter

schemes rely on another extension of the HDA scheme by Wilson et al., namely, relaxation

of the independence of source and channel input sequences.

In Chapter 4 we consider the problem of transmitting a pair of Gaussian sources

over a Gaussian broadcast channel, where each receiver is interested in reconstructing only

one source component. This scenario is relevant in sensor network settings where sensors are

taking measurements of multiple environmental phenomena, such as temperature, humidity,

pressure, that are typically correlated with each other. On the other hand, each receiving

agent may be interested in just one of these measurements.

In Chapter 5 we deviate from HDA schemes and we particularly focus on high-ENR

zero-delay schemes. An achievable scheme for zero-delay transmission of an i.i.d. Gaussian

source over an AWGN channel with no bandwidth limitation is introduced, and its energy-

distortion performance is analyzed. By the nature of the problem, one must transmit each

source sample separately but can use the channel infinitely many times. We introduce an

outage concept, and analyze the expected distortion conditioned on no outage. We show

that the proposed scheme can approach to the asymptotical decay for large enough energy

3



for arbitrary outage probability. The proposed scheme builds on separation of source and

channel coding, whereby the source is quantized with a high-resolution optimal quantizer.

In the high energy-to-noise ratio (ENR) regime, the minimum energy required to obtain a

given distortion level in the proposed scheme can approach arbitrarily close the Shannon

bound, which can only be achieved using infinite delay.

Some of the proofs are deferred to Appendix A.
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Chapter 2

Hybrid Digital/Analog Coding

with Side Information and Channel

State Information

2.1 Introduction and Problem Definition

In this chapter, we consider the lossy transmission of a unit-variance i.i.d. Gaussian

source X

nN over an AWGN channel with bandwidth mismatch, where the receiver has access

to noncausal side information Y

nN correlated with the source. More specifically, X

nN =

Y

nN +Z

nN with Z

nN ⇠ N �

0,�

2
Z

I
�

and Y

nN ⇠ N �

0,

�

1 � �

2
Z

�

I
�

being independent. There

is also an additive interference S

mN ⇠ N �

0mN

,�

2
S

I
mN

�

which is noncausally and perfectly

known by the encoder. The interference is independent of the source. The output of the

channel is modeled by V

mN = U

mN + S

mN + W

mN where the i.i.d. channel noise variance

5



�

2
W

is ��1. This scenario is illustrated in Fig. 2.1.

Figure 2.1: The bandwidth mismatched case where the SI is available only at the decoder
and the interference in perfectly available at the encoder.

As usual, the channel input is power constrained, i.e.,

1

mN

mN

X

i=1

E
⇥

U

2
i

⇤  P (2.1)

where P = 1 without loss of generality and the quality of reconstruction is measured by the

average expected square-error distortion

D =
1

nN

nN

X

i=1

E


⇣

X

i

� X̂

i

⌘2
�

. (2.2)

We take m, n, and N as integers, where N is the length of blocks consisting of

super-symbols X

n, Y

n , X

n, U

m, V

m, and W

m , while m and n determine the bandwidth

expansion ratio as  = m

n

. We will call the system bandwidth expansion (BE) if  � 1

and bandwidth compression (BC) if   1. In the subsequent asymptotic analysis, N will

approach infinity while m and n will be finite and fixed.

While this problem is known to be separable [25], i.e., a combination of digital

source and channel codes can achieve the optimal tradeo↵, i.e., D = �

2
Z

2�2C , or

D =
�

2
Z

(1 + �)
,

6



digital codes are vulnerable to changes in channel and/or side information quality: After

the system is built for a target
�

�

2
Z

,�

2
W

�

, if �2
Z

and/or �2
W

increases, the decoding of the

digital information breaks down (also known as the thresholding e↵ect). On the other hand,

decreasing �2
Z

and �2
W

does not translate to any reduction in distortion (also known as the

leveling-o↵ e↵ect). It is well-known both thresholding and leveling-o↵ can be mitigated by

HDA coding (for example, see [7], [13], [35], [45] and references therein).

In [45], the authors introduced the HDA-WZ-Costa scheme that can achieve the

same minimum distortion for the bandwidth-matched case, i.e., m = n = 1, which operates

as follows. A codebook of size 2NR is generated according to an auxiliary random variable

defined by

T = U + kX + aS

where U ⇠ N (0, 1) is independent of X and S. The encoder finds a codeword T

N (j) jointly

typical with X

N and S

N , and transmits U

N = T

N (j) � kX

N � aS

N . Given the channel

output V

N = U

N + S

N + W

N , the receiver finds the unique T

N (j) typical with V

N and

Y

N . This is possible if

I (T ; X, S)  R  I (T ; V, Y ) .

The receiver then computes the minimum mean square error (MMSE) estimate

X̂

N = c1T
N + c2V

N + c3Y
N

.

By carefully choosing

k

2 =
�

�

2
Z

(1 + �)

7



and

a =
�

1 + �

,

together with the optimal choice of c1, c2, and c3, it was shown in [45] that one can achieve

the optimum distortion

D =
�

2
Z

1 + �

.

Throughout this section we will follow the same approach of finding an appropriate auxiliary

random variable to generate codewords then make use of these codewords at both the

transmitter and the receiver end. We end this section by providing a lemma which will

be instrumental in simplifying the calculation of the MMSE error and mutual information

expressions in various cases.

Lemma 1 For jointly Gaussian random variables (X, Y, Z) where Y � X � Z forms a

Markov chain, i.e., Y = k1X + W1, Z = k2X + W2, with W

i

⇠ N (0, N

i

), X ⇠ N (0, 1),

and X ? W1 ? W2, we have

I (X; Y, Z) =
1

2
log

✓

1 +
k

2
1

N1
+

k

2
2

N2

◆

and

�

2
Z|Y,Z =

1
1

�

2

X|Y
+ 1

�

2

X|Z
� 1

=
1

1 +
k

2

1

N

1

+
k

2

2

N

2

.

Proof. Follows from standard MMSE analysis and noting that

I (X; Y, Z) = h (X) � h (X | Y, Z) =
1

2
log

 

1

�

2
X|Y,Z

!

.

8



2.2 The Coding Schemes

2.2.1 HDA-WZ-Costa-BE ( � 1)

The main approach we take here for extending the original coding scheme [45], and

throughout Chapter 2 and 3, is to treat the source X

nN and the channel input U

mN (also

SI Y

nN and additional interference S

nN if applicable) as bandwidth-matched (length-N )

superblocks consisting of supersymbols X

n and U

m. Since the superblock lengths match,

we can employ the usual typicality arguments. However, since the lengths n and m do not

match, we still recourse to breaking either X

n into subsources, or U

m into subchannels, or

both, to relate the two.

As in the original approach in [45], the codeworks are generated independently

and randomly according to the auxiliary random variable

T

m =

2

6

6

4

kX

n

0m�n

3

7

7

5

+ U

m + aS

m

where U

m ⇠ N (0m, I) and X

n ? U

m ? S

m. After finding an auxiliary codeword T

mN (j)

which is typical with the source and the interference as depicted in Fig.2.2, the channel

input U

mN is calculated supersymbol-by-supersymbol using

U

m =

2

6

6

4

U

n

1

U

m�n

2

3

7

7

5

= T

m �

2

6

6

4

kX

n

0m�n

3

7

7

5

� a

2

6

6

4

S

n

1

S

m�n

2

3

7

7

5

.

At the receiver, after finding the unique auxiliary codeword, the estimate can be

computed again supersymbol-by-supersymbol as

X̂

n = c

T

T

n

1 + c

V

V

n

1 + c

Y

Y

n

. (2.3)

9



Figure 2.2: The encoder for the HDA-WZ-Costa-BE coding, which looks for an index j

such that T

nN

1 (j) is jointly typical with
�

X

nN

, S

nN

1

�

and T

(m�n)N
2 (j) is jointly typical

with S

(m�n)N
2 .

Theorem 2 The HDA-WZ-Costa-BE scheme can attain the optimum distortion with proper

coe�cients (k, a).

Proof. In order for a reliable communication the mutual informations should satisfy

I (Tm; Xn

, S

m)  I (Tm; V m

, Y

n) (2.4)

where

I (Tm; Xn

, S

m) = I (Tn

1 ; Xn

, S

n

1 ) + I

�

T

m�n

2 ; Sm�n

2

� �

1 + k

2 + a

2
�

2
S

�

n

�

1 + a

2
�

2
S

�

m�n

=
n

2
log

�

1 + k

2 + a

2
�

2
S

�

+
m � n

2
log

�

1 + a

2
�

2
S

�

and

I (Tm; V m

, Y

n) = I (Tn

1 ; V n

1 , Y

n) + I

�

T

m�n

2 ; V m�n

2

�

=
n

2
log

✓

1 + k

2 + a

2
�

2
S

1 + �

2
Z

k

2 + a

2
�

2
S

◆

+
n

2
log

✓

1 + �

2
Z

k

2 + a

2
�

2
S

M + �

2
Z

k

2

◆

+
m � n

2
log

✓

1 + a

2
�

2
S

M

◆

with
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M = 1 + a

2
�

2
S

�
�

1 + a�

2
S

�2

⇣

1 + 1
�

+ �

2
S

⌘

. (2.5)

It is easy to see that inequality (2.4) boils down to

�

M + �

2
Z

k

2
�

M

�1  1. (2.6)

Now define

T̃

i

= T1,i � E [T1,1Vi

]

E
h

V

2
1,i

i

V1,i

= kX

i

+

✓

1 � 1 + a�

2
S

1 + �

�1 + �

2
S

◆

U1,i +

✓

a � 1 + a�

2
S

1 + �

�1 + �

2
S

◆

S1,i � 1 + a�

2
S

1 + �

�1 + �

2
S

W1,i

.

= kX

i

+ W̃

i

with W̃

i

= N
⇣

0,�

2
W̃

i

⌘

and W̃

i

? X

i

, where after some algebra, it can be shown that

�

2
W̃

i

= M . The MMSE estimate in (2.3) can be simplified to

X̂

i

= E
h

X

i

| T̃

i

, Y

i

i

because V1,i is independent of T̃

i

,Y
i

, and X

i

. Now let D

Y

and D

T̃

denote

D

Y

.

= E
h

(X
i

� E [X
i

| Y

i

])2
i

= �

2
Z

and

D

T̃

.

= E


⇣

X

i

� E
h

X

i

| T̃

i

i⌘2
�

=
M

k

2 + M

.
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Since the Gaussian random variables form a Markov chain the distortion can be calculated

using Lemma 1 as

D =
1

D

�1
T̃

+ D

�1
Y

� 1

=
�

2
Z

M

M + �

2
Z

k

2
. (2.7)

Clearly, the distortion will be minimized by choosing k

2 to satisfy equality in (2.6) as

k

2 =
M (M� � 1)

�

2
Z

resulting in

D = �

2
Z

M



. (2.8)

Note that M is a convex quadratic function of a, and is minimized by setting

a =
�

1 + �

(2.9)

yielding the minimum value of M as

M =
�

1 + �

(2.10)

for which the corresponding value of k

2 becomes

k

2 =
(1 + �) � 1

�

2
Z

(1 + �)
. (2.11)

Finally, it follows from (2.8) and (2.10) that with this choice of (k, a), we obtain the desired

optimum distortion D =
�

2

Z

(1+�)
.
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Corollary 3 If SNR �+ and/or SI quality �2
Z

+

is better than expected, i.e., �+ > � and/or

�

2
Z

+

< �

2
Z

, then the resultant distortion D+ can be expressed as

D+ =

0

@

⇣

(1 + �)+1 � 1 � �

⌘

�

1 +
�

1 + �

2
S

�

�+

�

�

2
Z

⇣

(1 + �)2 + �

2
S

(�2 + �+)
⌘ +

1

�

2
Z

+

1

A

�1

(2.12)

If, on the other hand, T

mN (j) cannot be decoded due to lower SI or channel

quality, i.e., �� < � and/or �2
Z

+

< �

2
Z

, no decoding available, due to lower side information

or channel quality, then the distortion becomes

D� = �

2
Z� . (2.13)

Proof. Keeping (k, a) as in (2.9) and (2.11) and defining

M+ = 1 + a

2
�

2
S

�
�

1 + a�

2
S

�2

�

1 + �

�1
+ + �

2
S

�

we can use the same analysis to derive (2.7) and obtain

D+ =
�

2
Z

+

M+

M+ + �

2
Z

+

k

2

=

0

B

B

@

(1 + �) � 1

�

2
Z

(1 + �)



1 + a

2
�

2
S

� (1+a�

2

S

)2

(1+�

�1

+

+�

2

S

)

� +
1

�

2
Z

+

1

C

C

A

�1

=

0

B

B

@

(1 + �)+1 � 1 � �

�

2
Z



(1 + �)2 + �

2
�

2
S

� (1+�+��

2

S

)2

(1+�

�1

+

+�

2

S

)

� +
1

�

2
Z

+

1

C

C

A

�1

which can be further simplified to (2.12).

As for (2.13), it su�ces to observe that since X

n is independent of U

m, and thus

of V

m, its reconstruction must solely rely on Y

n if T

mN (j) is not decoded.
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If there is no SI or no interference, the scheme will be termed HDA-Costa-BE or

HDA-WZ-BE, respectively. HDA-WZ-BE will be compared to a previously known robust

coding scheme, i.e., Common Description Scheme, in terms of maximum distortion loss

metric in Section 2.3.

2.2.2 HDA-WZ-Costa-BC (  1)

We use the same approach as we did for BE case. The codeworks are generated

independently and randomly according to the auxiliary random variable

T

n =

2

6

6

4

T

m

1

T

n�m

2

3

7

7

5

=

2

6

6

4

k1X
m

1

k2X
n�m

2

3

7

7

5

+

2

6

6

4

U

m

Q

n�m

3

7

7

5

+

2

6

6

4

aS

m

0n�m

3

7

7

5

(2.14)

where the source supersymbol X

n is decomposed into X

m

1 and X

n�m

2 with Q

n�m ⇠

N (0n�m

, I
n�m

), and X

n ? U

m ? S

m ? Q

n�m. After finding a suitable codeword T

nN (j)

typical with the source and the interference, the channel input supersymbol is calculated as

U

m = T

m

1 � k1X
m

1 � aS

m

.

After uniquely decoding T

nN (j) at the receiver, the MMSE estimate is found as

X̂1
m

= c

T,1T
m

1 + c

V

V

m + c

Y,1Y
m

1

and

X̂2
n�m

= c

T,2T
n�m

2 + c

Y,2Y
n�m

2

14



where the estimate and SI supersymbols X̂

n and Y

n are decomposed similarly as X

n does.

We denote by D1 and D2 the corresponding estimation errors.

Remark 4 Similar to the HDA-WZ-Costa-BE scheme proposed in Section 2.2.1, this can

be thought of as two coding modules working together: the encoder searches for T

nN (j)

with typical
�

T

mN

1 (j) , X

mN

1

�

and
⇣

T

(n�m)N
2 (j) , X

(n�m)N
2

⌘

simultaneously, and the decoder

searches for T

nN (j) with typical
�

T

mN

1 (j) , V

mN

, Y

mN

1

�

and
⇣

T

(n�m)N
2 (j) , Y

(n�m)N
2

⌘

si-

multaneously.

Theorem 5 The optimum distortion can be attained by the HDA-WZ-Costa-BC scheme

with proper coe�cients (k1, k2, a).

Proof. For reliable communication, we need

I (Tm; Xn

, S

m)  I (Tm; V m

, Y

n) ,

which, after some algebra similar to that used in simplifying (2.4), can be written as

�

M + �

2
Z

k

2
1

�

  �

1 + �

2
Z

k

2
2

�

�1
(2.15)

where M is as in (2.5). Noting that

D2,T
2

.

= E
h

(X2,i � E [X2,i | T2,i])
2
i

=
�

1 + k

2
2

��1

D2,Y
2

.

= E
h

(X2,i � E [X2,i | Y2,i])
2
i

= �

2
Z

15



and that T2,i � X2,i � Y2,i forms a Markov chain, it follows from Lemma 1 that

D2 =
1

D

�1
2,T

2

+ D

�1
2,Y

2

� 1

=
�

2
Z

�

2
Z

k

2
2 + 1

and also setting

k

2
2 =

(1 + �) � 1

�

2
Z

one can obtain D2 = �

2
Z

(1 + �)�. This also reduces (2.15) to

�

M + �

2
Z

k

2
1

�  (1 + �)�1

which is the same as (2.6) with the choice the source components corresponding to X

m

1 as

we did in BE case, it is seen that, the choice of a = �

(1+�) . Repeating the same analysis as

in the BE case (cf. (2.7) and (2.11)), one can then show that if

k

2
1 =

(1 + �) � 1

�

2
Z

(1 + �)
,

D1 also becomes �2
Z

(1 + �)�, which makes the overall average distortion D = D1 +

(1 � ) D2 = �

2
Z

(1 + �)�.

Corollary 6 If SNR and/or side information quality is better than expected, i.e., �+ > �

and/or �2
Z

+

< �

2
Z

, then the distortion will be

D+ = 

0

@

⇣

(1 + �)+1 � 1 � �

⌘

�

1 + �+

�

1 + �

2
S

��

�

2
Z

⇣

(1 + �)2 + �

2
S

(�2 + �+)
⌘ +

1

�

2
Z

+

1

A

�1

+ (1 � )

 

(1 + �) � 1

�

2
Z

+
1

�

2
Z

+

!�1

.

If, on the other hand, T

nN (j) cannot be decoded, the distortion takes the catastrophic value

D� = �

2
Z�

as in the BE case.
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2.3 Performance of HDA-WZ-BE under mismatched SNR

and/or SI quality

In [20] we made a performance comparison between HDA-WZ-BE, a previously

known robust scheme, namely common description scheme (CDS) [30], and the uncoded

transmission when �

2
S

= 0, i.e., no additional interference, and  � 1, i.e., BE case. The

comparison was based on a performance metric we introduced: the distortion loss

L

�

�

2
Z⇤ , �⇤

�

=
D

�

�

2
Z⇤

, �⇤
�

�

2
Z⇤

(1 + �⇤)�

where the system parameters are adjusted as to attain the optimal distortion at a target

�

�

2
Z

, �

�

pair. By using HDA-WZ-BE in this scenario, it follows from (2.6) and (2.11) that

the auxiliary codeword can be detected and benefitted from as long as

(1 + �) � 1

�

2
Z

(1 + �)
 (1 + �⇤) � 1

�

2
Z⇤

(1 + �⇤)
(2.16)

holds and the scheme attains the optimal distortion �

2
Z⇤

(1 + �⇤)� at
�

�

2
Z⇤

, �⇤
�

if (2.16)

holds with equality. CDS is shown in [30] to exhibit similar robustness performance, i.e.,

the auxiliary codeword is uniquely decoded as long as

(1 + �) � 1

�

2
Z

 (1 + �⇤) � 1

�

2
Z⇤

(2.17)

and if it holds with equality then the optimal distortion is attained at
�

�

2
Z⇤

, �⇤
�

. Both of

these schemes su↵er from the threshold e↵ect if the corresponding inequalities do not hold.

We now compare the performances of CDS, HDA-WZ, and uncoded transmission

methods in terms of the distortion loss that they incur. We likewise define the distortion
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If (2.16) or (2.17) satisfied Otherwise

LHDA

✓

(1+�)�1
�

2

Z

· 1+�⇤
1+�

+ 1
�

2

Z⇤

◆�1
(1+�⇤)
�

2

Z⇤
(1 + �⇤)

LCDS

✓

(1+�)�1
�

2

Z

· 1+�⇤
1+�

+ 1
�

2

Z⇤

◆�1
(1+�⇤)
�

2

Z⇤
(1 + �⇤)

LUNC
(1+�⇤)



(1+��

2

Z⇤)

Table 2.1: The distortion loss expressions for the three schemes

gain as

G

�

�

2
Z⇤ , �⇤

�

=
1

L

�

�

2
Z⇤

, �⇤
�

.

Note that L

�

�

2
Z⇤

, �⇤
�

larger than or equal to 1 while L

�

�

2
Z⇤

, �⇤
�

is between 0 and 1 for any

�

�

2
Z⇤

, �⇤
�

pair with any scheme. The distortion loss expressions for HDA-WZ, CDS, and

uncoded transmission are given in Table 2.1.

In Fig. 2.3, the distortion gains are depicted in an RGB-coded diagram, where

“red”, “green”, and “blue” colors account for GHDA, GCDS, and GUNC, respectively. In

this sense a true “yellow” color at any point means GHDA = GCDS = 1 and GUNC at that

�

�

2
Z⇤

, �⇤
�

pair. Likewise, a true “white” color corresponds to all the schemes being optimal

whereas a true “black” color means distortion loss for all of the schemes are very high. In

the figure,  = 1.2 and the target is set to ⇢ =
q

�

1 � �

2
Z

� ⇡ 0.7071 and � = 5.

Table 2.2 shows numerical values for GHDA, GCDS, and GUNC at several points

indicated on Fig. 2.3. On the curve indicated by points f-a-g, GHDA = 1 since (2.16) is

satisfied with equality. For all points to the upper right of that curve, the HDA-WZ scheme

successfully decodes T

mN . Likewise, on the curve b-a-c, GCDS = 1 since (2.17) is satisfied

with equality and to the upper-right of that curve, CDS decodes the auxiliary codeword
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Figure 2.3: An RGB-coded representation of GHDA, GCDS, and GUNC
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Point R(GHDA) G(GCDS) B(GUNC) � (dB) ⇢

a 1.000 1.000 0.465 6.99 0.707
b 0.627 1.000 0.487 -0.16 0.958
c 0.064 1.000 0.721 9.48 0.194
d 0.005 0.080 0.478 19.00 0.200
e 0.719 0.719 0.948 -5.00 0.400
f 1.000 0.428 0.566 0.12 0.860
g 1.000 0.217 0.467 14.54 0.486

Table 2.2: The points on Fig. 2.3 and corresponding values.

successfully. On the point a, which corresponds to the target, both CDS and HDA-WZ

achieves a gain of 1, as expected. On points d and e, the uncoded transmission scheme

outperforms the other two.

In [20] we extended our comparison under the criterion that

L (R) = min max
(�2

Z⇤ ,�⇤)2R
L

�

�

2
Z⇤ , �⇤

�

and we showed that LHDA (R)  LCDS (R) for every rectangular region

R =
��

�

2
Z⇤ , �⇤

�

�

�

�

2
Z1  �

2
Z⇤  �

2
Z2,�

2
Z1�1  �⇤  �2

 

.
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Chapter 3

On Robustness of HDA Schemes

Against Channel Quality Mismatch

3.1 Problem Definition and Motivation

In this chapter we consider a similar scenario as in the previous one where it di↵ers

in 1) that there is no SI and/or additional interference and 2) there are two additional

receivers. We aim at achieving the best tradeo↵ between the distortion levels when the

channel quality is good and bad under the constraint that the distortion is optimal when

the channel has the targeted median quality.

Explicitly, we consider lossy transmission of an i.i.d. unit-variance Gaussian source

X

nN over an AWGN bandwidth mismatched broadcast channel with three receivers having

di↵erent SNR values, i.e., �, �+, and �� where the subscript ’ ’, ’+’, and ’�’ indicate

entities realting to the median, the good, and the bad receiver, respectively. We also use the
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subscript ’*’ to make a general statement about all three channels or receivers.

The transmitter maps X

nN into the channel input U

mN which is power constrained

by (2.1) where again P = 1 for convenience. Each receiver observes the corrupted version

of U

mN which is V

mN⇤ = U

mN + W

mN⇤ with W

mN⇤ ⇠ N �

0, �

�1⇤ I
mN

�

. The receivers then

estimate the source as X̂

nN⇤ using their observations V

mN⇤ . The scenario is illustrated in

Fig.3.1.

Figure 3.1: The scenario with three receivers with a common source and common encoder.

The quality of reconstruction at each receiver is again measured by the average

expected square-error distortion

D⇤ = lim
N!1

1

nN

nN

X

i=1

E


⇣

X

i

� X̂⇤i
⌘2
�

.

For the BE case  > 1, when the distortion D at the median receiver is fixed at

its minimum possible value, i.e.,
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D =
1

(1 + �)
, (3.1)

the minimum value of D+ that can be achieved is due to the coding schemes by Reznic et

al. [35], Prabhakaran et al. [32] and also by Mittal and Phamdo [26], and is given by

D+ =
1

(1 + �)�1 (1 + �+)
. (3.2)

To achieve this, the schemes mentioned above all reduce to sending the quantization error

from the first nN channel uses and dedicating the remaining (m � n) N uses for digital

communication of the source codewords.

If we seek to minimize D� instead, while keeping D optimal as in (3.1), the best

known coding schemes, by Reznic et al. [35], Prabhakaran et al. [32], and also by Shamai

et al. [36], all of which in this case reduce to sending the source uncoded from the first nN

uses and dedicating the remaining uses for the Wyner-Ziv coding by treating the received

signal of uncoded transmission as SI, achieve

D� =
1

1 + ��
. (3.3)

However, none of the aforementioned schemes can achieve (3.1), (3.2), and (3.3) simultane-

ously.

For the BC case, on the other hand, the best known scheme, by Prabharakaran et

al. [33], can either achieve (3.1) and

D+ = (1 � ) D + 

�

(1 + �)�+ + � � �+
(3.4)
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or (3.1) and

D� = 1 � ��
1 + � � (1 + �)1�

� (1 + ��)
. (3.5)

In the first case, the scheme reduces to sending the superposition of uncoded transmission

of the first mN source symbols and digital data pertaining to the remaining source symbols,

whereas in the second case it is equivalent to uncoded transmission of the first mN source

symbols together with the Costa coding for the remaining source symbols with the remaining

power. These special cases were also described in [28], where a duality between the schemes

was demonstrated. Similar to the BE case, however, the scheme cannot achieve (3.1), (3.4),

and (3.5) simultaneously.

In [40], Tian and Shamai posed the problem of finding the tradeo↵ between D+

and D�, while keeping D optimum as in (3.1). They subsequently showed in [42] that (3.1),

(3.2), and (3.3), or (3.1), (3.4), and (3.5) can be achieved simultaneously for bandwidth

expansion factors that are integers or unit fractions, respectively. Their scheme was based

on successive utilization of bandwidth-matched HDA-WZ or HDA-Costa coding both of

which are introduced in [45]. For an integer  > 1, the source is transmitted uncoded from

the first subband, and HDA-WZ is utilized at the second subband, treating the observation

received from the first subband as decoder SI. At each subsequent subband, HDA-WZ is

employed similarly, except it is the estimate of the source from the previous stage which

serves as SI. For  with 1/ 2 Z+, the source is divided into 1/ subsources. First subsource

is transmitted uncoded, and the rest of subsources are transmitted using a hierarchy of

HDA-Costa codes, each level of which treats the channel inputs above it as interference and
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below it as noise.

In this chapter we propose coding schemes which extend the result in [42] to

noninteger  � 2 and non-unit fraction   1/2. That is for any rational  � 2, (3.1),

(3.2), and (3.3) can be achieved simultaneously, and similarly for any rational   1/2 ,

(3.1), (3.4), and (3.5) can be achieved simultaneously. These coding schemes, described

in detail in Sections 3.3 and 3.4, rely on uncoded transmission together with extensions

of the HDA-WZ-Costa scheme of Wilson et al. [45] to bandwidth mismatch, that are

introduced in Chapter 2. For 1 <  < 2 and 1/2 <  < 1, on the other hand, although

we cannot simultaneously achieve (3.1), (3.2), and (3.3), or (3.1), (3.4), and (3.5) , we

devise competitive schemes in Sections 3.5 and 3.6, respectively, that can achieve nontrivial

tradeo↵s between D+ and D� when D is kept optimal. These schemes are competitive in

the sense that even at the extreme ends of minimized D+ or D�, the achieved (D+, D�)

pairs significantly outperform those appeared in the literature. They rely on a modification

of the coding combination by introducing correlation between the source and the channel

input supersymbols. This approach is explained in detail in the following section.

3.2 HDA with Correlated Source and Channel Input

Note that in the HDA coding schemes given in Chapter 2 the channel output

V

mN provides us with no information unless the auxiliary codeword is decoded because

X

nN and U

mN are independent. We now relax this constraint and send a channel input

that gives information about the source on its own. In Sections 3.5 and 3.6, we will employ

the technique developed here in conjunction with those developed in Sections 3.3 and 3.4
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to achieve the best known (D+, D�) tradeo↵ for 1/2 <  < 2.

3.2.1 BE case

Similar to before, let the auxiliary codewords be generated according to the random

variable

T

m =

2

6

6

4

T

n

1

T

m�n

2

3

7

7

5

=

2

6

6

4

k1X
n

0m�n

3

7

7

5

+

2

6

6

4

Q

n

G

m�n

3

7

7

5

where Q

n ⇠ N
⇣

0n,�

2
Q

I
n

⌘

, G

m�n ⇠ N (0n, I
m�n

), and X

n ? Q

n ? G

m�n. However, after

a typical codeword T

mn (j) is found, let the channel input be calculated supersymbol-by-

supersymbol as

U

m =

2

6

6

4

U

n

1

U

m�n

2

3

7

7

5

=

2

6

6

4

↵ (Tn

1 � X

n)

T

m�n

2

3

7

7

5

with attenuation constant

↵ =
1

q

(1 � k1)
2 + �

2
Q

(3.6)

to ensure that U

m ⇠ N �

0mN

, I
mN

�

. Observe that unlike before, U

m and X

n are correlated

unless k1 = 1. At the receiver the supersymbol-wise MMSE estimation of X

n will be based

on T

n

1 , if T

mN (j) is uniquely decoded, and V

n

1 = U

n

1 + W

n

1 , as before.

For reliable communication we need

I (Tm; Xn)  I (Tm; V m) (3.7)

where

I (Tm; Xn) =
n

2
log

 

1 +
k

2
1

�

2
Q

!

, (3.8)
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and

I (Tm; V m) =
n

2
log

0

B

B

@

✓

1 +
k

2

1

�

2

Q

◆

(1 + �)

1 +
k

2

1

�

2

Q

+ ↵

2
�

1

C

C

A

+
m � n

2
log (1 + �) . (3.9)

Equations (3.7)-(3.9) together yield

1 +
k

2
1

�

2
Q

+ ↵

2
�  (1 + �) . (3.10)

Theorem 7 For every
⇣

k1,�
2
Q

⌘

pair that satisfies (3.10) with equality, the above scheme

attains optimal distortion.

Proof. Using the same arguments for the MMSE estimation before and noting that

X̂

i

= E [X
i

| T1,i, V1,i]

= E [X
i

| T1,i, V1,i � ↵T1,i]

= E [X
i

| k1Xi

+ Q

i

� ↵X

i

+ W1,i] ,

the distortion, provided that the auxiliary codeword is decoded, can be found invoking

Lemma 1 as

D =

 

1 +
k

2
1

�

2
Q

+ ↵

2
�

!�1

.

Since the
⇣

k1,�
2
Q

⌘

pair is chosen so that (3.10) is satisfied with equality, D = (1 + �)�,

which is optimal.

Corollary 8 If the SNR is better than expected, i.e., �+ > �, the distortion can be similarly

found as

D+ =

 

1 +
k

2
1

�

2
Q

+ ↵

2
�+

!�1

.
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Figure 3.2: The (k1,�Q) pairs satisfying (3.10) with equality and the relation between
random variables T1, X, Q, and U1. The three figures correspond to the three special cases
of (1) k1 ! 0, (2) k1 = 1 � (1 + �)1�, and (3) k1 = 1 discussed in the text.

On the other hand, unlike in Chapter 2, the distortion is not catastrophic when the SNR

drops to �� < �, because V

n

1 is correlated with X

n. The MMSE estimate X̂

n = c

V

V

n

1 will

yield the distortion

D� = 1 � ↵

2 (1 � k1)
2

1 + �

�1
�

=
(1 � k1)

2 + �

2
Q

(1 + ��)

(1 + ��↵�2)
.

Therefore, by using the freedom in choosing any
⇣

k1,�
2
Q

⌘

satisfying (3.10) with equality,

one can obtain a tradeo↵ of (D+, D�) pairs (instead of a single (D+, D�) pair as in Section

2.2). Note that for every k1, the value of �2
Q

to satisfy (3.10) with equality can be found by

solving a quadratic equation. The resultant (k1,�Q) pairs for the parameters, � = 5 and

 = 2 are depicted in Fig. 3.2. As can be seen in the figure, as k1 ! 0, �2
Q

approaches 0 as

well. In fact, it can be shown using some algebra that in this extreme,

k1

�

Q

!
q

(1 + �) � 1 � �.

The relation between random variables T1, X, Q, and U1 is also illustrated in Fig. 3.2.

Since k1 and �

2
Q

are actually the magnitudes (i.e., standard deviations) of k1X and Q,
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respectively, and X ? Q, the tip of the vector T1 = k1X +Q traverses the curve of
⇣

k1,�
2
Q

⌘

pairs satisfying (3.10) with equality. Three important choices of (k1,�Q) shown in Fig. 3.2

correspond to

• (1) k1 ! 0 and �

Q

! 0, which implies that U

n

1 ! �X

n. Moreover, from Fig.

3.2, it is also clear that this choice minimizes the angle between T1 and X (thereby

maximizing k

1

�

Q

), and as a result, it follows from (3.8), (3.9), and equality in (3.10) that

both I (Tn

1 ; Xn) and I (Tn

1 ; V n

1 ) are maximized. With this choice, the scheme is also

equivalent to sending the source uncoded from the first nN channel uses and using

Wyner-Ziv coding for the rest of the bandwidth while treating the received signal V

n

1

as SI (cf. [35], [36]). It thus achieves the best known D� given in (3.3).

• (2) k1 = 1 � (1 + �)1� and �

2
Q

= k1 (1 � k1), resulting in T

n

1 ? U

n

1 (and therefore

T

n

1 ? V

n

1 ) and minimum I (Tn

1 ; Xn) by the same angle argument. This makes the

scheme equivalent to sending the quantization noise T

n

1 � X

n

1 (which is orthogonal to

the quantized vector T

n

1 ) from the first nN channel uses and dedicating the rest of the

bandwidth to the transmission of digital data, using which the reciever can decode

T

n

1 (cf. [26, 35]). Hence, it achieves the best known D+ given in (3.2).

• (3) k1 = 1, yielding X

n ? U

n

1 , reducing the scheme exactly to HDA-BE, i.e., without

any SI or interference (cf. [20]).

Even though we will use this scheme only as a component of a more complex scheme,

looking at its (D+, D-) depicted in Fig. 3.3 sheds some insight on the benefit of correlating

X

n

and U

m

. For example, not only can we recover the best known D- and best known
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Figure 3.3: The distortion tradeo↵ between the good and bad receivers while the median
receiver achieves the optimum distortion, for �� = 1, � = 5, � = 25, and  = 2. The red
dashed curve depicts the tradeo↵ attained by [40] while the blue solid curve is the tradeo↵
achieved by the HDA scheme with correlated source and channel input. The numbering of
the special cases on the curve matches those in Fig. 3.2.
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D+ as special cases (1) and (2), respectively, but we also observe that unlike Tian et al’s

scheme in [40], intermediate values of k1 between the two cases yield (D+, D�) points that

are not achievable simply by time sharing.

3.2.2 BC Case

The source X

nN , in this case, is divided into two subsources X

mN

1 and X

(n�m)N
2

both of which will be regarded as collections of supersymbols X

m

1 and X

n�m

2 , respectively.

The codewords are generated according to

T

n =

2

6

6

4

T

m

1

T

n�m

2

3

7

7

5

=

2

6

6

4

k1X
m

1

k2X
n�m

2

3

7

7

5

+

2

6

6

4

Q

m

G

m�n

3

7

7

5

where Q

m ⇠ N
⇣

0m,�

2
Q

I
m

⌘

, G

n�m ⇠ N (0n�m

, I
n�m

), and X

n ? Q

m ? G

n�m. After a

codeword T

nN (j) which is jointly typical with the source is found, the channel input U

mN

is computed supersymbol-wise as

U

m = ↵ (Tm

1 � X

m

1 )

where ↵ is as in (3.6). At the receiver the supersymbol-wise MMSE estimation of the

subsource X

m

1 will be based on T

m

1 , if T

mN (j) is uniquely decoded, and V

m = U

m + W

m

as before. On the other hand, X

n�m

2 will be reconstructed based only on T

n�m

2 , again if

T

mN (j) is uniquely decoded.

The rate inequality

I (Tn; Xn)  I (Tn; V m)

where

I (Tn; Xn) =
m

2
log

 

1 +
k

2
1

�

2
Q

!

+
n � m

2
log

�

1 + k

2
2

�
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and

I (Tn; V m) =
m

2
log

 

1 +
k

2
1

�

2
Q

!

� m

2
log

0

B

@

1 +
k

2

1

�

2

Q

+ ↵

2
�

1 + �

1

C

A

leads to
0

B

@

1 +
k

2

1

�

2

Q

+ ↵

2
�

1 + �

1

C

A

 �

1 + k

2
2

�

�1
(3.11)

which is very similar to (3.10). In fact, since the estimation of the subsource X

n�m

2 relies

only on the digital information T

n�m

2 , we have

D2 =
1

1 + k

2
2

.

To achieve the minimum possible distortion D2 = (1 + �)�, we set k

2
2 = (1 + �) � 1,

thereby making (3.11) exactly the same as (3.10). This action therefore makes D1 =

(1 + �)� for all
⇣

k1,�
2
Q

⌘

pairs satisfying (3.11) with equality, as in the BE case. Hence,

we have the following theorem immediately:

Theorem 9 When k

2
2 = (1 + �) � 1, for every

⇣

k1,�
2
Q

⌘

pair that satisfies (3.11) with

equality, the above scheme attains optimal distortion.

Corollary 10 If the SNR increases to �+ > � or drops to �� < �, the resultant distortion

expressions can be found as in Corollary 8 as

D+ = D1,+ + (1 � ) D2,+

= 

 

1 +
k

2
1

�

2
Q

+ ↵

2
�+

!�1

+
(1 � )

(1 + �)

and

D� = D1,� + (1 � ) D2,�

= 

(1 � k1)
2 + �

2
Q

(1 + ��)

↵

�2 (1 + ��)
+ (1 � ) ,
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Figure 3.4: The (k1,�Q) pairs satisfying (3.11) with equality and the relation between
random variables T1, X1, Q, and U . The three figures correspond to the three special cases
of (1) k1 = 1 � (1 + �)1�, (2) k1 = 0, and (3) k1 = 1, as discussed in the text.

where D2,+ = (1 + �)� and D2,� = 1, because the transmission of X

(n�m)N
2 su↵ers from

both leveling-o↵ and thresholding e↵ects.

Similar to the BE case, one can obtain a (D+, D�) tradeo↵ by choosing any
⇣

k1,�
2
Q

⌘

satisfying (3.11) with equality when k

2
2 = (1 + �) � 1. The resultant (k1,�Q) pairs for the

parameters � = 5 and  = 1 are depicted in Fig. 3.4, together with the relation between

T1, X1, Q, and U , and the corresponding (D+, D�) tradeo↵ is shown in Fig. 3.5.

Three special choices of
⇣

k1,�
2
Q

⌘

shown in Fig. 3.4 correspond to

• (1) k1 = 1 � (1 + �)1� and �

2
Q

= k

1

(1�k

1

)
1�(1+�)

, with which I (Xm; Um) is maximized

(because the angle between X1 and U is minimized). With the choice of this
⇣

k1,�
2
Q

⌘

pair, the scheme is equivalent to sending �X

mN uncoded, and treating a scaled version

of �X

mN as interference, using Costa coding to send the digital data pertaining to

X

(n�m)N
2 . This equivalent scheme was termed Hybrid Costa Coding in [28, Sec.III-B-

d], and was shown to be a special case of the coding scheme in [33, 32]. Therefore, it

achieves the same best known D� in (3.5), as emphasized in Fig. 3.5.
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Figure 3.5: The distortion tradeo↵ between the good and bad receiver (BC). The blue curve
gives the tradeo↵ for di↵erent k1 values while � = 5, �� = 1, �+ = 25, and  = 1/2. The
numbering of the special cases on the curve matches those in Fig. 3.4.

• (2) k1 = 0 and �

2
Q

= 1+��(1+�)

(1+�)�1
, resulting in T1 ? X1. In this case that the scheme

is equivalent to sending the superposition of the analog information about the first

part of the source, i.e., a scaled version of �X

mN , and purely digital information

about the second part of the source X

(n�m)N
2 . This equivalent scheme was discussed

in [28, Sec.III.B-b] and was shown to be a special case of the coding scheme in [33, 32].

Therefore, the resultant D+ coincides with the best known D+ in (3.4), as observed

in Fig. 3.5.

• (3) k1 = 1, yielding X

m

1 ? U

m, reducing the scheme to HDA-BC, i.e., without any

SI or interference.
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Figure 3.6: The corrupted version of the source Y

nN⇤ = X

nN +W

nN

1,⇤ serves as SI. Note that
the bandwidth expansion factor for HDA-WZ-BE encoder and decoder is  � 1 � 1. The
encoder and the decoder for the overall coding scheme is enclosed in dashed rectangles.

3.3 When  � 2

Out of mN channel uses nN are dedicated to uncoded transmission with unit

power. In the remaining (m � n) N uses, we send the source again using HDA-WZ-BE

(with bandwidth expansion factor m�n

n

= � 1) by treating the received signal at the first

nN channel uses as SI. The coding scheme is illustrated in Fig.3.6.

Theorem 11 The scheme described above achieves (3.1), (3.2), and (3.3) simultaneously

for any  � 2.

Proof. Follows from Theorem 2 and Corollary 3 after substituting  � 1 for the e↵ective

bandwidth expansion factor together with �2
Z⇤

= (1 + �⇤)�1 and �2
S

= 0. This substitution

yields

D =
(1 + �)�1

(1 + �)�1 = (1 + �)

which agrees with (3.1), and (2.12) and (2.13) yields (3.2) and (3.3), respectively.
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Figure 3.7: The first part of the input, X

mN

1 , serves as interference for the transmission of

the second part, X

(n�m)N
2 . The encoder and the decoder for the overall coding scheme is

enclosed in dashed rectangles.

3.4 When   1/2

The source X

nN is divided into subsequences X

mN

1 and X

mN

2 . While X

mN

1 is

transmitted uncoded with power P1, X

(n�m)N
2 is transmitted using HDA-Costa-BC with

power P2 = 1 � P1 over the channel, treating
p

P1X
mN

1 as an interference signal. The

e↵ective bandwidth compression factor is therefore m

n�m

= 

1�

 1. The overall scheme is

represented in Fig.3.7.

Theorem 12 The scheme described above achieves (3.1), (3.4), and (3.5) simultaneously

for any   1/2.

Proof. We are going to invoke Theorem 5 and Corollary 6. However, we need the output of

the HDA-Costa-BC encoder to have power 1 (as opposed to P2). Towards that end, observe

that the performance would not change if we multiply the channel output by 1/

p
P2 before

using it for decoding or estimation. But if we “push” this multiplier toward the channel
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input, that would make the HDA-Costa-BC encoder output power 1, the SNR P2�⇤, and

the interference variance �2
S

= P1/P2. Since no SI is available, �2
Z⇤

= 0.

Adapting (2.14) to the proposed coding scheme, the relation between X

m

1 , X

n�m

2 ,

U

m, and auxiliary random variable T

n�m can be re-written as

T

n�m =

2

6

6

4

T

m

1
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n�2m
2

3

7

7

5

=

2

6

6

4

k1X
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2,1

k2X
n�2m
2,2

3

7

7

5

+

2

6

6

4

T

m

1

T

n�2m
2
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7

7

5

+

2

6

6

4

U

m

Q

n�2m

3

7

7

5

+

2

6

6

4

a

q

P

1

P

2

X

m

1

0n�2m

3

7

7

5

where X

n�m

2 is broken into two more pieces X

m

2,1 and X

n�2m
2,2 .

Because of the fact that (i) T

m

1 � V

m � X

m

1 forms a Markov chain when (k1, a) is

chosen optimally as in the proof of Theorem 5, i.e., as

a =
P2�

1 + P2�

and

k

2
1 =

(1 + P2�)


1� � 1

1 + P2�
,

and (ii) T

n�2m
2 ? X

m

1 , the auxiliary codeword T

(n�m)N cannot give any further information

about X

mN

1 at the median receiver, given the channel output V

mN . Therefore the distortion

for X

mN

1 at the median receiver is simply

D1 =
1 + P2�

1 + �

. (3.12)

By choosing

1 + P2� = (1 + �)1� (3.13)

one immediately obtains (3.1) and since T

(n�m)N is not available at the bad receiver, we

have

D1,� =
��

⇣

(1 + �)1� � 1
⌘

+ �

� (1 + ��)
. (3.14)
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When SNR is �+ > �, the above Markov chain breaks down, and the MMSE

estimation for X

mN

1 is performed using not only V

mN but also the auxiliary codeword

T

mN

1 , and using (3.13)

D1,+ = (1 + �)� �
�

+

��

1+�

((1 + �) � 1)

� � �+ + �+ (1 + �)
. (3.15)

For X

(n�m)N
2 , the expressions for D2, D2,� and D2,+ can be borrowed from D,

D�, and D+ in Theorem 5 and Corollary 6 after substituting / (1 � ) for the e↵ective

bandwidth, together with �

2
Z⇤

= 1, SNR= P2�⇤, and �

2
S

= P1/P2 as discussed above.

Together with (3.12), (3.14), and(3.15), this yields (3.1), (3.4), and 3.5).

3.5 When 1   < 2

In this case we could not find a coding scheme achieving (3.1), (3.2), and (3.3)

simultaneously. We instead propose a new scheme achieving a nontrivial tradeo↵ between

D+ and D� while keeping D optimal as before. First the source X

nN is decomposed into two

subsources X

(2n�m)N
1 and X

(m�n)
2 and the auxiliary codebook of T

nN vectors is generated

according to

T

n =

2

6

6

4

T

2n�m

1

T

m�n

2

3

7

7

5

=

2

6

6

4

k1X
2n�m

1

k2X
m�n

2

3

7

7

5

+

2

6

6

4

Q

2n�m

G

m�n

3

7

7

5

where Q

2n�m ⇠ N
⇣

02n�m

,�

2
Q

I2n�m

⌘

, G

m�n ⇠ N (0m�n

, I
m�n

), and Q

2n�m ? G

m�n ?

X

n. After a typical T

nN (j) if found, the channel input is calculated supersymbol-by-
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supersymbol as

U

m =

2

6

6

6

6

6

6

4

U

2n�m

1

U

m�n

2

U

m�n

3

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

↵

�

T

2n�m

1 � X

2n�m

1

�

X

m�n

2

T

m�n

2 � k2X
m�n

2

3

7

7

7

7

7

7

5

with attenuation constant ↵ is chosen as in (3.6).

Note that the relation between the subsource X

2n�m

1 and channel input U

2n�m

1 is

exactly as that between X

n and U

n

1 in Section 3.2.1. In particular, X

2n�m

1 is not orthogonal

to U

2n�m

1 unless k1 = 1. Similarly, the relation between X2 and
�

U

m�n

2 , U

m�n

3

�

is exactly

as in Section 3.3 with a bandwidth expansion factor of 2. We can use these relations in

deriving the distortion expressions D1,⇤ and D2,⇤, and hence D⇤ = (2 � ) D1,⇤+(� 1) D2,⇤.

However, as before, the overall scheme must not be understood as a mere combination of

two independent schemes, as the encoding and decoding are both performed jointly. In

particular, for reliable communication of T

nN (j), we need

I (Xn; Tn)  I (Tn; V m)

which yields
0

B

@

1 +
k

2

1

�

2

Q

+ ↵

2
�

1 + �

1

C

A

2�


✓

1 + k

2
2

1 + �

◆1�

. (3.16)

With the choice of

k

2
2 = (1 + �)�1 � 1,

for D2,⇤, we have D2 = (1 + �)�, and (D2,+, D2,�) can be shown to achieve (3.2) and (3.3)

simultaneously, just as in Theorem 2 and Corollary 3. With this choice of k2, (3.16) reduces

to (3.10). That in turn means that we can borrow distortion expressions D1, D1,+, and
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D1,� for X

2n�m

1 from Theorem 7 and Corollary 8 as

D1 =

 

1 +
k

2
1

�

2
Q

+ ↵

2
�

!�1

D1,+ =

 

1 +
k

2
1

�

2
Q

+ ↵

2
�+

!�1

D1,� =
(1 � k1)

2 + �

2
Q

(1 + ��)

(1 + ��)↵�2
.

Provided
⇣

k1,�
2
Q

⌘

satisfies (3.10) with equality, we have D1 = (1 + �)�, thereby making

D = Dopt as required. Therefore, as in Section 3.2, by using the freedom in choosing any

⇣

k1,�
2
Q

⌘

satisfying (3.10) with equality, one can obtain a tradeo↵ of (D+, D�) pairs. The

resultant tradeo↵ is depicted in Fig. 3.8 for  = 1.5.

3.6 When 1/2 <   1

Once again, we do not have a coding scheme achieving (3.1), (3.4), and (3.5)

simultaneously. Instead, we strive for a nontrivial (D+, D�) tradeo↵ as in the previous

section.

This time, it is the source which is decomposed into three subsources X

(2m�n)N
1 ,

X

(n�m)N
2 , and X

(n�m)N
3 . The codewords T

mN are created according to

2

6

6

4

T

2m�n

1

T

n�m

2

3

7

7

5

=

2

6

6

4

k1X
2m�n

1

k2X
n�m

2

3

7

7

5

+

2

6

6

4

Q

2m�n

G

n�m

3

7

7

5

+

2

6

6

4

02m�n

a

p
P1X

n�m

3

3

7

7

5

where G

n�m ⇠ N (0n�m

, I
n�m

) and Q

2m�n ⇠ N
⇣

02m�n

,�

2
Q

I2m�n

⌘

are independent to the

source and each other.
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Figure 3.8: Tradeo↵ between D+ and D- when � = 5, �+ = 25, �� = 1, and  = 1.5. Only
0 < k1 < 1 � (1 + �)1� is considered because the scheme performs worse than the blue
curve for other k1. Point a can be obtained by schemes in [26], [32], and [35], and point b
by those in [32], [35], and [36]. No known scheme can obtain point c, which satisfies (3.1),
(3.2), and (3.3) simultaneously.
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After a typical T

mN (j) is found, the channel input U

m is calculated according to

2

6

6

4

U

2m�n

1

U

n�m

2

3

7

7

5

=

2

6

6

4

↵

�

T

2m�n

1 � X

2m�n

1

�

p
P2

�

T

n�m

2 � k2X
n�m

2 � a

p
P1X

n�m

3

�

+
p

P1X
n�m

3

3

7

7

5

where P1+P2 = 1 and ↵ =
⇣

(1 � k1)
2 + �

2
Q

⌘�1/2
to ensure unit power at the channel input.

The rate inequality I(Tm; Xn)  I (Tm; V m) leads to

1 +
k

2

1

�

2

Q

+ ↵

2
�

1 + �


 

1 + k

2
2 + a

2P1

P2
� P2�

1 + �

✓

1 + a

P1

P2

◆2
!

�1

2�1

. (3.17)

If the parameters are chosen as

a =
P2�

1 + P2�

k

2
2 =

(1 + P2�)


1� � 1

1 + P2�

1 + P2� = (1 + �)1�

,

it follows from Section 3.4 that we have

D2 = (1 + �)�

D2,+ =
� + �

+

��

1+�

((1 + �) � 1)

� � �+ + �+ (1 + �)

D2,� = 1

D3 = (1 + �)�

D3,+ = (1 + �)� �
� + �

+

��

1+�

((1 + �) � 1)

� � �+ + �+ (1 + �)

D3,� =
��

⇣

(1 + �)1� � 1
⌘

+ �

� (1 + ��)
.

Furthermore, with these choices (3.17) becomes the same as (3.10). Thus, using
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Figure 3.9: Tradeo↵ when  = 2
3 . Points a and b can be obtained by schemes in [32]. Only

1 � (1 + �)1�

< k1 < 0 is considered because the scheme performs worse than the blue
curve for other k1. No known scheme can obtain point c, which satisfies (3.1), (3.4), and
(3.5) simultaneously.

Theorem 9 and Corollary 10, for every
⇣

k1,�
2
Q

⌘

satisfying (3.10), we obtain

D1 = (1 + �)�

D1,+ =

 

1 +
k

2
1

�

2
Q

+ ↵

2
�+

!�1

D1,� =
(1 � k1)

2 + �

2
Q

(1 + ��)

(1 + ��)↵�2
.

Finally, the (D+, D�) tradeo↵ can be characterized by D⇤ = (2� 1) D1,⇤ + (1 � ) D2,⇤ +

(1 � ) D3,⇤. The tradeo↵ obtained for  = 2
3 is displayed in Fig.3.9.
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Chapter 4

Broadcasting Correlated Sources

Over Gaussian Broadcast Channels

4.1 Introduction

We consider the problem of transmitting a pair of Gaussian sources over a Gaus-

sian broadcast channel, where each receiver is interested in reconstructing only one source

component. This scenario is relevant in sensor network settings where sensors are taking

measurements of multiple environmental phenomena, such as temperature, humidity, pres-

sure, that are typically correlated with each other. On the other hand, each receiving agent

may be interested in just one of these measurements.

This problem has attracted considerable attention in the past decade. Bross et

al. showed in [8] that sending a linear combination of the two sources, which is purely

analog, is optimal in the bandwidth-matched (BM) regime provided that parameters of
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the problem satisfy a certain inequality. Later, Tian et al. showed in [41] that a hybrid

code achieves the optimum distortion tradeo↵ using the outer bound given in [8] yielding a

complete characterization of the distortion tradeo↵ in the BM regime.

For the bandwidth mismatch scenarios, Behroozi et al. [4, 5, 6] proposed HDA

coding schemes that are inspired by [35] and [45] which focused on sending a single Gaussian

source. They introduced schemes both for BE and BC regimes, but especially for the BC

case, they demonstrated that the gap between the performances of their scheme and a genie-

aided outer bound was fairly small [6]. In [14], Gao and Tuncel showed that optimal separate

source-channel coding, based on successive coding of correlated sources introduced in [29],

can outperform the joint source-channel coding schemes in [6] for some source/channel

parameters. In [38], the lossy transmission of correlated Gaussian vectors over bandwidth-

matched Gaussian broadcast channels is investigated and achievable distortion region is

found for the vector-scalar case. Recently, Abou Saleh et al. considered the joint recovery

of correlated sources together with the interference in bandwidth-matched case [1].

In this paper, we propose new hybrid digital/analog coding schemes for both BE

and BC regimes. The schemes make use of similar layered coding structures and coding

techniques as those proposed in the aforementioned work. We demonstrate that, to our

best knowledge, the proposed schemes o↵er the best distortion tradeo↵s reported in the

literature so far. In particular, for both bandwidth expansion and compression, distortion

regions of the proposed schemes reduce to those characterized in [6, 14] for special choices

of parameters. We also show that both of our schemes for the bandwidth expansion and

compression cases specialize to the same coding scheme when the bandwidth expansion
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ratio approaches 1 from either side. Although this specialized scheme is not the same as

the one given in [41], we show analytically that it achieves the same (optimal) performance.

The rest of the paper is organized as follows. After formulating the problem in

Section 4.2, in Section 4.3 we briefly explain the previously known schemes along with

introducing a separate source-channel coding alternative to the scheme in [14]. Sections 4.4

and 4.5 are devoted to the proposed schemes for bandwidth expansion and compression,

respectively.

4.2 Problem Formulation

Let (Xn

1 , X

n

2 ) be an i.i.d. Gaussian source generated according to the probability

distribution p

X

1

X

2

= N (0,C) with

C =

2

6

6

4

1 ⇢

⇢ 1

3

7

7

5

where the correlation coe�cient satisfies 0  ⇢ < 1.1 At the transmitter the encoder

 

m,n : Rn ⇥ Rn ! Rm

maps the source into the channel input U

m =  

m,n (Xn

1 , X

n

2 ) which is power-limited by

1

m

m

X

t=1

E
⇥

U

2(t)
⇤  P.

The ith receiver, i = 1, 2, observes V

m

i

= U

m + W

m

i

with W

m

i

⇠ N �

0
m

,�

2
W

i

I
m

�

,

and uses the decoding function

�

m,n

i

: Rm ! Rn

1

As explained in [8, Remark 2.2] there is no loss of generality when assuming that the variances of the

sources are 1 and ⇢ is non-negative. When ⇢ = 1 the scenario becomes identical to that in [35].
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Figure 4.1: The block diagram for broadcast scenario with correlated sources.

to estimate the ith source as X̂

n

i

= �

m,n

i

(V m

i

). We will assume that the SNR at the second

receiver is greater than that at the first receiver, i.e., �2 > �1 where

�

i

=
P

�

2
W

i

.

The ratio m

n

is referred to as the bandwidth expansion factor.

The scenario is illustrated in Fig.4.1.

Definition 13 A quadruple (P, D1, D2,) is achievable if for any ✏ > 0 there exists a triple

of ( m,n

,�

m,n

1 ,�

m,n

2 ) with some m, n such that

1

n

E
h

||Xn

1 � X̂

n

1 ||2
i

 D1 + ✏

1

n

E
h

||Xn

2 � X̂

n

2 ||2
i

 D2 + ✏

m

n

 + ✏ .

Definition 14 The achievability region D


(P ) is defined as

D


(P ) = {(D1, D2) : (P, D1, D2,) is achievable} .
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4.3 Previous Work

4.3.1 Reznic-Feder-Zamir (RFZ)

The scheme in [35] was designed to transmit a single Gaussian source to two

receivers over Gaussian broadcast channel with BE, i.e., ⇢ = 1, X

n = X

n

1 = X

n

2 , and

 > 1. The source is first optimally quantized into X̃

n

1 using the backward test channel

X = X̃1 + Z. The quantization error Z

n is scaled and sent using the first n channel uses

in an uncoded fashion, and the remaining bandwidth of m � n channel uses is dedicated

to the transmission of digital data with two superposed layers, expending power levels ⌘P

and ⌘P , respectively, where here and in the sequel, we use s = 1 � s for any s. The first

layer of digital information consists of the quantization index of X̃

n

1 . For the second layer,

the quantization error Z

n is quantized again into X̃

n

2 . The quantization index is Wyner-Ziv

coded and only the resultant binning index is transmitted, for the noisy version of Z

n serves

as side information available at the receiver for X̃

n

2 . Combining all the analog and digital

information available, the receivers output X̂

n

1 and X̂

n

2 . This scheme attains

D1 =
1

1 + �1

✓

1 + ⌘�1

1 + �1

◆

�1

(4.1)

D2 =
1

1 + �2

✓

1

1 + ⌘�2

◆

�1✓1 + ⌘�1

1 + �1

◆

�1

(4.2)

for any 0  ⌘  1.

In [32, Section V], this inner bound was further improved by simply adjusting the

power distribution between the bandwidth matching the source, i.e., the analog part, and
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the remaining bandwidth, i.e., the digital part, as

D1 =
1

1 + !�1

✓

1 + ⌘!̂�1

1 + !̂�1

◆

�1

D2 =
1

1 + !�2

✓

1

1 + ⌘!̂�2

◆

�1✓1 + ⌘!̂�1

1 + !̂�1

◆

�1

where 0  ⌘  1, 0  !   and !̂ = �!

�1 .

Also for transmission of single Gaussian source over broadcast channel with band-

width compression, a scheme, which is dual of the RFZ scheme as pointed out in [28], was

given in [32]. That scheme yields

D1 = 

1 + ⌘�1

1 + �1 (⌘ + ⌘ �)
+ (1 � )

✓

1 + �1 (⌘ + ⌘ �)

1 + �1

◆



1�

(4.3)

D2 = 

1 + ⌘�2

1 + �2 (⌘�+ ⌘)
+ (1 � )

✓

1 + �1 (⌘ + ⌘�)

(1 + �1) (1 + ⌘�2)

◆



1�

(4.4)

for any 0  �, ⌘  1.

4.3.2 Behroozi-Alajaji-Linder (BAL)

One of the HDA coding schemes of Behroozi, Alajaji, and Linder in [6] for band-

width expansion is very similar to the RFZ scheme [35], except the two layers of information

transmitted using superposition are not the indices of a two-stage quantizer. Instead, they

are the quantization indices for the two components of the source, X

n

1 and X

n

2 . More specif-

ically, X

n

1 is quantized into X̃

n

1 , and the quantization error Z

n is transmitted uncoded in

the first n uses of the channel. In the remaining m�n channel uses, the quantization index

M1 of X̃

n

1 is superposed onto the Wyner-Ziv coded quantization index M2 of X̃

n

2 . In this

case, Wyner-Ziv coding utilizes as side information the MMSE estimate of the first source,

X̂

n

1 . It is also worth noting that the scheme does not benefit from power adjustment as in
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Prior work

Köken & Tuncel

Behroozi Alajaji Linder

Figure 4.2: The diagram of power/bandwidth splitting in the BAL scheme for bandwidth
expansion. While the first subband is dedicated to transmission of the analog layer, the
messages M1 and M2, which are the quantization index of X̃

n

1 and the Wyner-Ziv coded
quantization index of X̃

n

2 , respectively, are transmitted from the second subband.

[32].

The distribution of power and bandwidth is illustrated in Fig. 4.2. Here, and in

any illustration of superposed information in the sequel, we adopt the convention that upper

items “treat” lower items as noise, and once decoded, upper items can be eliminated either

through subtraction or dirty-paper decoding.

The resultant (D1, D2) pair is expressed as

D1 =
1

1 + �1

✓

1 + ⌘�1

1 + �1

◆

�1

(4.5)

D2 =

✓

1

1 + ⌘�2

◆

�1
 

1 � ⇢

2 +
⇢

2

1 + �2

✓

1 + ⌘�1

1 + �1

◆

�1
!

(4.6)

for any 0  ⌘  1. Comparing (4.5)-(4.6) to (4.1)-(4.2), it is clear that the former reduces

to the latter as ⇢ ! 1.

In their work [6], the authors presented another coding scheme (referred to as the

HWZ scheme) for the same scenario, and observed identical numerical results. The two

schemes were analytically shown to have identical performance later in [14].
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Note that with this scheme the distortion at the second, i.e., better, receiver cannot

be minimized to the value D2 = D2,min = (1 + �2)
� unless ⇢ = 1 because the first subband

and a fraction (1/) of power is dedicated to the uncoded transmission of the first component

of the source X

n

1 . We will address this shortcoming in our proposed scheme in Section 4.4

by introducing a digital layer in the first subband.

Behroozi, Alajaji, and Linder [6] also considered the BC regime. Although they

only analyzed the special case  = 1/2, their scheme can easily be generalized to any   1.

Each component of the source is divided into two parts, i.e., X

n

i

=
⇣

X

m

i,h

, X

n�m

i,d

⌘

. There

are one analog and three digital superposed layers in this scheme. In the analog layer,

a linear combination of the first parts of the source components, Z

m

a

= ✓X

m

1,h + ✓X

m

2,h

is sent uncoded. In the first digital layer, which is meant for both receivers, the second

part of the first component X

n�m

1,d is quantized to X̃

n�m

1,d and the quantization index M1 is

sent. The second digital layer consists of the quantization index M2 of the residual signal

X

n�m

1,d � X̃

n�m

1,d , intended to be decoded only at the second receiver. The third and last

digital layer is dirty-paper coded, where the previous layers are treated as channel state

information available at the encoder. This layer is used for sending the message M3 (i.e.,

the bin index) obtained by Wyner-Ziv coding of X

n�m

2,d where the estimation from the

previous layers are used as side information.

The distribution of power and the source is illustrated in Fig. 4.3. As can be seen

from the diagram, the analog layer is placed between the second and third digital layers.

That is because Z

m

a

is treated as noise in the decoding of M1 and M2, but its e↵ect can be

circumvented through the dirty-paper coding process of M3, since using Costa coding [10],
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Figure 4.3: The diagram of power/source splitting in the BAL scheme for bandwidth com-
pression. The first m symbols of the source is represented only through the linearly combined
analog information Z

m

a

, whereas the remaining n � m symbols are encoded in three digital
layers.

the same communication rate can be achieved as if there is no interference (i.e., channel

state information) in AWGN channels.

For all  < 1 the scheme attains

D1 = 

✓

1 � (✓ + ⇢✓)2

↵

2
· �1⌘�

1 + �1 (⌘̄ + ⌘�)

◆

+ (1 � )

✓

1 + �1 (⌘̄ + ⌘�)

1 + �1

◆



1�

(4.7)

D2 = 

✓

1 � (⇢✓ + ✓)2

↵

2

�2⌘�

1 + �2 (⌘�+ ⌘̄µ̄)

◆

+ (1 � )

✓

1

1 + µ̄⌘̄�2

◆



1�

�

1 � ⇢

2 (1 � D

?

12)
�

(4.8)

for some 0  ⌘, µ,�, ✓  1, where

↵ =
q

1 � 2✓✓ (1 � ⇢) (4.9)

and

D

?

12 =

✓

1 + �1 (⌘̄ + ⌘�)

1 + �1

◆



1�

·
✓

1 + �2 (⌘�+ µ̄⌘̄)

1 + �2 (⌘̄ + ⌘�)

◆



1�

.
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Once again, it is not di�cult to see that as ⇢ ! 1, (4.7)-(4.8) reduce to (4.3)-(4.4) with

µ = 0.

The scheme seems to have the handicap that while M2 is decoded only at the

second receiver, which is interested in the second source, it encodes information that is

about the first source, i.e., X

n�m

1,d � X̃

n�m

1,d . This is, at least intuitively, not an e�cient way

of communicating X

n

2 . Indeed, when we removed M2 and ran extensive set of simulations

with di↵erent parameters, we observed that the resultant distortion regions did not change.

This phenomenon is illustrated for a few sample cases in Fig. 4.4. Using this numerical

observation, we will set µ = 0, and represent the achievable distortion region equivalently

as

D1 = 

✓

1 � (✓ + ⇢✓)2

↵

2
· �1⌘�

1 + �1 (⌘̄ + ⌘�)

◆

+ (1 � )

✓

1 + �1 (⌘̄ + ⌘�)

1 + �1

◆



1�

(4.10)

D2 = 

✓

1 � (⇢✓ + ✓)2

↵

2

�2⌘�

1 + �2 (⌘�+ ⌘̄)

◆

+ (1 � )

✓

1

1 + ⌘̄�2

◆



1�

�

1 � ⇢

2 (1 � D

?

12)
�

(4.11)

where

D

?

12 =

✓

1 + �1 (⌘̄ + ⌘�)

1 + �1

◆



1�

·
✓

1 + �2 (⌘�+ ⌘̄)

1 + �2 (⌘̄ + ⌘�)

◆



1�

.

Another possible handicap is that the analog signal Z

m

a

is the only information

conveyed about the first subband of the source pair (Xm

1 , X

m

2 ).

We will address these shortcomings in our proposed scheme in Section 4.5.
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Figure 4.4: For di↵erent ⇢, , and µ values the (D1, D2) tradeo↵s are depicted in log domain
where µ ranges from 0 to 0.9. In all figures we set P = 2, N1 = 1, and N2 = 0.3. The
figures demonstrate how µ = 0 always leads to the best distortion region. This numerical
observation suggests that the second layer in the BAL scheme is completely redundant.

4.3.3 Genie-Aided Outer Bound

In [6], the authors also obtained a genie-aided outer bound. It is based on the

scenario that the noisy version of the first component of the source

X

0
1 = �X1 + Z
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with Z ⇠ N (0, 1 � �

2) is provided at the second receiver for free. In this new scenario, the

resultant outer bound given as

D1 �
✓

1 + ⌘�1

1 + �1

◆



D2 � max
0�1

⇢

�

1 � �

2
⇢

2
�

✓

1

1 + �2 (1 � �

2
⌘)

◆



�

for some 0  ⌘  1, must clearly also be an outer bound for the original scenario. This

outer bound is the best known to date.

4.3.4 Gao-Tuncel (GT)

Nayak and Tuncel introduced in [29] a layered joint source coding of correlated

Gaussian sources, referred to as successive coding of correlated sources, where the encoder

�src : Rn ⇥ Rn ! M1 ⇥ M2

maps the source (Xn

1 , X

n

2 ) into two messages m1 2 [1 : 2nR1 ] and m2 2 [1 : 2nR2 ], the first

decoder

�src,1 : M1 ! Rn

maps the first message M1 into the estimation of the first source X̂1 (M1), and the sec-

ond decoder maps the message pair (M1, M2) into the estimation of the second source

X̂

n

2 (M1, M2). In [14], Gao and Tuncel showed that the optimal separate source-channel

coding scheme, comprising of successive coding of [29] followed by superposition coding over

the broadcast channel can somewhat surprisingly outperform the BAL schemes in [6] for

some source/channel parameters.

Although it is not immediately clear, the successive-coding-based scheme of [14] is

equivalent in performance to the alternative described below, as will be shown in Lemma 16.
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Alternative Separate Coding Scheme: The encoder quantizes a linear com-

bination

X

n

a

= ✓X

n

1 + ✓X

n

2

to X̃

n

a

and sends the quantization index with power ⌘P in the first layer, to be decoded by

both receivers. In the second layer with power ⌘P , X

n

2 is quantized and Wyner-Ziv coded,

utilizing X̃

n

a

as side information available at the second receiver.

The theorem below states the resultant achievable region.

Theorem 15 For all  > 0, the alternative separate coding scheme described above achieves

the distortion levels

D1 = 1 � (✓ + ⇢✓)2

↵

2

⇢

1 �
✓

1 + ⌘�1

1 + �1

◆



�

(4.12)

D2 =
D

⇤
2

(1 + ⌘�2)


(4.13)

for any 0  ✓, ⌘  1, where ↵ is as in (4.9) and

D

⇤
2 = 1 � (⇢✓ + ✓)2

↵

2

⇢

1 �
✓

1 + ⌘�1

1 + �1

◆



�

. (4.14)

Now we are ready to state the equivalence of the two separate source-channel

coding schemes. The equivalence is crucial, as the joint source-channel coding schemes we

propose can easily be specialized to achieve the (D1, D2)-region in Theorem 15, thereby

showing their superiority against separate coding.

Lemma 16 The achievable region in Theorem 15 is the same as that of the GT scheme.

The proofs of Theorem 15 and Lemma 16 are deferred to Appendix A.1 and Ap-

pendix A.2, respectively.
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4.4 Proposed Scheme for Bandwidth Expansion

As mentioned in of Section 4.3.2, the main drawback of the BAL scheme for BE

is that the first subband is dedicated to the transmission of X

n

1 , in which only the first

receiver is interested. As proposed originally by the authors, it does not benefit from a

power adjustment either. As shown in [32], such an adjustment proves useful in the lossy

transmission of a single i.i.d. Gaussian source over a bandwidth mismatched broadcast

channel (i.e., when ⇢ = 1). Moreover, albeit being an HDA scheme, it can be outperformed

at some achievable distortion points by a purely digital scheme, i.e., the GT scheme, which

is described in Section 4.3.4. This fact suggests the existence of an HDA scheme with more

layers which could not only subsume both schemes but also outperform them with respect

to the achievable distortion region.

We propose an HDA coding scheme with three digital layers and one analog layer.

The bandwidth is divided as the previous schemes into two subbands, the bandwidth match-

ing the source, i.e., n channel uses, and the remaining bandwidth, i.e., m � n channel uses.

The analog layer and the third digital layer are transmitted from the first subband with

power !P for some 0  !  , while the first and the second layers are from the second

subband with power !̂P with

!̂ =
� !

� 1
.

Note that the average power constraint over the entire bandwidth is still satisfied, as

!P + (� 1)!̂P



= P .
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Figure 4.5: The proposed joint source-channel encoder in the bandwidth expansion case. Q
stands for the quantizer and ⌃ is for superposition or addition of vectors. While the hybrid
signal U

n

h

is transmitted from the first n channel uses, U

m�n

d

, conveying purely digital data,
is transmitted from the remaining m � n channel uses. The Wyner-Ziv coder exploits the
fact that in addition to X̃

n

a

, the (second) receiver has access to V

n

h,2 = U

n

h

+ W

n

2 .

The first step is to optimally quantize a linear combination of the sources

X

n

a

= ✓X

n

1 + ✓X

n

2

to a source codeword X̃

n

a

with rate R1. The quantization error Z

n

a

= X

n

a

�X̃

n

a

, is normalized

to have a power of !�P and sent through the analog layer (in n channel uses). Note that

Z

n

a

⇠ N �

0
n

,↵

22�2R
1I

n

�

.

In the first digital layer, M1, the message for the quantization index of X̃

a

is

channel encoded into S

m�n

1 (M1) in a standard manner and transmitted from the second

subband (in m � n channel uses) with power !̂⌘P . This “common” message is intended to

be decoded at both receivers.

Treating the decoded X̃

n

a

and V

n

h,2, the observed signal at the second receiver from

the first n channels uses, as the side information at the receiver, the second component of
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the source, X

n

2 , is then Wyner-Ziv coded with rate R

WZ

= R2 + R3 where the binning

index is demultiplexed into the messages M2 and M3 with cardinalities 2nR2 and 2nR3 ,

respectively. M2 is mapped into a digital channel word S

m�n

2 (M2) which has power !̂⌘P

and superimposed on the first digital layer, and sent through the second subband (in m�n

channel uses). The message M3, on the other hand, is sent from the first subband using

dirty paper coding with power !�P regarding the analog layer as channel state information.

Both “private” messages M2 and M3 are to be decoded only by the second receiver.

Figure 4.6: The diagram of power/bandwidth splitting for bandwidth expansion. The upper
layers “see” the lower layers as noise, while the lower layers cancel the e↵ect of the upper
ones by either subtraction or via dirty paper coding. The lower layers are intended for the
second receiver only.

The encoding procedure is illustrated in Fig. 4.5 and the power/bandwidth split-

ting between the layers is illustrated in Fig. 4.6.

We are ready to state the main result of this section.
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Theorem 17 For bandwidth expansion factor  > 1, the distortion pair

D1 = 1 �
�

✓ + ⇢✓̄

�2

↵

2

 

1 � 1 + !�̄�1

1 + !�1

✓

1 + !̂⌘̄�1

1 + !̂�1

◆

�1
!

(4.15)

D2 =
D

?

2
�

1 + !�̄�2

�

(1 + !̂⌘̄�2)
�1 (4.16)

is achievable for any 0  ⌘, ✓,�  1 and 0  !  , where ↵ is as in (4.9), and

D

?

2 = 1 �
�

⇢✓ + ✓̄

�2

↵

2

 

1 � 1 + !�̄�2

1 + !�2

✓

1 + !̂⌘̄�1

1 + !̂�1

◆

�1
!

. (4.17)

Proof. It follows from the behavior of the capacity region of degraded Gaussian

channels [11] and the fact that interference can be completely circumvented in Gaussian

dirty paper coding [10] that the message M1 is correctly decoded at both receivers, and M2

and M3 are correctly decoded at the second receiver if

R1 =
� 1

2
log

✓

1 + !̂�1

1 + !̂⌘�1

◆

� � (4.18)

R2 =
� 1

2
log (1 + !̂⌘�2) � � (4.19)

R3 =
1

2
log

�

1 + !��2

�� � (4.20)

for any arbitrarily small � > 0. Defining V

n

h,i

= U

n

h

+ W

n

i

at receiver i = 1, 2, it follows that

E
�

X1X̃a

 

=
�

1 � 2�2R
1

�

E
�

X1Xa

 

=
�

1 � 2�2R
1

� �

✓ + ⇢✓̄

�

and

E
�

X1V
h,1

 

=
!�P

2�R

1

↵

E
�

X1Za

 

=
2�R

1

↵

�

✓ + ⇢✓̄

�

p
!�P
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where the single letter representations are used for calculations since the sources are i.i.d.

and the codewords are created in i.i.d. fashion. Since V

h,1 and X̃

a

are orthogonal to each

other together with E
�

V

2
h,1

 

= !P + �

2
W

1

and E
�

X̃

2
a

 

=
�

1 � 2�2R
1

�

↵

2, we have

D1 = 1 � E
�

X1V
h,1

 2

E
�

V

2
h,1

 � E
�

X1X̃a

 2

E
�

X̃

2
a

 

= 1 �
�

✓ + ⇢✓̄

�2

↵

2

 

1 � 2�2R
1

!�̄P + �

2
W

1

!P + �

2
W

1

!

. (4.21)

At the second receiver we first make use of only M1 and the observation from the

first subband V

n

h,2 to have an initial estimation. Following the same calculations as we did

above, the distortion with the initial estimation is

D

?

2 = 1 �
�

⇢✓ + ✓̄

�2

↵

2

 

1 � 2�2R
1

!�̄P + �

2
W

2

!P + �

2
W

2

!

. (4.22)

Since M2 and M3 are used for the Wyner-Ziv coding we have

D2 = D

?

22
�2(R

2

+R

3

)
. (4.23)

Substituting the rates (4.18)-(4.20) into (4.21)-(4.23) finishes the proof.

Corollary 18 The proposed scheme outperforms both the GT and BAL schemes.

Proof. We immediately observe that, as expected, setting ! = !̂ = 1 and � = ⌘, (4.15)-

(4.17) reduce to (4.12)-(4.14). Similarly, setting ! = !̂ = 1, ✓ = 1, and � = 1 reduces

(4.15)-(4.17) to (4.5)-(4.6). Therefore, the proposed scheme can only perform better than

both the BAL and GT schemes.

It turns out that in some cases, there are in fact considerable performance gains

in adopting the proposed scheme as demonstrated in Fig. 4.7. The gains are especially
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pronounced when  is small, where the proposed schemes comes significantly closer to the

genie-aided lower bound.

4.5 Proposed Scheme for Bandwidth Compression

In light of the shortcomings of the BAL scheme for BC mentioned in Section 4.3.2,

we propose the following scheme. Each component of the source, X

n

i

, is grouped into two

subsources X

m

i,h

and X

n�m

i,d

where the first one is transmitted using hybrid codingwhile the

second subsource utilizes only digital coding. The transmission consists of one analog and

three digital layers as in the proposed coding scheme for bandwidth expansion. However,

since there is no bandwidth splitting in the channel, all four layers are superimposed.

Let ↵
d

and ↵

h

are defined as in (4.9) where ✓ is replaced with ✓

d

and ✓

h

, respec-

tively, and 0  ✓

h

, ✓

d

 1. The first step is to take the linear combination

X

m

ah

= ✓

h

X

m

1,h + ✓

h

X

m

2,h

and send the scaled version cX

m

ah

through as the analog layer with power ⌘�P , i.e., c =

q

⌘�P

↵

2

h

. Next, the linear combination

X

n�m

ad

= ✓

d

X

n�m

1,d + ✓

d

X

n�m

2,d

is optimally quantized to a source codeword X̃

n�m

ad

with rate R1, mapped to the message

M1, and sent through the first digital layer after being channel coded into S

m

1 (M1) in a

standard manner with power ⌘�P . This message is intended for both receivers.

The next step is to quantize X

m

2,h to X̃

m

2,h, and Wyner-Ziv code the quantization

index, treating the noisy version of X

m

ah

, i.e., V

m

2 �S

m

1 (M1), as side information available at

62



the receiver, with a rate R2. The resultant bin index M2 is intended to be decoded only at

the second receiver, and transmitted using dirty paper coding as S

m

2 (M2) with power µ⌘P ,

treating the sum of the analog and the first digital layers as channel state information.

Finally, X

n�m

2,d is quantized to X̃

n�m

2,d in a conditional manner, i.e., treating the

information from the first layer, X̃

n�m

ad

, as side information available both at the transmitter

and the receiver, expending rate R3. The coding index M3 is then mapped into the signal

S

m

3 (M3) and transmitted with power µ ⌘P using dirty paper coding, treating all other

layers as channel state information. This is at the highest rank in the decoding hierarchy

and intended for the second receiver only. The encoding procedure is illustrated in Fig. 4.8

and the power splitting with the coding hierarchy is illustrated in Fig. 4.9.

We are now ready for the main result.

Theorem 19 For a bandwidth compression factor  < 1, the distortion pair

D1 = 

"

1 �
�

✓

h

+ ⇢✓

h

�2

↵

2
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⇢

1 �
✓

1 + �1⌘
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d
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↵

2
d

(

1 �
✓

1 + �1 (⌘�+ ⌘̄)

1 + �1

◆



1�

)#

(4.24)

and

D2 = 

"

1 �
�

⇢✓

h

+ ✓

h

�2

↵

2
h

⇢

1 �
✓

1 + �2⌘̄

1 + �2 (⌘�+ ⌘̄)

◆�

#

·
✓

1 + �2µ̄⌘̄

1 + �2⌘̄

◆

+

"

1 �
�

⇢✓

d

+ ✓

d

�2

↵

2
d

(

1 �
✓

1 + �1 (⌘�+ ⌘̄)

1 + �1

◆



1�

)#

· (1 + �2µ̄⌘̄)
� 

1� (4.25)

is achievable for any 0  ✓

h

, ✓

d

, µ, ⌘,�  1, where

↵

d

=
q

1 � 2✓
d

✓

d

(1 � ⇢)

↵

h

=
q

1 � 2✓
h

✓

h

(1 � ⇢) .
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Proof. As in the proof of Theorem 17, it follows from standard channel coding

results provided that the rates are

R1 =


2
log

✓

1 + �1

1 + �1 (⌘�+ ⌘̄)

◆

� � (4.26)

R2 =


2
log

✓

1 + �2⌘̄

1 + �2µ ⌘

◆

� � (4.27)

R3 =


2
log (1 + �2µ ⌘) � � , (4.28)

for arbitrarily small � > 0, the messages are correctly decoded at the intended receivers.

Note that the first receiver makes use of the first two layers to estimate the first

component of the source. After M1 is decoded the estimation of X

m�n

1,d is performed by

using only X̃

m�n

ad

which yields

D1,d = 1 � E
�

X1,dX̃ad

 2

E
�

X̃

2
ad

 (4.29)

where

E
�

X̃

2
ad

 

=
�

1 � 2�2R
1

�

E
�

X

2
ad

 

=
�

1 � 2�2R
1

�

↵

2
d

and

E
�

X1,dX̃ad

 

=
�

1 � 2�2R
1

�

E
�

X1,dXad

 

=
�

1 � 2�2R
1

� �

✓

d

+ ⇢✓

d

�

.

For the estimation of X1,h the codeword S

m

1 (M1) is simply subtracted from the

observation V

m

1 since it does not contain any information pertaining to that subsource.

Hence the distortion for X1,h is

D1,h = 1 � E
�

X1,h (V1 � S1)
 2

E
�

(V1 � S1)
2  (4.30)
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where

E
�

(V1 � S1)
2  = E

�

V

2
1

 � E
�

S

2
1

 

= P + �

2
W

1

� ⌘�̄P
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2
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1
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E
�
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p
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↵

h

E
�

X1,hXah

 

=

p
⌘�P

↵

h

�

✓

h

+ ⇢✓

h

�

.

The second receiver makes initial estimations of X

m

2,h and X

m�n

2,d by using the first

two layers as follows. As done at the first receiver, the codeword pertaining to the first

layer S

m

1 (M1) is subtracted from the observation V

m

2 and V

m

2 � S

m

1 (M1) is used for initial

MMSE estimation of X

m

2,h. Having decoded the source codeword X̃

m�n

ad

the receiver uses it

for the estimation of X

m

2,h. The resulting initial distortion expression for X

m

2,h is

D

?

2,h = 1 � E
�

X2,h (V2 � S1)
 2

E
�

(V2 � S1)
2  (4.31)

where
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X2,hXah

 

=

p
⌘�P

↵

h

�

⇢✓

h

+ ✓

h

�

and

E
�

(V2 � S1)
2  = E

�

V

2
2

 � E
�

S

2
1

 

= (⌘�+ ⌘̄) P + �
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.
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For X

m�n

2,d , the initial distortion becomes

D

?

2,d = 1 � E
�

X2,dX̃ad

 2

E
�

X̃

2
ad

 (4.32)

where

E
�

X2,dX̃ad

 

=
�

1 � 2�2R
1

�

E
�

X2,dXad

 

=
�

1 � 2�2R
1

� �

⇢✓

d

+ ✓

d

�

and

E
�

X̃

2
ad

 

=
�

1 � 2�2R
1

�

E
�

X

2
ad

 

=
�

1 � 2�2R
1

�

↵

2
d

.

With the help of the other layers that is used for Wyner-Ziv coding, we obtain

D2,h = D

?

2,h2
�2R

2 (4.33)

and

D2,d = D

?

2,d2
�2R

3

. (4.34)

Using (4.26)-(4.28) in (4.29) through (4.34) yields the desired result.

Corollary 20 The proposed scheme outperforms both the GT and BAL schemes.

Proof. First we show that the scheme outperforms GT scheme. Simply by setting ✓
d

=

✓

h

= ✓ and

µ = 1 � 1

⌘�2

h

(1 + ⌘�2)
1� � 1

i

(4.35)

� =
1

⌘�1

h

(1 + ⌘�1)
1� (1 + �1)

 � 1 � ⌘�1

i

(4.36)
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it can be shown that the distortion region is given by

D1 = 1 � (✓ + ⇢✓)2

↵

2

⇢

1 �
✓

1 + ⌘�1

1 + �1

◆



�

(4.37)

D2 = 



1 � (⇢✓ + ✓)2

↵

2

⇢

1 �
✓

1 + �2⌘̄

1 + �2 (⌘�+ ⌘)

◆��

(1 + ⌘�2)
�

+



1 � (⇢✓ + ✓)2

↵

2

⇢

1 �
✓

1 + ⌘�1

1 + �1

◆



��

(1 + ⌘�2)
�

. (4.38)

Note that 0  µ  1 and 0  �  1. Plugging (4.36) into the expression above we have

1 + ⌘̄�2

1 + �2 (⌘�+ ⌘̄)
 1 + ⌘̄�1

1 + �1 (⌘�+ ⌘̄)
(4.39)

=

✓

1 + ⌘̄�1

1 + �1

◆



. (4.40)

Comparing (4.37)-(4.38) with (4.12)-(4.14), it can be seen with the help of (4.39)-(4.40)

that the achievable distortion region is larger than that with the GT scheme.

Following the description of the BAL scheme for BC we numerically demonstrated

that the second digital layer (information M2) is redundant. But in the absence of the

second digital layer, the BAL scheme for BC is simply subsumed by our scheme where

✓

d

= 1 and µ = 0.

The superiority of our scheme over the others is demonstrated in Fig. 4.10.

As  ! 1, both schemes in Sections 4.4 and 4.5 reduce to sending a linear combina-

tion of the sources ✓Xn

1 + ✓̄Xn

2 , i.e., an analog layer, with power �P and using the remaining

power (1 � �) P to send M3, which is the digital information containing Wyner-Ziv coding

index for X2, by using dirty paper coding. The achievable distortion pair in this case can
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be shown to reduce to

D1 =
P

⇣

1 � �

↵

2

�

✓ + ⇢✓̄

�2
⌘

+ �

2
W

1

P + �

2
W

1

(4.41)

D2 =

⇣

P

⇣

1 � �

↵

2

�

⇢✓ + ✓̄

�2
⌘

+ �

2
W

2

⌘

�

2
W

2

⇣

P + �

2
W

2

⌘⇣

�̄P + �

2
W

2

⌘

. (4.42)

We show in Appendix A.3 that (4.41) and (4.42) are equivalent to the original

optimal distortion region presented in [41] by finding a one-to-one relation between (✓,�)

and the parameters of the scheme in [41].

This limiting scheme is also subsumed by the classes of schemes introduced in [38,

Sections IV-A and IV-B].

4.6 Conclusion

We considered lossy transmission of correlated Gaussian sources over bandwidth

mismatched Gaussian broadcast channel where each receiver is interested in only one com-

ponent of the source. We identified the shortcomings of the BAL scheme, and proposed

HDA schemes that outperform, in both BE and BC regimes, the BAL scheme as well as

separate source-channel coding (the GT scheme). In some cases, the proposed schemes come

close to the genie-aided outer bound. Finally, the proposed schemes collapse to an optimal

scheme as the bandwidth expansion ratio approaches one either from above or below.
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Figure 4.7: The distortion performances of our coding scheme, the BAL scheme and GT
scheme are compared with the genie-aided lower bound when P = 1, N1 = 1, N2 = 0.3,
⇢ = 0.1, 0.8, 0.95, and  = 1.2, 5. The BAL scheme performs poorly especially in (a),
(c), and (e), i.e., when  is close to one. In (e), as ⇢ and  are both close to one, uncoded
transmission scheme must be almost optimal, and therefore the GT scheme performs poorly
compared to the other coding schemes since it is purely digital. When  is high, as in (b),
(d) and (f), the genie-aided outer bound is no longer useful, and the coding schemes seem
to perform relatively close to each other.
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Figure 4.9: The diagram and coding hierarchy of power splitting for bandwidth compression.
As in bandwidth expansion case, the upper layers “see” the lower layers as noise, while the
lower layers cancel the e↵ect of the upper ones. The lowest two layers are intended for the
second receiver only.
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Figure 4.10: The performances of the coding schemes and the genie-aided lower bound
are depicted for various (⇢,) pairs. Unless ⇢ is small as in (a) and (b), our scheme clearly
outperforms both known schemes. When ⇢ is close to 1, the lower bound is no longer useful.
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Chapter 5

Energy-Distortion Exponents in

Lossy Transmission of Gaussian

Sources Over Gaussian Channels

5.1 Introduction

In information theory, performance of a communication system is typically ana-

lyzed under the average power constraint per unit bandwidth (i.e., Joules/second/Hertz),

which automatically translates into infinite energy consumption per source sample when

the bandwidth is unlimited. This does not correspond to a meaningful setting for sensor

networks which are limited by the total energy available in finite-size batteries, while the

relative channel bandwidth per source sample is abundant when the source signal changes

slowly over time and each source sample can be transmitted over many uses of the channel.
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A more appropriate performance measure for the sensor network scenario is the energy-

distortion tradeo↵ [17, 18], which characterizes the minimum average reconstruction distor-

tion that can be achieved under a total energy constraint (per source sample) without any

limitation on the channel bandwidth.

In this paper, we introduce the energy-distortion exponent as the exponential rate

of decay of the square-error distortion as the energy-to-noise ratio (ENR) approaches infin-

ity. Our motivation for defining this measure is the same as in typical high signal-to-noise

ratio (SNR) analyses that appear in the literature: in the absence of a completely charac-

terized energy-distortion tradeo↵, energy-distortion exponent will provide us with a rough

benchmark to strive for when designing practical systems.

Two prominent examples where the energy-distortion characterization is not fully

known are (i) the transmission of a single Gaussian source over a Gaussian broadcast channel

where each receiver reconstructs its own estimate of the source (see [32] and [35] for inner

and outer bounds derived for average power constraint and finite bandwidth), and (ii) the

transmission of a pair of correlated Gaussian sources over a Gaussian broadcast channel,

where each receiver is interested in reconstructing only one of the sources (similarly, see [6, 8,

14, 19, 38, 39, 41] for existing results). In both cases, the tradeo↵ is between two distortion

levels achieved at each receiver for a given energy budget. Similarly, there will be a tradeo↵

between energy-distortion exponents at each receiver.

Our first result is a closed-form characterization of the achievable pairs of energy-

distortion exponents in the first scenario. More specifically, we show that the achievability

and converse results in [35] coincide in the energy-distortion regime for very high ENR.
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For the second scenario we prove a similar result. Namely, we show that the

converse result in [6], when translated into the energy-distortion tradeo↵, yields a pair of

energy-distortion exponents that can be achieved using a simple energy splitting scheme.

For both of the broadcast scenarios, as well as the point-to-point channel, we

then investigate the energy-distortion exponents in the extreme case of zero-delay1. Zero-

delay transmission is relevant in applications where delay could not be tolerated, such as

smart-grid systems where smart-meter measurements are used for monitoring the grid for

energy outages. In a typical smart meter scenario, one measurement is taken every 15

minutes and must be transmitted as soon as possible to the central control unit [27]. Our

last result is that, in the zero-delay regime, if we allow for a small outage event whose

probability is vanishingly small, the same energy-distortion exponent(s) can be achieved as

in the aforementioned infinite delay scenarios.

The rest of the paper is organized as follows. Section 5.2 is dedicated to prelimi-

naries and notation. In Section 5.3, achievable energy-distortion exponents are derived for

both of the broadcast scenarios under the infinite-delay regime. Then, in Section 5.4, we

focus on zero-delay transmission for both point-to-point and broadcast channels, and show

that the same energy-distortion exponents as in the infinite delay regime can be achieved

with distortion outages.

1

To clarify, in our terminology zero-delay refers to transmission being complete before the next source

sample is generated. In other words, zero source delay is incurred.
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5.2 Preliminaries and Notation

5.2.1 Point-To-Point Transmission

Let X

M ⇠ N (0, I
M

) be an independent and identically distributed (i.i.d.) Gaus-

sian source sequence to be transmitted over the channel

V

N = U

N + W

N

, (5.1)

where U

N and V

N are the channel input and output, respectively, and the channel noise

W

N ⇠ N �

0,�

2
W

I
N

�

is independent of U

N . The encoder

�

M,N

: RM �! RN (5.2)

maps X

M into U

N , and the receiver

 

M,N

: RN �! RM (5.3)

estimates X

M as X̂

M . The ratio  = N

M

is usually referred to as the bandwidth expansion

factor, and it is measured in channel uses per source symbol.

Definition 21 A pair (D, E) is achievable for point-to-point transmission if for any ✏ > 0,

there exists large enough M , N , and a corresponding encoder-decoder pair (�
M,N

, 

M,N

),

such that

1

M

E
⇥||UN ||2⇤  E + ✏

1

M

E
h

||XM � X̂

M ||2
i

 D + ✏ .

As usual, we denote by D(E) the minimum possible distortion such that (D, E) is achievable.
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Note that in the above definition, the expended energy is measured per source

symbol. This is in contrast with power-limited transmission where the channel power is

measured per channel symbol. However, by expressing the energy constraint alternatively

as

1

N

E
⇥||UN ||2⇤  E



+ ✏

0
,

one can utilize existing power-constrained channel transmission results. For instance, it

directly follows from the separation theorem that (D, E) is achievable if and only if

R (D)  sup
>0

C

✓

E



◆

(5.4)

where C (P ) is the capacity with power constraint

C (P ) =
1

2
log2

✓

1 +
P

�

2
W

◆

,

and R (D) is the rate-distortion function given by

R (D) =
1

2
log2

1

D

.

Translating (5.4) then yields

D (E) = inf
>0

✓

1 +
E

�

2
W

◆�

= lim
!1

✓

1 +
E

�

2
W

◆�

= e

� E

�

2

W

. (5.5)

To emphasize the fact that the minimum achievable distortion D(E) depends only on the

energy-to-noise ratio (ENR), defined as

� =
E

�

2
W

,

we write (5.5) in the sequel as

D (E) = e

��

. (5.6)
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In all the scenarios we consider in the sequel, we will observe similar energy-

distortion behaviors as E ! 1. That motivates us to define

lim
E!1

�1

�

ln D(E)

as the energy-distortion exponent for each scenario. Therefore, when we say that a receiver

achieves an energy-distortion exponent of �, it is equivalent to stating that the average

distortion at that receiver decays to zero as e

��� in the high-energy high-bandwidth regime.

Thus, though not asymptotic in E, we still observe that the energy-distortion tradeo↵ D(E)

in (5.6) achieves an exponent of 1.

5.2.2 Transmission of a Single Source Over a Broadcast Channel

Let the i.i.d. Gaussian source X

M be transmitted over the Gaussian broadcast

channel

V

N

i

= U

N + W

N

i

(5.7)

for i = 1, 2, where U

N and V

N

i

are the channel input and output at the ith receiver,

respectively, and the channel noise sequences W

N

i

⇠ N �

0,�

2
W

i

I
N

�

are independent of U

N

and each other.

Let the encoder be the same as given in (5.2). At the ith receiver, the decoder

 

(i)
M,N

: RN ! RM (5.8)

maps the observation V

N

i

into the estimation X̂

M

i

=  

(i)
M,N

�

V

N

i

�

. We refer the reader to

Fig. 5.1 for the block diagram of the system.
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Figure 5.1: The block diagram for transmission of a single Gaussian source sequence X

M

over the Gaussian broadcast channel V

N

i

= U

N + W

N

i

, i = 1, 2. Each receiver estimates its
version X̂

M

i

of the source.

Definition 22 An energy-distortion triplet (D1, D2, E) is achievable if for any ✏ > 0, there

exists large enough M, N and (�
M,N

, 

1
M,N

, 

2
M,N

) such that

1

M

E
⇥||UN ||2⇤  E + ✏

1

M

E
h

||XM � X̂

M

i

||2
i

 D

i

+ ✏

for i = 1, 2.

As in the point-to-point case, for a fixed energy budget E, the tradeo↵ between

D1 and D2 will depend only on the ENR values �
i

= E

�

2

W

i

. Without loss of generality, we

assume that the second receiver is the “better” one, i.e., �2
W

1

= g�

2
W

2

for some g > 1. This

also implies �2 = g�1 for all E.

Definition 23 An energy-distortion exponent pair (�1,�2) is achievable if there exist func-

tions D1(E) and D2(E) such that (D1(E), D2(E), E) is achievable for all E > 0 and

lim
E!1

� 1

�

i

ln D

i

(E) = �

i

for i = 1, 2.
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Figure 5.2: The block diagram for transmission of a bivariate Gaussian source sequence
(XM

1 , X

M

2 ) over the Gaussian broadcast channel V

N

i

= U

N + W

N

i

, i = 1, 2. Each receiver
estimates only one source.

5.2.3 Transmission of a Bivariate Source Over a Broadcast Channel

Consider the transmission of an i.i.d. bivariate zero-mean Gaussian source
�

X

M

1 , X

M

2

�

over the same channel given in (5.7), where (X1,mX2,m) ⇠ N (0, ⌃) with covariance matrix

⌃ =

2

6

6

4

1 ⇢

⇢ 1

3

7

7

5

and |⇢| < 1. The encoder (5.2) is modified as

�

M,N

: RM ⇥ RM �! RN (5.9)

which maps
�

X

M

1 , X

M

2

�

into U

N , and at the ith receiver the decoder

 

(i)
M,N

: RN ! RM (5.10)

estimates the ith source as X̂

M

i

=  

(i)
M,N

�

V

N

i

�

. See Fig. 5.2 for the pictorial description of

the system.
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Definition 24 An energy-distortion triplet (D1, D2, E) is achievable if for any ✏ > 0, there

exists large enough M, N and (�
M,N

, 

1
M,N

, 

2
M,N

) such that

1

M

E
⇥||UN ||2⇤  E + ✏

1

M

E
h

||XM

i

� X̂

M

i

||2
i

 D

i

+ ✏

for i = 1, 2.

Definition of achievable energy-distortion exponent pairs for this scenario is exactly

as given in Definition 23.

5.3 Achievable Energy-Distortion Exponents

We begin by characterizing the energy-distortion exponent pair for the transmis-

sion of a single Gaussian source over a Gaussian broadcast channel. To that end, we utilize

the inner and outer bounds on the achievable distortion region given in [35] for a fixed band-

width expansion factor  and average channel input power P . In particular, the bounds

coincide when translated into the energy-distortion exponent regime. We note in passing

that even though the inner bound of [35] was improved in [32], the former su�ces for our

purposes.

Theorem 25 The set of achievable energy-distortion exponent pairs for the transmission

of a single Gaussian source over a Gaussian broadcast channel is given as

Bsingle =

⇢

(�1,�2)

�

�

�

�

0  �1  1, 0  �2  �1

g

+ (1 � �1)

�

as shown in Fig. 5.3.
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Figure 5.3: The region of all achievable energy-distortion exponent pairs (�1,�2) for trans-
mission of a single Gaussian source over a Gaussian broadcast channel.

Proof. We first show that all energy-distortion exponent pairs in Bsingle are achiev-

able. For a fixed bandwidth expansion factor  and an average power budget P per channel

use, the scheme in [35] achieves

D1 =
1

1 + P

�

2

W

1

 

1 +
↵P

�

2
W

1

+ (1 � ↵) P

!1�

(5.11)

D2 =
1

1 + P

�

2

W

2

 

1 +
↵P

�

2
W

1

+ (1 � ↵) P

!1�

 

1 +
(1 � ↵)P

�

2
W

2

!1�

(5.12)

for all 0  ↵  1.

Substituting in (5.11) and (5.12) the identity P = E



, and letting  ! 1, we

obtain
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D1 = lim
!1

1

1 + �

1



✓

1 +
↵�1

+ (1 � ↵) �1

◆1�

= lim
!1

✓

1 +
↵�1

+ (1 � ↵) �1

◆1�

= lim


0!1

✓

1 +
1



0

◆1+(1�↵)�
1

�↵�

1



0

= lim


0!1

✓

1 +
1



0

◆1+(1�↵)�
1

lim


0!1

✓

1 +
1



0

◆�↵�

1



0

= lim


0!1

✓

1 +
1



0

◆�↵�

1



0

= e

�↵�

1 (5.13)

where 0 = +(1�↵)�
1

↵�

1

, and

D2 = lim
!1

1

1 + �

2



✓

1 +
↵�1

+ (1 � ↵) �1

◆1�

⇣

1 + (1 � ↵)
�2



⌘1�

= lim
!1

✓

1 +
↵�1

+ (1 � ↵) �1

◆1�

lim
!1

⇣

1 + (1 � ↵)
�2



⌘1�

= e

�↵�

1

e

�(1�↵)�
2

= e

��

2

h
↵

g

+1�↵

i

. (5.14)

It follows from (5.13) and (5.14) that all energy-distortion pairs in the set Bsingle are indeed

achievable.

For the converse, we use the outer bound for the finite bandwidth power-constrained

problem given in [35] as follows. For any achievable (D1, D2) such that

D1 = �

 

1 +
P

�

2
W

1

!�

,

with � > 1, D2 must satisfy

D2 � sup
m>0

m

 

�

2

W

1

�

2

W

2



� + m

✓

P

�

2

W

1

+ 1

◆



�1/

�
✓

�

2

W

1

�

2

W

2

� 1

◆

(1 + m)1/
!



� 1

.
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In the energy-distortion regime, this bound translates to

D1 = lim
!1 �

⇣

1 +
�1



⌘�

= �e

��

1 (5.15)

and

D2 � lim
!1 sup

m>0

m

⇣

g

⇥

� + m

�

1 + �

1



�



⇤1/ � (g � 1) (1 + m)1/
⌘

 � 1

= sup
m>0

m

(1 + m)L(m) � 1
(5.16)

where

L (m) =
1

1 + m

lim
!1

✓

g

h

� + m

⇣

1 +
�1



⌘



i1/
� (g � 1) (1 + m)1/

◆



= lim
!1

0

@1 + g

2

4

 

� + m

�

1 + �

1



�



1 + m

!

1



� 1

3

5

1

A



.

Now, for f() non-decreasing in , and h(✓,) non-decreasing in ✓, we can write

h(f(�),)  h(f(),)  h(f(+),) (5.17)

for any �    +. Moreover, the inequality chain in (5.17) remains intact if we first let

+ ! 1, then let  ! 1, and finally � ! 1, to obtain

lim
�!1 lim

!1h(f(�),)  lim
!1h(f(),)  lim

!1h

�

lim


+

!1 f(+),
�

(5.18)

whenever the above limits exist. Setting

f() =
� + m

�

1 + �

1



�



1 + m

and

h(✓,) =
⇣

1 + g

h

✓

1

 � 1
i⌘



,
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together with the observation that

lim
!1 f() =

� + me

�

1

1 + m

and

lim
!1h(✓,) = ✓

g

for any fixed ✓, we notice that the upper and lower bounds in (5.18) collapse and yield

L(m) =

✓

� + me

�

1

1 + m

◆

g

.

Therefore (5.16) is the same as

D2 � sup
m>0

m

(1 + m)
⇣

�+me

�

1

1+m

⌘

g � 1
.

The supremum above is di�cult to compute. However, substitution of any m > 0 obviously

results in a (looser) lower bound on the achievable D2. In particular, it is easy to show after

some algebra that the choice

m =
�

(g � 1)e�1 � �g

.

results in

D2 � �

(g � 1)(e�1 � �)
⇣

�g

g�1

⌘

g � (g � 1)e�1 + �g

(5.19)

for any fixed D1 = �e

��

1 .

Note that we are interested in the asymptotic behavior of achievable (D1, D2) as

E ! 1. To that end, let D1(E) = �(E)e��

1 for some arbitrary �(E) > 1 such that

lim
E!1

� 1

�1
ln D1(E) = �1 (5.20)
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for some 0  �1  1. This implies that for any such �(E),

lim
E!1

� 1

�1
ln �(E) = �1 � 1 ,

or in other words, �(E) must grow as e

�

1

(1��

1

). For the second energy-distortion exponent,

(5.19) then translates to the upper bound

lim
E!1

� ln D2(E)

�2
 lim

E!1

⇢� ln �(E)

�2

+
1

�2
ln



(g � 1)(e�1 � �(E))

✓

�(E)g

g � 1

◆

g

� (g � 1)e�1 + g�(E)

��

=
�1 � 1

g

+ lim
E!1

1

�2
ln



g

g

(g � 1)g�1
[e�1 � �(E)]�(E)g � (g � 1)e�1 + g�(E)

�

(a)
=
�1 � 1

g

+
1

g

+ 1 � �1

=
�1

g

+ 1 � �1 (5.21)

where (a) follows from the fact that [e�1 � �(E)]�(E)g grows as e

�

1

+�

2

(1��

1

), which is faster

than the other terms e

�

1 and �(E). The proof is therefore complete because (5.20) and (5.21)

implies that Bsingle is indeed an outer bound to achievable energy-distortion exponents.

In the next theorem, we characterize the achievable energy-distortion exponent

pairs for the transmission of bivariate Gaussian sources over the Gaussian broadcast chan-

nel. As in the single source case, we utilize an existing outer bound introduced in [6] on

achievable (D1, D2) pairs for a given channel input power P and bandwidth expansion factor

. Interestingly, a very simple coding scheme achieves the same energy-distortion exponents

as the outer bound.

Theorem 26 The set of achievable energy-distortion exponent pairs for the transmission

of a bivariate Gaussian source over a Gaussian broadcast channel is given as

Bbivariate = {(�1,�2) |0  �1  1, 0  �2  1 � �1 }
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as shown in Fig. 5.4.

Figure 5.4: The region of all achievable energy-distortion exponent pairs (�1,�2) for trans-
mission of a bivariate Gaussian source over a Gaussian broadcast channel.

Proof. We start with the converse. It follows from the outer bound derived

in [6] that for fixed channel input power P and bandwidth expansion factor , (D1, D2) is

achievable only if there exists 0  ↵  1 such that

D1 �
 

1 +
↵P

(1 � ↵) P + �

2
W

1

!�

D2 � �

1 � ⇢

2
�

 

1 +
(1 � ↵)P

�

2
W

2

!�
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In the energy-distortion framework, this implies that for any fixed energy budget E per

source symbol, there must exist 0  ↵  1 such that

D1 � lim
!1

✓

1 +
↵�1

(1 � ↵) �1 + 

◆�

= e

�↵�

1

D2 � lim
!1

�

1 � ⇢

2
�

✓

1 +
(1 � ↵)�2



◆�

=
�

1 � ⇢

2
�

e

�(1�↵)�
2

.

Thus, for any D1(E) and D2(E) such that (D1(E), D2(E), E) is achievable, we must have

lim
E!1

� 1

�1
ln D1(E)  ↵

lim
E!1

� 1

�2
ln D2(E)  1 � ↵

for some 0  ↵  1, proving that Bbivariate is indeed an outer bound for all achievable

exponent pairs (�1,�2).

To prove achievability of any (�1,�2) 2 Bbivariate, it su�ces to simply send the

source pair with two rounds of transmission, where in each round i = 1, 2, we transmit

X

M

i

with energy �

i

E and bandwidth expansion factor 
i

. Note that (i) �1E + �2E  E,

and therefore this is a feasible choice, and (ii) the individual 
i

can be arbitrarily taken to

infinity, resulting in

D1(E) = e

��

1

�

1

D2(E) = e

��

2

�

2

which follows from (5.6). The proof is therefore complete.
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5.4 Zero-Delay Communication with Distortion Outage

In this section we focus on the extreme case of zero source delay, i.e., M = 1.

In other words, a single random variable X is mapped into the channel input U

N where

the channel, the encoder, and the decoder(s) are in the same form in each aforementioned

scenario. We have  = N , and once again, we are interested in the energy-distortion

tradeo↵ when the bandwidth is not limited, i.e., N ! 1. However, we slightly change the

achievability definition for distortion by allowing a vanishingly small probability of distortion

outage, and evaluating the expected distortion conditioned on no distortion outages.

The motivation behind this change is as follows. While one should ultimately

search for an analog mapping between X and U

N , that proves a di�cult task for even

moderate values of N [3, 9, 16, 44], let alone N ! 1. That leaves the alternative of either

digital coding or hybrid digital/analog coding. On the other hand, any coding scheme that

transmits some digital information through the channel is prone to error in decoding of that

information. Regardless of how small the probability of incorrect decoding is, the overall

expected distortion might still be very adversely a↵ected.

We generalize this “error event” as the outage region in the product space of

(X, W

N ), and formally define the energy-distortion-outage tradeo↵. We then show that

in each scenario we consider, zero-delay communication with distortion outage achieves

the same energy-distortion exponent as in the infinite-delay case discussed in the previous

section.
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5.4.1 Point-to-Point Transmission

Definition 27 A triple (D, E, �) is achievable for zero-delay point-to-point transmission

with distortion outage if for any ✏ > 0, there exist a large enough N , an encoder-decoder

pair (�1,N , 1,N ), and an outage region O 2 R ⇥ RN such that

E
⇥||UN ||2⇤  E + ✏

Pr
⇥�

X, W

N

� 2 O⇤  �

E
h

(X � X̂)2
�

�

�

Oc

i

 D + ✏ .

Also denote by D(E, �) the minimum possible distortion such that (D, E, �) is achievable.

It should be clear that the region of all achievable (D, E, 0) coincides with the set

of achievable (D, E) as in Definition 21, and therefore this is a more general achievability

concept.

We modify the definition of energy-distortion exponents accordingly as follows.

Definition 28 An energy-distortion exponent � is achievable for zero-delay point-to-point

transmission with distortion outage if

� = lim
�!0

lim
E!1

�1

�

ln D(E, �)

where, as before, � = E

�

2

W

.

In what follows we show that we can achieve � = 1 just as in the infinite-delay

case (5.6).

Theorem 29 � = 1 is an achievable energy-distortion exponent for zero-delay point-to-

point transmission of a Gaussian source with distortion outage.
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Proof. We quantize the single random variable X with N � 1 levels and use orthogonal

signaling to transmit the quantization index. At the receiver, we use maximum likelihood

decoding, and classify incorrect decoding as the distortion outage event.

It is well-known [15] that the optimal high-resolution quantizer has the point den-

sity function � (x) given by

� (x) =
f

X

(x)
1

3

R1
�1 f

X

(x0)
1

3

dx

0
(5.22)

which, for X ⇠ N (0, 1), boils down to a Gaussian with zero mean and variance 3. The

resultant distortion can be approximated using the Bennett integral [15] as

D ⇡ 1

12N

2

Z 1

�1
f

X

(x)

� (x)2
dx

=
1

12N

2

✓

Z 1

�1
f

X

�

x

0� 1

3

dx

0
◆3

=

p
3⇡

2N

2
. (5.23)

One can formalize this approximation by

D 
p

3⇡

2N

2
+ ✏ (5.24)

for arbitrarily small ✏ > 0 and large enough N .

The quantized indices are mapped into orthogonal channel input vectors U

N such

that

U

t

=

8

>

>

>

>

<

>

>

>

>

:

p
E t = k (X)

0 t 6= k (X)

where 1  k(X)  N is the integer quantization index. Note that
�

�

U

N

�

�

2
= E always. At

the receiver end, upon receiving V

N = U

N + W

N , the decoder simply selects

K̂ = arg max
1iN

V

i
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and then outputs

X̂ = r

K̂

where r

k

is the kth reconstruction level of the quantizer. Thus, the distortion outage event

is given by

O =
n

k(X) 6= K̂

o

.

Since the analysis of the probability of decoding error for orthogonal signaling

can be found in the literature (for example, see [34, Section 6.6]), we include it only for

convenience and defer it to Appendix A.42. The analysis yields

Pr[O] 

8

>

>

>

>

<

>

>

>

>

:

2e

(lnN� �

4

) ln N <

�

8

2e

� 1

2

(p��p
2 lnN)2 �

8  ln N  �

2

. (5.25)

This upper bound is depicted in Fig. 5.5, for a given ENR �.

Now, for a given � > 0 and ENR �, we need to use the maximum possible number of

quantization levels Nmax(�, �) such that Pr[O]  � to minimize the distortion (see Fig. 5.5).

It follows from (5.25) that

Nmax(�, �) =

8

>

>

>

>

<

>

>

>

>

:

�

2e
�

4 4 ln 2
�

< � < 8 ln 2
�

e

1

2

⇣p
��

q
2 ln 2

�

⌘
2

� � 8 ln 2
�

.

It then follows by choosing N = Nmax(�, �) in (5.24) that for any � > 0,

E
h

||X � X̂||2
�

�

�

Oc

i


p

3⇡

2
e

�
⇣p

��
q

2 ln 2

�

⌘
2

+ ✏ .

2

We also refer the reader to [31] for a similar analysis.
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Figure 5.5: The upper bound on the probability of distortion outage as a function of ln N

for a fixed ENR �. The maximum allowed ln N to guarantee Pr[O]  � when � � 2e

� �

8 is
also shown.

for arbitrarily small ✏ > 0 and large enough3
�. Thus,

D(E, �) 
p

3⇡

2
e

�
⇣p

��
q

2 ln 2

�

⌘
2

for any � > 0 and large enough E, and therefore

lim
�!0

lim
E!1

�1

�

ln D(E, �) � 1

finishing the proof.

3

Large enough � is necessary because (i) we need � � 8 ln

2

�

, and (ii) N
max

(�, �) must be large enough

for the Bennett approximation (5.24) to be valid.
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5.4.2 Broadcasting of a Single Gaussian Source

Definition 30 A quadruple (D1, D2, E, �) is achievable for zero-delay broadcasting of a

single source with distortion outage if for any ✏ > 0, there exist a large enough N , an

encoder �1,N , decoders  
(i)
1,N , and outage regions O

i

2 R ⇥ RN for i = 1, 2 such that

E
⇥||UN ||2⇤  E + ✏

Pr
⇥�

X, W

N

i

� 2 O
i

⇤  �

E
h

(X � X̂

i

)2
�

�

�

Oc

i

i

 D

i

+ ✏ .

Definition 31 An energy-distortion exponent pair (�1,�2) is achievable for zero-delay

broadcasting of a single source with distortion outage if there exist functions D1(E, �) and

D2(E, �) such that (D1(E, �), D2(E, �), E, �) is achievable for all E > 0, � > 0 and

lim
�!0

lim
E!1

� 1

�

i

ln D

i

(E, �) = �

i

for i = 1, 2.

We are now ready to state and prove the following theorem.

Theorem 32 Any pair (�1,�2) 2 Bsingle is achievable for zero-delay broadcasting of a single

Gaussian source with distortion outage.

Proof. We quantize X with successive refinement with N1 � 1 levels in the base layer

and N2 � 1 levels in the refinement layer. We then use orthogonal signaling and maxi-

mum likelihood decoding as in point-to-point transmission, with the modification that the

transmission is done in two rounds: In the ith round, i = 1, 2, the channel is used N

i

times

to transmit the ith layer quantization index. Although both receivers have access to both
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rounds, only the second receiver attempts to decode the refinement layer. We define O1

as the event that receiver 1 decodes the base layer index incorrectly, as in point-to-point

transmission. On the other hand, we let O2 indicate that the second receiver incorrectly

decodes either of the quantization indices.

It is clear from (5.24) that if the point density function �(x) for the base layer is

chosen as in (5.22), there exist large enough N1 such that

E
h

(X � X̂1)
2
�

�

�

Oc

1

i


p

3⇡

N

2
1

+ ✏ (5.26)

for any ✏ > 0. We claim that for large enough N1 and N2, one can simultaneously achieve

(5.26) and

E
h

(X � X̂2)
2
�

�

�

Oc

2

i

=

p
3⇡

N

2
1N

2
2

+ ✏ (5.27)

for any ✏ > 0. To that end, it su�ces to recall that high-resolution quantization is equivalent

to mapping the sample X onto the interval [0, 1] using G(x) =
R

x

�1 �(z)dz followed by

uniform quantization. Thus, not only does dividing the interval [0, 1] into N1 equal-width

intervals (followed by the inverse mapping G

�1) yield the optimal quantizer for the base

layer, but further dividing each subinterval into N2 equal-width intervals yield the optimal

quantizer for the refinement layer. In other words, X is successively refineable in the high-

resolution regime4.

Let the two rounds of transmission expend energies ↵E and (1�↵)E, respectively,

4

This argument is independent of the PDF of X. The notion of successive refineability here is not to

be confused with the notion that appears in the literature. The latter deals with finite rates but infinite

blocklengths, whereas we are interested in infinite rates and scalar coding.
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for some 0 < ↵ < 1. Then, as in the proof of Theorem 29, one can upper bound Pr[O1] as

Pr[O1] 

8

>

>

>

>

<

>

>

>

>

:

2e

(lnN

1

�↵�

1

4

) ln N1 <

↵�

1

8

2e

� 1

2

(p↵�

1

�p
2 lnN

1

)2 ↵�

1

8  ln N1  ↵�

1

2

. (5.28)

Then, also as in the proof of Theorem 29, to guarantee Pr[O1]  �, we need to satisfy

N1  N1,max(↵, �1, �), where

N1,max(↵, �1, �) =

8

>

>

>

>

<

>

>

>

>

:

�

2e
↵�

1

4 4 ln 2
�

< ↵�1 < 8 ln 2
�

e

1

2

⇣p
↵�

1

�
q

2 ln 2

�

⌘
2

↵�1 � 8 ln 2
�

. (5.29)

Combining (5.26) and (5.29) then yields for any ✏ > 0, � > 0, and large enough E that

E
h

(X � X̂1)
2
�

�

�

Oc

1

i

 D1(E, �) + ✏

with

D1(E, �) =

p
3⇡

2
e

�
⇣p

↵�

1

�
q

2 ln 2

�

⌘
2

. (5.30)

At the second receiver, one can use the union bound to write

Pr[O2]  P

e,1 + P

e

2

where P

e,1 and P

e,2 are the probabilities of the second receiver incorrectly decoding the base

and refinement layer index incorrectly, respectively. Since the second channel is less noisy,

it is clear that

P

e,1 < Pr[O1]  � .

We can in fact tighten this upper bound by first translating (5.28) for the second receiver

as

P

e,1 

8

>

>

>

>

<

>

>

>

>

:

2e

(lnN

1

�↵�

2

4

) ln N1 <

↵�

2

8

2e

� 1

2

(p↵�

2

�p
2 lnN

1

)2 ↵�

2

8  ln N1  ↵�

2

2

(5.31)
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and then assuming ↵�1 � 8 ln 2
�

without loss of generality (because we will eventually let

E ! 1), using (5.29) to show both

2e

(lnN

1

�↵�

2

4

)  2e

✓
1

2

⇣p
↵�

1

�
q

2 ln 2

�

⌘
2

� g↵�

1

4

◆

 2e

✓
1

2

⇣p
↵�

1

�
q

2 ln 2

�

⌘
2

�2g ln 2

�

◆

 2e

�2g ln 2

�

= 2

✓

�

2

◆2g

(5.32)

and

2e

� 1

2

(p↵�

2

�p
2 lnN

1

)2  2e

� 1

2

⇣
(
p
g�1)

p
↵�

1

+
q

2 ln 2
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⌘
2

 2e

� 1

2
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2(
p
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q
2 ln 2

�

+
q

2 ln 2

�

⌘
2

 2e

�(2pg�1)2 ln 2

�

 2
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�

2

◆

g

. (5.33)

Bringing together (5.31)-(5.33), we obtain

P

e,1  2

✓

�

2

◆

g

. (5.34)

Letting �0 = �� 2
�

�

2

�

g

, we can once again use the analysis in Theorem 29 to conclude that

P
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(5.35)

and that to guarantee Pr[O2]  �, it su�ces to choose N2  N2,max(g,↵, �1, �), where

N2,max(g,↵, �1, �) =

8
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⌘
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g(1 � ↵)�1 � 8 ln 2
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0

. (5.36)
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Combining (5.27), (5.29), and (5.36) then yields for any ✏ > 0, � > 0, and large enough E

that

E
h

(X � X̂)2
�

�

�

Oc

2

i

 D2(E, �) + ✏

with

D2(E, �) =

p
3⇡

2
e
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⌘
2
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�
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. (5.37)

The proof is complete by observing that for any � > 0,

lim
E!1

� 1

�1
ln D1 (E, �) = ↵

and

lim
E!1

� 1

�2
ln D2 (E, �) =

↵

g

+ 1 � ↵ .

5.4.3 Broadcasting of a Bivariate Gaussian Source

Definition 33 A quadruple (D1, D2, E, �) is achievable for zero-delay broadcasting of bi-

variate sources with distortion outage if for any ✏ > 0, there exist a large enough N , an

encoder �1,N , decoders  
(i)
1,N , and outage regions O

i

2 R ⇥ RN for i = 1, 2 such that

E
⇥||UN ||2⇤  E + ✏

Pr
⇥�

X1, X2, W
N

i

� 2 O
i

⇤  �

E
h

(X
i

� X̂

i

)2
�

�

�

Oc

i

i

 D

i

+ ✏ .

The definition of achievable energy-distortion exponent pairs is exactly as in Defini-

ton 31.
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Just as in the proof of Theorem 26, separately encoding the two sources and

splitting the available energy E into ↵E and (1 � ↵)E to transmit the quantization indices

using orthogonal signaling is a su�cient strategy to achieve the same energy-distortion

exponents in Bbivariate as stated in the next theorem.

Theorem 34 Any pair (�1,�2) 2 Bbivariate is achievable for zero-delay broadcasting of bi-

variate Gaussian sources with distortion outage.

Proof. We provide only a sketch of the proof as it is straightforward. Using the same

technique as in the proof of Theorem 32, it is possible to show that for any ✏ > 0, � > 0,

and large enough E,

E
⇥||UN ||2⇤  E + ✏

Pr
⇥�

X1, X2, W
N

i

� 2 O
i

⇤  �

E
h

(X
i

� X̂

i

)2
�

�

�

Oc

i

i

 D

i

(E, �) + ✏

for i = 1, 2, can be simultaneously satisfied, where

D1(E, �) =

p
3⇡

2
e

�
⇣p

↵�

1

�
q

2 ln 2

�

⌘
2

D2(E, �) =

p
3⇡

2
e

�
⇣p

(1�↵)�
2

�
q

2 ln 2

�

⌘
2

.

Therefore for any � > 0,

lim
E!1

� 1

�1
ln D1 (E, �) = ↵

and

lim
E!1

� 1

�2
ln D2 (E, �) = 1 � ↵

and the proof is complete.
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Appendix A

Proofs

A.1 Proof of Theorem 15

The source codebook of size 2nR1 used to quantize X

n

a

is generated in i.i.d. fashion
according to the Gaussian random variable X̃

a

where the relation between X̃

a

and X

a

is
defined by the backward test channel X

a

= X̃

a

+Q with Q ⇠ N �

0, 2�2R
1E

�

X

2
a

 �

, X̃

a

? Q,

and also such that X̃

a

� X

a

� (X1, X2) forms a Markov chain. Using standard arguments
(i.e., Markov lemma), it can be shown that the selected source codeword at the encoder
X̃

n

a

(M1) that is jointly typical with X

n

a

will also be jointly typical with (Xn

1 , X

n

2 , X

n

a

).
Using

E
�

X

2
a

 

= ↵

2

E
�

X1Xa

 

= ✓ + ⇢✓̄

E
�

X2Xa

 

= ⇢✓ + ✓̄ ,

it follows that

E
�

X̃

2
a

 

=
�

1 � 2�2R
1

�

↵

2

E
�

X1X̃a

 

=
�

1 � 2�2R
1

� �

✓ + ⇢✓̄

�

E
�

X2X̃a

 

=
�

1 � 2�2R
1

� �

⇢✓ + ✓̄

�

.

Since the first receiver uses only the source codeword X̃

n

a

(M1), it incurs the distortion

D1 = 1 � E
�

X1X̃a

 2

E
�

X̃

2
a

 

= 1 �
�

✓ + ⇢✓̄

�2 �
1 � 2�2R

1

�

↵

2
. (A.1)

If the second receiver used only X̃

n

a

(M1) to reconstruct X

n

2 , it would incur the distortion

D

?

2 = 1 � E
�

X2X̃a

 2

E
�

X̃

2
a

 

= 1 �
�

⇢✓ + ✓̄

�2 �
1 � 2�2R

1

�

↵

2
. (A.2)
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Therefore, using X̃

n

a

(M1) as side information, the Wyner-Ziv coding of X

n

2 with rate R2

then yields
D2 = D

?

22
�2R

2

. (A.3)

Using superposition coding over the broadcast channel, the messages M1 and M2 can be
decoded correctly if the source coding rates are at most

R1 =


2
log

✓

1 + �1

1 + ⌘̄�1

◆

R2 =


2
log (1 + ⌘�2)

with some 0  ⌘  1. Substituting R1 and R2 above into (A.1), (A.2), and (A.3) yields
(4.12), (4.14), and (4.13), respectively, thereby finishing the proof.

A.2 Proof of Lemma 16

The source coding region in Lemma 2 of [14] can be rearranged and combined
with the capacity region of Gaussian broadcast channels [11] to conclude that (D1, D2) is
achievable with separate source channel coding (i.e., the GT scheme) if and only if there

exist 0  ⌘  1 and ⌫ 2 [⇢, ⌫?] with ⌫? = min
⇣

1
⇢

,

⇢

1�D

1

,

q

1�D

2

1�D

1

⌘

such that

D1 � 1 � 1 � ⇢

2

1 � ⇢

2 + (⌫ � ⇢)2

⇢

1 �
✓

1 + ⌘̄�1

1 + �1

◆



�

(A.4)

D2 � 1 � ⌫

2(1 � D1)

(1 + ⌘�2)


. (A.5)

Now, denote by (D1(✓), D2(✓)) the distortion pairs achieved by the alternative
separate coding scheme given in (4.12)-(4.14). We show that for each (D1, D2) achieved by
the GT scheme, an appropriate ✓ can be chosen such that D1(✓)  D1 and D2(✓)  D2.
Towards that end, define

g(⌫) =
1 � ⌫⇢

(1 + ⌫) (1 � ⇢)

and observe that g(⌫) is a decreasing function with g(⇢) = 1 and g(1
⇢

) = 0, implying that
0  g(⌫)  1 for all ⌫ 2 [⇢, ⌫?]. Choosing ✓ = g(⌫), we immediately obtain

(✓ + ⇢✓)2

1 � 2✓✓ (1 � ⇢)
=

1 � ⇢

2

1 � ⇢

2 + (⌫ � ⇢)2
(A.6)

(⇢✓ + ✓)2

1 � 2✓✓ (1 � ⇢)
=

⌫

2(1 � ⇢

2)

1 � ⇢

2 + (⌫ � ⇢)2
. (A.7)

Using (4.12) and (A.6), (A.4) can then be rewritten as

D1 � D1(✓) .

104



Similarly, using (A.7) together with (4.13), (4.14) and (A.5), we obtain

D2 � 1 � ⌫

2(1 � D1)

(1 + ⌘�2)


� 1 � ⌫

2(1 � D1(✓))

(1 + ⌘�2)


= D2(✓) .

Thus, the alternative separate source channel coding scheme can achieve a (D1, D2)
region at least as large as the GT scheme. On the other hand, since the GT scheme is
optimal, equivalence of the two schemes follow immediately.

A.3 Optimality when  = 1

The hybrid coding scheme proposed in Tian et al. [41, Eqs. (39) and (45)] achieves,
under the regime where it is optimal, i.e., P (1 � ⇢) > 2⇢�2

W

2

, the distortion pairs

D̃1 =
�

2
�

1 � ⇢

2
�

+ �

2
W

1

P + �

2
W

1

(A.8)

D̃2 =
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2
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2
W
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2)�2 + �

2
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(A.9)

for all
�

1 � ⇢

2
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P �2⇢2�2
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(A.10)

with
K =

⇣

P

2 � �

P + 2�2
W

2

�2
⇢

2
⌘

�

1 � ⇢

2
�

.

Essentially we will need to show that there exists a pair of coding parameters (✓,�)
for every �2 satisfying (A.10) such that 0  ✓,�  1 and our scheme achieves D1 = D̃1 and
D2 = D̃2 for the same source/channel parameters ⇢, P , �2

W

1

, and �2
W

2

.

Comparing (4.41) and (A.8), for D1 = D̃1 to be satisfied, we need to set (✓,�) so
that

P



1 � �

↵

2

�

✓ + ⇢✓̄

�2
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2
�

1 � ⇢

2
�

(A.11)

for any �

2 satisfying (A.10). Substituting (A.11) into (A.9) and comparing with (4.42)
yields that (✓,�) must also satisfy
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(A.12)
After some algebra, it can be seen that (A.12), which is quadratic in �, has a repeated
solution at

� = �(✓) =
⇢

�

P + �

2
W

2

�

↵

2

P

�

⇢✓ + ✓̄

� �
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. (A.13)
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Substituting (A.13) in (A.11) then yields

✓ = ✓(�2) =
P � �

2
�
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2
�� ⇢

2
�
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2
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⇣
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. (A.14)

It then su�ces to show 0  ✓(�2)  1 and 0  �(✓(�2))  1 for all �2 satisfying (A.10).
Now, observe that ✓(�2) is decreasing in �2, and therefore substituting the bound-

ary values for �2 in (A.10), we can write

1

2
� 1

2

p
M  ✓(�2)  1

2
+

1

2

p
M (A.15)

for all valid �2, with
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(1 + ⇢)
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2
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(1 � ⇢)
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.

Note that due to P (1 � ⇢) > 2⇢�2
W

2

, we have M > 0. It is also easy to see M  1, and
therefore we conclude 0  ✓(�2)  1.

Finally, rewriting (A.13) as

�(✓) =
⇢

�

P + �

2
W

2

�

[1 � 2(1 � ⇢)✓✓̄]

P

�
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� (A.16)

we observe that � is a decreasing function of ✓✓̄. But, according to (A.15), we also have

✓(�2)✓̄(�2) � 1 � M

4

=
⇢�

2
W

2

(1 � ⇢)
⇣

P (1 + ⇢) + 2⇢�2
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⌘

which, using (A.16), yields
�(✓(�2))  1

with equality satisfied if and only if �2 is at either end of the interval in (A.10). Since
�(✓) � 0 follows immediately from (A.13), this concludes the proof.

A.4 Analysis of the Probability of Decoding Error

Without loss of generality, we assume that the first codeword is sent. Using the
normalized noise vector Z

N = W

N

�

W

, the probability of erroneous decoding for fixed N and
E becomes

Pr[O] = 1 �
Z 1

�1
f

Z

(z1) Pr
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dz1
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=

Z 1

�1
f

Z
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n
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N�1
o

dz1 .
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Here, we use the standard definition of the Q-function as

Q (x) =
1p
2⇡

Z 1

x

e

� s

2

2

ds.

It is well-known that the Cherno↵ bound on the Q-function is given by

Q (x)  e

�x

2

2 (A.17)

for all x � 0. Although there are other established bounds that are tighter than (A.17), the
Cherno↵ bound will su�ce for our analysis.

From this point on, we will assume that � � 2 ln N . Then defining

↵ =
p

2 ln N � p
� (A.18)

which is always non-positive, we write

Pr[O] = PO,1 + PO,2

with
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We then bound PO,1 as
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2 (A.19)

where the last inequality follows from (A.17) and the fact that ↵  0. Also, since it follows
from (A.18) that ↵ > �p

�, we have for all z1 � ↵ that

1 � (1 � Q (
p
� + z1))
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2
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again using (A.17). Therefore,
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After some algebraic manipulations, it can be shown using (A.18) that
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. (A.21)

Finally, bringing (A.18)-(A.21) together, we find for all e
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and similarly for all N < e
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8 that
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