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On Robust Capon Beamforming
and Diagonal Loading

Jian Li, Senior Member, IEEEPetre StoicaFellow, IEEE and Zhisong WangStudent Member, IEEE

Abstract—The Capon beamformer has better resolution and can be imprecise, which is often the case in practice due to the
much better interference rejection capability than the standard differences between the assumed signal arrival angle and the
(data-independent) beamformer, provided that the array steering true arrival angle or between the assumed array response and
vector corresponding to the signal of interest (SOI) is accurately - .
known. However, whenever the knowledge of the SOI steering thg true array response (array calibration errors). Whenever
vector is imprecise (as is often the case in practice), the perfor- this happens, the performance of the Capon beamformer may
mance of the Capon beamformer may become worse than that become worse than that of the standard beamformers [5], [6].
of the standard beamformer. Diagonal loading (including its Many approaches have been proposed during the past three
extended versions) has been a popular approach to improve the 4a:4des to improve the robustness of the Capon beamformer.
robustness of the Capon beamformer. In this paper, we show . . L .
that a natural extension of the Capon beamformer to the case of Indeed., the I|terature el rok_)ust a‘?'ap“ve b?amf‘)fm'”g IS quite
uncertain steering vectors also belongs to the class of diagonal€xtensive. We provide a brief review of this literature below.

loading approaches, but the amount of diagonal loading can be For more detailed recent critical reviews of this literature, see
precisely calculated based on the uncertainty set of the steering [2] and [7]-[9].

vector. The proposed robust Capon beamformer can be efficiently To account for the array steering vector errors, additional

computed at a comparable cost with that of the standard Capon . - . - . S .
beamformer. Its excellent performance for SOI power estimation linear constraints, including point and derivative constraints, can

is demonstrated via a number of numerical examples. be imposed to improve the robustness of the Capon beamformer

Index Terms—Adaptive arrays, array errors, diagonal loading, (see, e.g., [10]-[13] and the references therein). However, these

robust adaptive beamforming, robust Capon beamforming, signal constralnts. are not explicitly related to the u.n_certa|.nty of the
power estimation, steering vector uncertainty. array steering vector. Moreover, for every additional linear con-

straint imposed, the beamformer loses one degree of freedom
(DOF) for interference suppression. It has been shown that these
constraints belong to the class of covariance matrix tapering ap-
EAMFORMING is a ubiquitous task in array signalproaches (see [14] and the references therein).
processing with applications, among others, in radar, Diagonal loading (including its extended versions) has been a
sonar, acoustics, astronomy, seismology, communicatiopgpular approach to improve the robustness of the Capon beam-
and medical imaging. Without loss of generality, we corformer (see, e.g., [15]-[23] and the references therein for more
sider herein beamforming in array processing applicatiorgarly suggested methods). The diagonal loading approaches are
The standard data-independent beamformers include tegived by imposing an additional quadratic constraint either on
delay-and-sum approach as well as methods based on varidgsEuclidean norm of the weight vector itself or on its differ-
data-independent weight vectors for sidelobe control [1], [2gnce from a desired weight vector [15]-[18]. Sometimes, di-
The data-dependent Capon beamformer adaptively selectsagenal loading is also proposed to alleviate various problems
weight vector to minimize the array output power subject tof using the array sample covariance matrix [19] and to better
the linear constraint that the signal of interest (SOI) does ne@ntrol the peak sidelobe responses [21]. However, for most of
suffer from any distortion [3], [4]. The Capon beamformethese methods, itis not clear how to choose the diagonal loading
has a better resolution and much better interference rejectleased on the uncertainty of the array steering vector.
capability than the data-independent beamformer, provided thaffhe subspace-based adaptive beamforming methods (see,
the array steering vector corresponding to the SOl is accuratelg., [22], [24], and the references therein) require the knowl-
known. However, the knowledge of the SOI steering vectédge of the noise covariance matrix. Hence, they are sensitive
to the imprecise knowledge of the noise covariance matrix
in addition to the array steering vector error. Making these

_ _ _ . methods robust against the array steering vector error will
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an uncertainty set of the array steering vector. In [25], a polyhehere (o2, {o2}5_|) are the powers of théK + 1) uncor-
dron is used to describe the uncertainty set, whereas spherietdted signals impinging on the arrdw,, {a;}X_,) are the

and ellipsoidal (including flat ellipsoidal) uncertainty sets arso-called steering vectors that are functions of the location pa-
considered in [8], [9], and [26]. The robust Capon beamformingmeters of the sources emitting the signals [e.g., their directions
approaches presented in [8] and [9] couple the formulation of arrival (DOASs)],(-)* denotes the conjugate transpose, @nd
the standard Capon beamformer (SCB) in [3] with a spheridalthe noise covariance matrix [the “noise” comprises nondirec-
or ellipsoidal uncertainty set of the array steering vector. Inteienal signals, and henc€ usually has full rank, as opposed
estingly, they turn out to belong to the class of diagonal loadirig the other terms in (1), whose rank is equal to one]. In what
approaches, but the amount of diagonal loading can be calliows, we assume that the first term in (1) corresponds to the
lated precisely based on the ellipsoidal uncertainty set, as &0l and the remaining rank-one termsAointerferences. To

plained later in the paper. avoid ambiguities, we assume that
Like the approaches in [8] and [9], the robust Capon beam-
former (RCB) we proposed in [26] also has a firm theoretical llaol)> = M )

basis and is a natural extension of the Capon beamformer to the
case of uncertain steering vectors. However, our RCB approaghere|| - || denotes the Euclidean norm. We note that the above
is different from those in [8] and [9] in that we couple the forexpression foR holds for both narrowband and wideband sig-
mulation of SCB in [27] with an ellipsoidal uncertainty set. Ounals; in the former cas® is the covariance matrix at the center
RCB gives a simple way of eliminating the scaling ambiguitfrequency, and in the latteR is the covariance matrix at the
when estimating the power of the desired signal, whereas tnter of a given frequency bin. In practical applicatidRsis
approaches in [8] and [9] did not consider the scaling ambiguitgplaced by the sample covariance maRixwhere
problem (see below for details on this important aspect).

In this paper, we show how to efficiently compute our robust . 1 X
Capon beamformer by using the Lagrange multiplier method- R=— ) x.x (3)
ology. It turns out that our RCB also belongs to the class of n=1
diagonal loading approaches and that the amount of diago\?vzlatl

loading can be precisely calculated based on the ellipsoidal lﬂqéh QZ gﬁgo;lﬂgtthe number of snapshots andrepresenting
certainty set of the array steering vector. In fact, we prove that_l_?1e robugt beémformin roblemith which we will deal
despite the apparent differences between our RCB approach an gp

those in [8] and [9], our RCB gives the same weight vector as t net is paper can now be briefly stated as follows: Extend the

RCBs presented in [8] and [9], yet our RCB is simpler and corgaPon beamformer to be able to accurately determine the power

putationally more efficient. Moreover, we also explain how th\%;ggrl eV?Sn g,gﬁgtﬁglyﬁgrlemsrgg;ﬁgalﬁnovvvvfdfsiﬁ:rf tit:te '[Ihneg
RCBs presented in [8] and [9] can be modified to eliminate the ao ' Pe Y
. L L aonly knowledge we have aboay is that it belongs to the fol-
scaling ambiguity problem when estimating the power of the de- - ) ST
) . . Qwing uncertainty ellipsoid:
sired signal. Numerical examples are presented to demonstrate

the effectiveness of our RCB for SOl power estimation: a task
that occurs frequently in applications including radar, sonar, and
acoustic imaging. _ i o ) )

First, we consider the case of nondegenerate ellipsoidal c§/1erea andC (a positive definite matrix) are given. The case of

straints on the steering vector and then the case of flat ellipsoi@df2t ellipsoidal uncertainty set is considered in Section III-B.

constraints. These two cases are treated separately due to thd §iiS Paper, we focus on SOI power estimation problem, but
robust beamforming approach we present herein can also be

ferences in their detailed computational steps as well as in TR ; . 8 "
possible values of the associated Lagrange multipliers. In s&S€d for other applications including signal waveform estima-
tion II, we formulate the problem of interest. In Section I, wdion [8], [9], [28].

present the RCB under the nondegenerate and flat ellipsoidal

[ag —a]*C '[ag —a] < 1 )

constraints on the steering vector. Numerical examples illus- ll. RoBUST CAPON BEAMFORMING
trating the _performanc_e of our RCB are given in Section IV. Fi- tha common formulation of the beamforming problem that
nally, Section V contains the conclusions. leads to the SCB is as follows (see, e.g., [1], [3], [4]).

a) Determine thé\l x 1 vectorw, that is the solution to the
Il. PROBLEM FORMULATION following linearly constrained quadratic problem:
Consider an array comprisinf sensors, and IdR denote min w*Rw subject tow*ay = 1. (5)
the theoretical covariance matrix of the array output vector. We w

assume thaR > 0 (positive definite) has the following form: b) Usew;Rwy as an estimate of2.

The solution to (5) is easily derived:

K
-1
R = clapa] + Z olajal + Q (@) wo = ﬂ. (6)
k=1 aER—lao
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Using (6) in Step b) above yields the following estimaterpf as the following quadratic problem with a quadratic equality
1 constraint:

~2
05 = —o5——-
07 arR-1lag

@)

mina*R™'a subject tolja — a||* = «. (16)

This problem can be solved by using thagrange multiplier

) i methodologywhich is based on the function
To derive our robust Capon beamforming approach, we use

the reformulation of the Capon beamforming problem in [27] f=aR"a+A(|la—a|>—¢) a7
to which we append the uncertainty set in (4) (see [26]). Pro- _ o _ o
ceeding in this way, welirectly obtain a robust estimate of, WhereX > 0 is the Lagrange multiplier [30]. Differentiation of

A. Nondegenerate Ellipsoidal Uncertainty Set

without any intermediate calculation of a vecter[26]: (17) with respect ta gives the optimal solutiod,:
max o? subject toR — o%aa* > 0 R4+ A(ap —a) = 0. (18)

for anya satisfying(a—a)*C '(a—a) <1 The above equation yields

(8) —1 -1
. o éo=<R +I> a 19)
(wherea and C are given). Note that the first line above can A
be interpreted as eovariance fitting problemGivenR. anda, =a—(I+AR) 'a (20)

we wish to determine the largest possible SOI teffaa* that
can be a part R under the natural constraint that the residudyhere we have used the matrix inversion lemma [1] to obtain
covariance matrix be positive semidefinite. The RCB problem the second equality. The Lagrange multiplle? 0 is obtained
(8) can be readily reformulated as a semi-definite program [26}s the solution to the constraint equation
which require)(pM?9) flops if SeDuMi type of software [29] A 5
is used to solve it, whereis the number of iterations. However, g = [T+ IR) 3" =« (21)
the approach we present below only requitgs/?) flops.

For any givena, the solutions3 to (8) is indeed given by
the counterpart of (7) with, replaced by_a, as shown in [26]. R — UTU* (22)
Hence, (8) can be reduced to the following problem:

Let

P bi k1 _ where the columns dbi contain the eigenvectors &, and the
mina®R™"a  subjectto(a—a)"C™(a—a) < 1. (9 giagonal elements of the diagonal matkixy, > vs > - >

: 1 are the corresponding eigenvalues. Let
Note that we can decompose any ma@ix> 0 in the form ™ p g eig

1 z="U"a (23)
—1 *
C1l=-D*D (10)
€ and letz,, denote thenth element ofz. Then, (21) can be
where for some > 0 written as
D = /cC~'/2, (11) M zm)?
gN=> ——m=- (24)
14+ Ay,,)2
et = (L4 Aym)
. T e B . Note thatg()) is a monotonically decreasing functionof> 0.
a=Da, a=Da, R=DRD" (12) According to (15) and (21)(0) > €, and hence) # 0. From
Then, (9) becomes (24_1), it is clgar thatimy .. g(A\) = 0 <e Henge, there.is a
unique solutiom\ > 0 to (24). By replacing the,, in (24) with
min&*R~'a  subject tol|a — gH2 <e (13) Y andyi, respectively, we can obtain the following tighter
a upper and lower bounds on the solutidn> 0 to (24):
Hence, without loss of generality, we will consider solving (9) &)l = Ve 8] — Ve
for C = €I, i.e., solving the following quadratic optimization — <AL —. (25)
problem under a spherical constraint: Tve Ve
el ) o By dropping the 1 in the denominator of (24), we can obtain
mina’R™a  subjecttolla—al|["<e  (14) znother upper bound on the solutidro (24):

To exclude the trivial solutioa = 0 to (14), we assume that M 9\ /2
r< (L 3 [#m] . (26)
1al > e (15) e £ 92

Because the solution to (14) [under (15)] will evidently occufhe upper bound in (26) is usually tighter than the upper bound
on the boundary of the constraint set, we can reformulate (14)(25) but not always. Summing up all these facts shows that
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the solution\ > 0 to (24) is unique and that it belongs to théboth [8] and [9]). Note that SOI power estimation is the main

following interval: goal in many applications including radar, sonar, and acoustic
12 imaging.

— M — i i i i i
&l — /e PN 1 |2m]? ||| - Ve In other appllcayons., such as communications, the focus is on
——~ S ASmn - Z 5 - SOl waveform estimation. Let (n) denote the waveform of the

mMnve €= T TmVE

SOI. Then, once we have estimated the SOI steering vector with
(27) our RCB,sq(n) can be estimated like in the SCB as follows:

Once the Lagrange multipliex is determineda, is deter- So(n) = Wi, (31
mined by using (20), ané3 is computed by using (7) with, o _ ) L
replaced bya,. Hence, the major computational demand of oU¥N€réao in (19) is used to replaca, in (6) to obtainwo:

RCB comes from the eigendecomposition of the Hermitian ma- K R4

trix R, which requiresD(M?3) flops. Therefore, the computa- Wo = SRTia (32)

tional complexity of our RCB is comparable with that of the 0 0 1

SCB. _ (R+3D) & (33)
Next, observe that both the power and the steering vector of g (R+ %I)—l R (R + %I)‘l a3

the SOI are treated as unknowns in our robust Capon beam- . _
forming formulation [see (8)] and, hence, that there is a “scalifgPte that our robust Capon weight vector has the form of di-
ambiguity” in the SOI covariance term in the sense that a) agonal loading except for the real-valued scaling factor in the
and(o?/a, o!/?a) (for anya > 0) give the same term?aa*. denominator of (33). However, the scaling factor is not really
To eliminate this ambiguity, we use the knowledge that|2 = important since the quality of the SOl waveform estimate is typ-
M [see (2)] and, hence, estimat@ as [26] ically expressed by the signal-to-interference-plus-noise ratio
(SINR)
22 ~A251a (|12
05 = 0pllaol|”/M. (28) SINR — o2|Wiao|?
. . " 29 - - K
The numerical exgmples in [26]A§onf|rm that is a (much) Wi (Z olazal + Q) Wo
more accurate estimate of thans2. To summarize, our pro- h=1
posed RCB approach consists of the following steps.
Proposed RCB (Spherical Constraint):

(34)

which is independent of the scaling of the weight vector.
) . WhenC is not a scaled idenvtity matrix, the diagonal loading
Step 1) Compute the eigendecomposition Bf (or more s aqded to the weighted matik defined in (12), and we refer

practically ofR). , _ to this case as extended diagonal loading. To exclude the trivial
Step 2) Solve (24) for, e.g., by a Newton's method, usinggqtiona = 0 to (8), we now need to assume, like in (15), that

the knowledge that the solution is unique and it be-

longs to the interval in (27). Hg||2 S € (35)
Step 3) Use the) obtained in Step 2 to get

which is equivalent to
4 =a—-UI+\I) 'U*a (29)
a*Cla> 1. (36)
where the inverse of the diagonal matfix AL is ) ) o
easily computed. [Note that (29) is obtained from We remark that the discussions above indicate that our robust

(20)] Capon beamforming approach belongs to the class of (extended)
Step 4) Computes? by using diagonally_loaded Capon beamforming approaches. However,
unlike earlier approaches, our approach can be used to deter-
52 = 1 (30) mine exactly the optimal amount of diagonal loading needed
2=

a*Ur(A\ 21+ 2\~1T + I'2)-1U*a for a given ellipsoidal uncertainty set of the steering vector at a
very modest computational cost.
where the inverse of~?I + 2A~'T"' + I'* isalso  Qur approach is different from the recent RCB approaches in
easily computed. Note tha, in (7) is replaced by [8] and [9]. The latter approaches extended Step a) of the SCB to
& in (19) to obtain (30). Then, use thi§ in (28) to  take into account the fact that when there is uncertainy jthe
obtain the estimate ofg. constraint onw*a, in (6) should be replaced with a constraint
We remark that in all of the steps above, we do not need to havew™*a for any vectora in the uncertainty set (the constraints
Ym > Oforallm = 1,2 ..., M. Hence,R or R can be onw*ausedin [8] and [9] are different from one another); then,
singular, which means that we can allow < M to compute the so-obtainesk is used inw*Rw to derive an estimate of?,
R. as in Step b) of the SCB. Despite the apparent differences in for-
Unlike our approach, the approaches of [8] and [9] do natulation, we prove in Appendixes A and C that our RCB gives
provide anydirect estimatea,. Hence, they do not dispose of ahe same weight vector as the RCBs presented in [8] and [9],
simple way [such as (28)] to eliminate the scaling ambiguity gfet our RCB is computationally more efficient. The approach
the SOI power estimation that is likely a problem for all robush [8] requiresO(pM?) flops [31], wherep is the number of
beamforming approaches (this problem was in fact ignored iberations, whereas our RCB approach requitgéd/?) flops.
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Moreover, our RCB can be readily modified for recursive impleFhen, we require that
mentation by adding a new snapshoR@&nd possibly deleting et nie
an old one. By using a recursive eigendecomposition updating a’B' Bla>1 (45)

m.ethod (see, for example, [32], [33], and the references tr.]emx;vrﬁereBT denotes the Moore—Penrose pseudo-inverd®. of
with our RCB, we can update the power and waveform estimatesr,, Lagrange multiplier methodologig based on the func-
in O(M?) flops. No results are available so far for efﬁcientlytion [34]

updating the second-order cone program (SOCP) approach in
[8]. The approach in [9] can be implemented recursively by up- f=u*Ru+a‘u+u*a+ ;\(u*u —1) (46)
dating the eigendecomposition similarly to our RCB. However, 5
the total computational burden is higher than for our RCB, &¢ere > 0 is the Lagrange multiplier [30]. Differentiation of
explained in the next subsection. (46) with respect ta1 gives

We also show in Appendix B that although this aspect was

ignored in [8] and [9], the RCBs presented in [8] and [9] can Ra+a+ia=0 (47)
also be modified to eliminate the scaling ambiguity problem thgnich yields
occurs when estimating the SOI pows.

a=-(R+A) & (48)

B. Flat Ellipsoidal Uncertainty Set
5 1= . . . PR
When the uncertainty set far is a flat ellipsoid, as is con- f [R™ ‘{” <1 t_hle_n the unique 30"3“_01”7'” (48) with = 0,
sidered in [9] and [28] to make the uncertainty set as tight 4dlch ist = —R™'a, solves (42). IflR™"a|| > 1, thenA > 0
possible (assuming that the availablepriori information al- 1S détermined by solving

lows that), (8) becomes . L 1|2
> 8) i) 2 |®+3pE[ =1 (49)
maxo®  subjecttoR —o%aa* > 0 § )
7 _ Note thatj(\) is a monotonically decreasing function.of> 0.
a=Bu+a, lull <1 37 et
whereB is anM x L matrix (L < M) with full column rank, R = UIU* (50)

anduis anL x 1 vector. [WhenL = M, (37) becomes (4) with

C = BB*.] Below, we provide a separate treatment of the casehere the columns dff contain the eigenvectors & and the
of L < M due to the differences from the caselof= M in diagonal elements of the diagonal matkixy;, > 5o > --- >
the possible values of the Lagrange multipliers and the detailed are the corresponding eigenvalues. Let

computational steps. The RCB optimization problem in (37) can

be reduced to [see (9)] z=U"3 (51)
min(Bu+a)'R™(Bu+a)  subjecttoful| < 1. (38) andlet: denote théth element ofz. Then
. Lo P
Note that g\ = % =1. (52)
=1 (i +A)

(Bu+a)*R™!(Bu+a)=u*B*R™'Bu
+a*R'Bu+ uw'B*R'a+a*R-'a. (39) Notethatlim;_,__g(}) =0andg(0) = |R~'a]| > 1. Hence,
there is a unique solution to (25) between 0 andBy replacing
Let the 4, in (52) with 4 and+;, respectively, we obtain tighter
upper and lower bounds on the solution to (52):

R=B*R"'B>0 (40)
and 8] =51 < A < [[a]| =7z (83)
a=B'R™'a (41) Hence, the solution to (52) can be efficiently determined, e.g.,
Using (39)—(41) in (38) gives by using the Newton’s method, in the above interval. Then, the

solution\ to (52) is used in (48) to obtain thiethat solves (42).
min uw*Ru 4+ a*u + u*a subject to||u|| < 1. (42) To summarize, our proposed RCB approach consists of the
u following steps.
To avoid the trivial solutiomm = 0 to the RCB problem in  Proposed RCB (Flat Ellipsoidal Constraint):

(37), we impose the following condition (assumiagpelow ex-  Step 1) Compute the inverse dR (or more practically of
ists; otherwise, there is no trivial solution). Liebe the solution f{), and calculatdk anda using (40) and (41), re-
to the equation spectively.
Bii+a=0 (43) Step 2) Compute the eigendeco[npositionﬁvf[sef: (50)].

- Step 3) If |[R'4| < 1, then set\ = 0. If [R™'&|| > 1,
Hence then solve (52) for, e.g., by a Newton’s method,

using the knowledge that the solution is unique and
u=-Bfa. (44) it belongs to the interval in (53).
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Fig. 1. &2 (SCB usingR andR) andfri (RCB usingR andR) versusN for (a)e = 0.5 and (b)e = 3.5. The true SOI power is 10 dB, ard = 0 (i.e., no
mismatch).

Step 4) Use the) obtained in Step 3) to get IV. NUMERICAL EXAMPLES
S, Our main motivation for studying the RCB problem was an
a=-U(T+A) U"a (54)  acoustic imaging application in which the goal was to estimate

the SOI power in the presence of strong interferences as well as
some uncertainty in the SOI steering vector. In all of the exam-
ples considered below, we assume a uniform linear array with
M = 10 sensors and half-wavelength sensor spacing.

First, we consider the effect of the number of snapshotm
the SOI power estimate when the sample covariance natinix
(3)isused in lieu of the theoretical array covariance marix
both the SCB and RCB. (Whenevéris used instead AR, the
Giverage power estimates from 100 Monte Carlo simulations are
lgiven. However, the beampatterns shown are obtained Wsing
from one Monte-Carlo realization only.) We assume a spatially
white Gaussian noise whose covariance matrix is give@Q by

[which is obtained from (48)]. Then, use tlieto
obtain the optimal solution to (37) as

4= Bua+a. (55)

Step 5) Computes? by using (7) withay replaced by,
and then, use thé3 in (28) to obtain the estimate
of 03.
Hence, under the flat ellipsoidal constraint, the complexity
our RCB is alsa)(M?) flops, which is on the same order as fo
SCB and is mainly due to computif®y~' and the eigendecom-

position ofR. If L < M, then the complexity is mainly due to -
computingR . 1. The power of SOl igr§ = 10 dB, and the powers of the two

_ : 2 __
For applications such as SOI waveform estimation, we céﬁé ;V2) mterfererk:ceshassumgd to be presenbérg T2 _d 20 h
calculatew, (assumingh # 0) as . egssqmet at the fstee!rlng vectpr uncertalnty is due to the
uncertainty in the SOls direction of arrivg), which we assume

. R4 to befy + A. We assume that(6,) belongs to the uncertainty
Wy = 53R7150 set
-1 _ _
(R + %BB*) 5 lla(fo) —a||* < ¢ a=a(ly+A) (58)
= " = " ——- (56) wherec is a user parameter. Let = |ja(f,) — al|2. Then,
a* <R + 7BB*> R <R + 7BB*> a choosing = ¢, gives the smallest set that includ€9, ). How-
A A ever, sinceA is unknown in practice, the we choose may be

To obtain (56), we have used the fact [also using (48) in (5 Ieater or less thary. To show that the choice afis not a

itical issue for our RCB approach, we will present numerical

that results for several values ef We assume that the SOlIs direc-
R !4 =-R 'B (R + 5\1)—1 i+R'a fcion of arrival isd, = 0° and that the directions of arrival of the
1 o1 NN i interferences aré;, = 60° apd&z = 80°.
=-R7'B(B'R"'B+AI) B'R'a+R7'a In Fig. 1, we shows? anda? versus the number of snapshots
1 -t N for the no-mismatch case; henck,= 0 in (58), and con-
= (R +3 BB*) a (67 sequentlyeo = 0. Note that the power estimates obtained by

using R approach those computed i as N increases and
where the last equality follows from the matrix inversion lemmahat our RCB converges much faster than the SCB. The SCB
Despite the differences in the formulation of our RCB problemequires thatV is greater than or equal to the number of array
and that in [9], we prove in Appendix C that owat, in (56) and sensorsV = 10. However, our RCB works well even whew
the optimal weight in [9] are identical. Note, however, that ts as small agv = 2.
compute), we need)(L?) flops, whereas the approach in [9] Fig. 2 shows the beampatterns of the SCB and RCB WRing
requiresO(M?3) flops (andL < M). as well aRR with N = 10, 100, and 8000 for the same case asin
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Fig. 3. &2 (SCB usingR andR.) andfrﬁ (RCB usingR andR) versusN for (a)e = 2.5 and (b)e = 4.5. The true SOI power is 10 dB, arng = 3.2460
(corresponding ta\ = 2.0°).

Fig. 1. Note that the weight vectors used to calculate the beamgat-small V, note that the error betwedhandR. can be viewed
terns of RCB in this example (as well as in the following examas due to a steering vector error [24].

ples)are obtained by usingthe scaled estimate ofthe array steerinigigs. 3 and 4 are similar to Figs. 1 and 2, except that now the
vectory/Mag /|4 ||in(32)instead ohy. The verticaldottedlines mismatch isA = 2° and accordingly, = 3.2460. We note
inthefiguredenotethedirectionsofarrivalofthe SOlaswellastifiom Fig. 3 that even a relatively small can cause a signifi-
interferences. The horizontal dotted linesinthe figure correspooant degradation of the SCB performance. As can be seen from
to 0 dB. Note from Fig. 2(a) that although the RCB beampatterifg. 4, the SOI is considered to be an interference by SCB, and
do not have nulls at the directions of arrival of the interferencé&nce, it is suppressed. On the other hand, the SOl is preserved
as deep as those of the SCB, the interferences (whose powerdgreur RCB and the performance éﬁ obtained via our ap-

20 dB) are sufficiently suppressed by the RCB to not disturb tipeoach is quite good for a wide range of values.oote that

SOl power estimation. Regarding the poor performance of SGfe RCB also has a smaller “noise gain” than the SCB.
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(d) usingR with N = 10. The true SOI power is 10 dB, ard = 3.2460 (corresponding td\ = 2.0°).

In Fig. 5, we compare the performance of our RCB with &aussian random variables are independent of each other. Fig. 6
fixed diagonal loading level-based approach. Specifically, tls&iows the power estimates of SCB and RCB that are obtained
fixed loading level was chosen equal to ten times the noissingR as a function of the direction angle for several values
power (assuming the knowledge of the noise power). Considsre. The small circles denote the true (direction of arrival,
the same case as Fig. 4(d), except that now, we assumB.thgiower)-coordinates of the five incident signals. Fig. 6 also
is available, and we vary the SNR by changing the SOI or noiskows the power estimates obtained with the data-independent
power. For Fig. 5(a), (c), and (e), we fix the noise power at 0 dBeamformer using the assumed array steering vector divided
and vary the SOI power betweerl0 and 20 dB. For Fig. 5(b), by M as the weight vector. This approach is referred to as
(d), and (f), we fix the SOI power at 10 dB and vary the noisthe delay-and-sum beamformer. We note that SCB can still
power between-10 and 20 dB. Fig. 5(a) and (b) shows th@ive good direction-of-arrival estimates for the incident signals
diagonal loading levels of our RCB as functions of the SNRased on the peak power locations. However, the SCB estimates
Fig. 5(c) and (d) shows the SINRs of our RCB and the fixed déf the incident signal powers are way off. On the other hand,
agonal loading level approach, and Fig. 5(e) and (f) shows ther RCB provides excellent power estimates of the incident
corresponding SOI power estimates, all as functions of the SNSdurces and can also be used to determine their directions
Note from Fig. 5(a) and (b) that our RCB adjusts the diagonaf arrival based on the peak locations. The delay-and-sum
loading level adaptively as the SNR changes. It is obvious frooeamformer, however, has much poorer resolution than both
Fig. 5 that our RCB significantly outperforms the fixed diagoné8CB and RCB. Moreover, the sidelobes of the former give
loading level approach when the SNR is medium or high.  false peaks.

We next consider an imaging example, where we wish Finally, we examine the effects of the spherical and flat ellip-
to determine the incident signal power as a function of ttemidal constraints on SOI power estimation. We consider SOI
steering directiord. We assume that there are five incidenpower estimation in the presence of several strong interferences.
signals with powers 30, 15, 40, 35, and 20 dB from directio®e will vary the number of interferences frafh = 1to K = 8.

-35, —15, 0°, 10°, and 40, respectively. To simulate the The power of SOl isr3 = 20 dB, and the interference powers

array calibration error, each element of the steering vector fares? = --- = ¢% = 40 dB. The SOI and interference di-
each incident signal is perturbed with a zero-mean circulangctions of arrival ar¢y, = 10°, §; = —75°, 6, = —60°,
symmetric complex Gaussian random variable so that thge = —45°, 6, = —30°, 5 = —10°, g = 25°, 6; = 35°,

squared Euclidean norm of the difference between the trapdfs = 50°. We assume that there is a look direction mis-
steering vector and the assumed one is 0.05. The perturbingtch corresponding td = 2°, and accordinglyo = 3.1349.
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Fig. 7 shows the SOI power estimates, as a function of the V. CONCLUSIONS
nhumber of interferenceX’, obtained by using SCB, RCB (with We have shown how to obtain a robust Capon beamformer

flat ellipsoidal constraint), and the more conservative RCB (wi CB) based on an ellipsoidal (including flat ellipsoidal) un-
spherical gonstraint) al base.d on the_thepretical array cov ie_rtainty set of the array steering vector at a comparable com-
ance math. For the RCB V\.”th flat ?”'psmdal con§tralnt, Weputational cost with that associated with SCB. The data-adaptive
letB contain two columns with the first column beingfly + RCB is much less sensitive to steering vector mismatches than
A) —a(fo + A - 8) and the second column bela(geo + A) = the standard Capon beamformer (SCB), and yet, it can retain
a(fo + A + 6)._Not_e that ch_oosm@ = A - 2° gives the the appealing properties of SCB including better resolution and
smallest flat ellipsoid that thi can offer to_ mclludea(.eo). much better interference rejection capability than the standard
Howevgr, we do not know theoexact IOOk'd'rf 9t|or1_ m'smatcé?jata—independent) beamformer. We have shown that the RCB
In practice. We 9h005é =18 apdé - 2:4 n Fig. 7.(a) belongs to the class of diagonal loading approaches, but the
and (b), respectively. For RCB with spherical constralnzt, Wemount of diagonal loading can be precisely calculated based on
chooser to be the larger offa(fly + A) — a(fip + A — o) the uncertainty set of the steering vector. We have proven that
despite the apparent differences between our RCB approach and
e approaches presented in two recent publications, our RCB
f'gives the same weight vector as the latter approaches, yet our
RCB is computationally more efficient. The excellent perfor-

f[he SI?BFanld R(é[E;Stl;SIrﬁ, as well ath\{wthR]\é; 1%:0“;]“'_ ance of our RCB for SOI power estimation and imaging has
lous k& . Foriargen , tné more conservative WIth SPReTICa o0y gemonstrated via a number of numerical examples.
constraint amplifies the SOI while attempting to suppress the in-

terferences, as shown in Fig. 8. On the other hand, the RCB with
flat ellipsoidal constraint maintains an approximate unity gain
for the SOl and provides much deeper nulls for the interferences
than the RCB with spherical constraint at a cost of worse noise\We repeat our optimization problem:

gain. As compared with the RCBs, the SCB performs poorly as N ) o

it attempts to suppress the SOI. Comparing Fig. 8(b) with 8(a), mina"R™a,  subjecttolla—al]"=e  (59)
we note that for smallk’ and N, RCB with spherical constraint ] )

has a much better noise gain than RCB with flat ellipsoidal coh€t 20 denote the optimal solution of (59). Let
straint, which has a better noise gain than SCB. From Fig. 8(d), Rla,

we note that for largé&l and smallV, RCB with flat ellipsoidal Wo = S5 7 -

. : afR1lag
constraint places deeper nulls at the interference angles than the
more conservative RCB with spherical constraint. Fig. 9 showge show below that ther, above is the optimal solution to the
the SOI power estimates versus the number of snapshdéts  following SOCP considered in [8]:

K = 1and K = 8 when the sample covariance matii

is used in the beamformers. Note that for snigéllRCB with min w*Rw, subject tow*a > /e|lw|| + 1
spherical constraint converges faster than RCB with flat ellip- v Im(w*a) = 0. (61)
soidal constraint a®V increases, whereas the latter converges

faster than SCB. For largk’, however, the convergence speeds First, we show that ifjal| < /e, then there is now that

of RCB with flat ellipsoidal constraint and RCB with sphericakatisfiesw*a > /¢||w|| + 1. By using the Cauchy—Schwarz
constraint are about the same as that of SCB,; after convergenggguality, we have

the most accurate power estimate is provided by RCB with flat
ellipsoidal constraint. Vellw|| +1 < w*a < e||w]| (62)

similarly whenK is small. However, the former is more accu
rate than the latter for larg’. Fig. 8 gives the beampatterns o

APPENDIX A
RELATIONSHIP BETWEEN OUR RCB AND THE RCBIIN [8]

(60)
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with R, when§ = 2.4° for (a) K = 1 and (b)K = 8. The true SOI power is 20 dB, and = 3.1349 (corresponding ta\ = 2°).

which is impossible. Hence, the constraint in (15), which isubject to
needed for our RCB to avoid the trivial solution, must also be
satisfied by the RCB in [8].

Next, let

W =Wo+Yy.

(63)

We show below that the solution of (61) corresponds te 0.
Insertion of (63) in (61) gives

miny*Ry +
y

2
afR~1lag

Re(y*ap) +

ajRlag

(64)

and

Let

y'a+wga — Vellwo +yl| > 1 (65)
Im(wga + y*a) = 0. (66)
a=ag+p (67)
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Then, (65) and (66), respectively, become APPENDIX B
CALCULATING THE STEERING VECTOR FROM THE
y*ao + ¥+ wop > Vellwo + || (68) OPTIMAL WEIGHT VECTOR
and We now show how to obtain the steering vecigrfrom the
optimal solutionw, of the SOCP (61). In Appendix A, we have
Im(wipn+y*ag+y*u) =0 (69) shown that
-1
which implies that Wo = R™"ap (81)
afR~lag
Re(y*ag) > wo +y|| — Re(y*u+wipn). 70
&y*ao) > Vellwo +y|| — Re(y"p + wip) 9 Lence
Since 1
woRwg = “R-Ta (82)
IRE[(y + wo) ul| <[(y + Wo) 0 ’
<|ly + wol| ||l which, along with (81), leads to
= Vel[wo + Il (71) Rwg
ap = - . (83)
it follows from (70) that woRwo

Hence, from the optimal solutiow, of the SOCP (61), we can
obtain thea, as above and then correct the scaling ambiguity
This implies at once that the minimizer of (64)sis= 0, pro- problem of the SOI power estimation in the same way as in our
vided that we can show thgt= 0 satisfies the constraints (65)RCB approach [see (28)].

and (66) or, equivalently, (68) and (69), that is

Re(y*ag) > 0. (72)

APPENDIX C
Re(wip) > Ve||wol| (73) RELATIONSHIP BETWEEN OUR RCB AND THE RCBIN [9]
and Consider the SOCP with the ellipsoidal (including flat ellip-
soidal) constraint omw and not ora as in our formulation, which

Im(wi) = 0. (74) s considered in [9]:

Inserting (60) in (73) yields minw*Rw  subjectto|[B*w[| <a*w —1.  (84)
Re(anglu) > y/eafR2ay. (75) The Lagrange multiplier approach gives the optimal solution [9]
Using (60) in (74) gives -t
g (60)in (74) g VAV:_[EJF(BB*_WF)} -
1 Y
Im (ajR'p) = 0. (76) R 1
_ =-— (— + BB*) a
To prove (75) and (76), we need to analyze (59). By using the 0
ioli i -1 -1
Lagrange multiplier theory, we obtain [see (18)] (% n BB*) S (% n BB*) -
R! Mag—a)=0 77 - -1

ag + A(ag — a) (77) | _a (%+BB*) =
where A > 0 is the Lagrange multiplier. Using (67) in (77) N
yields (2+BB*) a

R 'ag = M. (78) a*(2+BB*) a-1

~ (R+9BB*)"'a
~a*(R+9BB*)"la-1

Using (78) in (75) gives

Re(Mlul?) = Aull> > Ve|ul. (79)

However, due to the constraint in (59), i.8u||> = ¢, (79) is s . i

satisfied with equality, which proves that (75) is satisfied with(?) =7 a"(R +7P)""P(R +9P)""a

equality. This means that the first constraint in (61) is satisfied —2va*(R+~P)'a—-1=0 (86)
with equality and, hence, that the optimal solution to (61) also

occurs at the boundary of its constraint set, as expected (see 8R@P = BB* —aa* [to obtain (85), we have used the matrix
[9]). Using (78) in (76) proves (76) since inversion lemma). Note that solving for the Lagrange multiplier

from (86), as discussed in [9], is more complicated than solving
Im (Al|p]?) = 0. (80) our counterpart in (52).

(85)

where~ is the unique solution of
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To prove that the weight vectors in (56) and (85) are the sanvehere we have used (91). Since for theatisfying (49) andy
we first prove that for the\ satisfying (49), we have satisfying (86)\ = 1/, and the proof is concluded.

h (%) =0. (87) .

To prove (87), note that 2]

1 v -1 - —1 [3]
h(i) =a*(AR+P) (BB*-aa*)(AR+P) a "

—25*(5\R+P)71§—1 5]

:5*(5\R+BB*—ﬁ )_1 [6]
ENAY * s\ 1

-BB ()\R-l-BB —aa ) a 7]

—[ﬁ*(I\R+BB*—ﬁ*)* 5-1—1]2. (88) g

Since [see (85)] [9]

N o —1_ [10]
(\R+BB*-aa*) a= (/\R?L BE') 2 (©9) [11]
l1-a*(AR+BB*) a
we can writeh(1/)) as a fraction whose numerator is [12]
hG) —a*(\R+BB*) 'BB*(\R+BB*) 'a—1
= B (R + BB*)’%H2 ~1. 90) &
Sincel satisfi [15]
ince\ satisfies (49), we have that
[16]
. e 112
1= |®+31) "3
= |®B*R'B+in)" B*R_15H2 na
1 * [\ )1 *—1l= 2 18
= K[I—B(AR—i—BB) B|B'R™'a 18l
=||B* [1- (R +BB*) "' BB’] (XR)‘laH2 [19]
. _ . . _ 2
~ |B*Or+BB") " AR+ BB -BB](OR) &  po
. _ 2
= [B*(\r +BB) 4| 1)

which proves (87). 221
Next, we prove that the denominators of (56) and (85) are th[a
same. The denominator of (56) can be written as

[23]

—*<R+ ! BB*>_1<R+ lppr_ 2 BB*)

a = = — =
X X X [24]
1 —1
. <R + 3 BB*) a [25]
1 -1 < ‘ —1_||2

:5*<R—|— KBB*) a-A|[B*(OR+BB) 'a|  re
[27]

—1
5*<R+%BB*) a— A\ (92)
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