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Abstract—The Capon beamformer has better resolution and
much better interference rejection capability than the standard
(data-independent) beamformer, provided that the array steering
vector corresponding to the signal of interest (SOI) is accurately
known. However, whenever the knowledge of the SOI steering
vector is imprecise (as is often the case in practice), the perfor-
mance of the Capon beamformer may become worse than that
of the standard beamformer. Diagonal loading (including its
extended versions) has been a popular approach to improve the
robustness of the Capon beamformer. In this paper, we show
that a natural extension of the Capon beamformer to the case of
uncertain steering vectors also belongs to the class of diagonal
loading approaches, but the amount of diagonal loading can be
precisely calculated based on the uncertainty set of the steering
vector. The proposed robust Capon beamformer can be efficiently
computed at a comparable cost with that of the standard Capon
beamformer. Its excellent performance for SOI power estimation
is demonstrated via a number of numerical examples.

Index Terms—Adaptive arrays, array errors, diagonal loading,
robust adaptive beamforming, robust Capon beamforming, signal
power estimation, steering vector uncertainty.

I. INTRODUCTION

BEAMFORMING is a ubiquitous task in array signal
processing with applications, among others, in radar,

sonar, acoustics, astronomy, seismology, communications,
and medical imaging. Without loss of generality, we con-
sider herein beamforming in array processing applications.
The standard data-independent beamformers include the
delay-and-sum approach as well as methods based on various
data-independent weight vectors for sidelobe control [1], [2].
The data-dependent Capon beamformer adaptively selects the
weight vector to minimize the array output power subject to
the linear constraint that the signal of interest (SOI) does not
suffer from any distortion [3], [4]. The Capon beamformer
has a better resolution and much better interference rejection
capability than the data-independent beamformer, provided that
the array steering vector corresponding to the SOI is accurately
known. However, the knowledge of the SOI steering vector
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can be imprecise, which is often the case in practice due to the
differences between the assumed signal arrival angle and the
true arrival angle or between the assumed array response and
the true array response (array calibration errors). Whenever
this happens, the performance of the Capon beamformer may
become worse than that of the standard beamformers [5], [6].

Many approaches have been proposed during the past three
decades to improve the robustness of the Capon beamformer.
Indeed, the literature on robust adaptive beamforming is quite
extensive. We provide a brief review of this literature below.
For more detailed recent critical reviews of this literature, see
[2] and [7]–[9].

To account for the array steering vector errors, additional
linear constraints, including point and derivative constraints, can
be imposed to improve the robustness of the Capon beamformer
(see, e.g., [10]–[13] and the references therein). However, these
constraints are not explicitly related to the uncertainty of the
array steering vector. Moreover, for every additional linear con-
straint imposed, the beamformer loses one degree of freedom
(DOF) for interference suppression. It has been shown that these
constraints belong to the class of covariance matrix tapering ap-
proaches (see [14] and the references therein).

Diagonal loading (including its extended versions) has been a
popular approach to improve the robustness of the Capon beam-
former (see, e.g., [15]–[23] and the references therein for more
early suggested methods). The diagonal loading approaches are
derived by imposing an additional quadratic constraint either on
the Euclidean norm of the weight vector itself or on its differ-
ence from a desired weight vector [15]–[18]. Sometimes, di-
agonal loading is also proposed to alleviate various problems
of using the array sample covariance matrix [19] and to better
control the peak sidelobe responses [21]. However, for most of
these methods, it is not clear how to choose the diagonal loading
based on the uncertainty of the array steering vector.

The subspace-based adaptive beamforming methods (see,
e.g., [22], [24], and the references therein) require the knowl-
edge of the noise covariance matrix. Hence, they are sensitive
to the imprecise knowledge of the noise covariance matrix
in addition to the array steering vector error. Making these
methods robust against the array steering vector error will
not cure their problem of being sensitive to the imprecise
knowledge of the noise covariance matrix.

Even from the above brief review, it is clear that most of the
early suggested methods are ratherad hocin that the choice of
their parameters is not directly related to the uncertainty of the
steering vector. Only recently have some methods with a clear
theoretical background been proposed; see, e.g., [8], [9], [25],
and [26], which, unlike the early methods, make explicit use of
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an uncertainty set of the array steering vector. In [25], a polyhe-
dron is used to describe the uncertainty set, whereas spherical
and ellipsoidal (including flat ellipsoidal) uncertainty sets are
considered in [8], [9], and [26]. The robust Capon beamforming
approaches presented in [8] and [9] couple the formulation of
the standard Capon beamformer (SCB) in [3] with a spherical
or ellipsoidal uncertainty set of the array steering vector. Inter-
estingly, they turn out to belong to the class of diagonal loading
approaches, but the amount of diagonal loading can be calcu-
lated precisely based on the ellipsoidal uncertainty set, as ex-
plained later in the paper.

Like the approaches in [8] and [9], the robust Capon beam-
former (RCB) we proposed in [26] also has a firm theoretical
basis and is a natural extension of the Capon beamformer to the
case of uncertain steering vectors. However, our RCB approach
is different from those in [8] and [9] in that we couple the for-
mulation of SCB in [27] with an ellipsoidal uncertainty set. Our
RCB gives a simple way of eliminating the scaling ambiguity
when estimating the power of the desired signal, whereas the
approaches in [8] and [9] did not consider the scaling ambiguity
problem (see below for details on this important aspect).

In this paper, we show how to efficiently compute our robust
Capon beamformer by using the Lagrange multiplier method-
ology. It turns out that our RCB also belongs to the class of
diagonal loading approaches and that the amount of diagonal
loading can be precisely calculated based on the ellipsoidal un-
certainty set of the array steering vector. In fact, we prove that
despite the apparent differences between our RCB approach and
those in [8] and [9], our RCB gives the same weight vector as the
RCBs presented in [8] and [9], yet our RCB is simpler and com-
putationally more efficient. Moreover, we also explain how the
RCBs presented in [8] and [9] can be modified to eliminate the
scaling ambiguity problem when estimating the power of the de-
sired signal. Numerical examples are presented to demonstrate
the effectiveness of our RCB for SOI power estimation: a task
that occurs frequently in applications including radar, sonar, and
acoustic imaging.

First, we consider the case of nondegenerate ellipsoidal con-
straints on the steering vector and then the case of flat ellipsoidal
constraints. These two cases are treated separately due to the dif-
ferences in their detailed computational steps as well as in the
possible values of the associated Lagrange multipliers. In Sec-
tion II, we formulate the problem of interest. In Section III, we
present the RCB under the nondegenerate and flat ellipsoidal
constraints on the steering vector. Numerical examples illus-
trating the performance of our RCB are given in Section IV. Fi-
nally, Section V contains the conclusions.

II. PROBLEM FORMULATION

Consider an array comprising sensors, and let denote
the theoretical covariance matrix of the array output vector. We
assume that (positive definite) has the following form:

(1)

where are the powers of the uncor-
related signals impinging on the array, are the
so-called steering vectors that are functions of the location pa-
rameters of the sources emitting the signals [e.g., their directions
of arrival (DOAs)], denotes the conjugate transpose, and
is the noise covariance matrix [the “noise” comprises nondirec-
tional signals, and hence, usually has full rank, as opposed
to the other terms in (1), whose rank is equal to one]. In what
follows, we assume that the first term in (1) corresponds to the
SOI and the remaining rank-one terms tointerferences. To
avoid ambiguities, we assume that

(2)

where denotes the Euclidean norm. We note that the above
expression for holds for both narrowband and wideband sig-
nals; in the former case, is the covariance matrix at the center
frequency, and in the latter, is the covariance matrix at the
center of a given frequency bin. In practical applications,is
replaced by the sample covariance matrix, where

(3)

with denoting the number of snapshots andrepresenting
the th snapshot.

The robust beamforming problemwith which we will deal
in this paper can now be briefly stated as follows: Extend the
Capon beamformer to be able to accurately determine the power
of SOI even when only an imprecise knowledge of its steering
vector is available. More specifically, we assume that the
only knowledge we have about is that it belongs to the fol-
lowing uncertainty ellipsoid:

(4)

where and (a positive definite matrix) are given. The case of
a flat ellipsoidal uncertainty set is considered in Section III-B.
In this paper, we focus on SOI power estimation problem, but
the robust beamforming approach we present herein can also be
used for other applications including signal waveform estima-
tion [8], [9], [28].

III. ROBUST CAPON BEAMFORMING

The common formulation of the beamforming problem that
leads to the SCB is as follows (see, e.g., [1], [3], [4]).

a) Determine the vector that is the solution to the
following linearly constrained quadratic problem:

subject to (5)

b) Use as an estimate of .

The solution to (5) is easily derived:

(6)
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Using (6) in Step b) above yields the following estimate of:

(7)

A. Nondegenerate Ellipsoidal Uncertainty Set

To derive our robust Capon beamforming approach, we use
the reformulation of the Capon beamforming problem in [27]
to which we append the uncertainty set in (4) (see [26]). Pro-
ceeding in this way, wedirectly obtain a robust estimate of ,
without any intermediate calculation of a vector[26]:

subject to

for any satisfying

(8)

(where and are given). Note that the first line above can
be interpreted as acovariance fitting problem: Given and ,
we wish to determine the largest possible SOI term that
can be a part of under the natural constraint that the residual
covariance matrix be positive semidefinite. The RCB problem in
(8) can be readily reformulated as a semi-definite program [26],
which requires flops if SeDuMi type of software [29]
is used to solve it, whereis the number of iterations. However,
the approach we present below only requires flops.

For any given , the solution to (8) is indeed given by
the counterpart of (7) with replaced by , as shown in [26].
Hence, (8) can be reduced to the following problem:

subject to (9)

Note that we can decompose any matrix in the form

(10)

where for some

(11)

Let

(12)

Then, (9) becomes

subject to (13)

Hence, without loss of generality, we will consider solving (9)
for , i.e., solving the following quadratic optimization
problem under a spherical constraint:

subject to (14)

To exclude the trivial solution to (14), we assume that

(15)

Because the solution to (14) [under (15)] will evidently occur
on the boundary of the constraint set, we can reformulate (14)

as the following quadratic problem with a quadratic equality
constraint:

subject to (16)

This problem can be solved by using theLagrange multiplier
methodology, which is based on the function

(17)

where is the Lagrange multiplier [30]. Differentiation of
(17) with respect to gives the optimal solution :

(18)

The above equation yields

(19)

(20)

where we have used the matrix inversion lemma [1] to obtain
the second equality. The Lagrange multiplier is obtained
as the solution to the constraint equation

(21)

Let

(22)

where the columns of contain the eigenvectors of, and the
diagonal elements of the diagonal matrix,

are the corresponding eigenvalues. Let

(23)

and let denote the th element of . Then, (21) can be
written as

(24)

Note that is a monotonically decreasing function of .
According to (15) and (21), , and hence, . From
(24), it is clear that . Hence, there is a
unique solution to (24). By replacing the in (24) with

and , respectively, we can obtain the following tighter
upper and lower bounds on the solution to (24):

(25)

By dropping the 1 in the denominator of (24), we can obtain
another upper bound on the solutionto (24):

(26)

The upper bound in (26) is usually tighter than the upper bound
in (25) but not always. Summing up all these facts shows that
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the solution to (24) is unique and that it belongs to the
following interval:

(27)

Once the Lagrange multiplier is determined, is deter-
mined by using (20), and is computed by using (7) with
replaced by . Hence, the major computational demand of our
RCB comes from the eigendecomposition of the Hermitian ma-
trix , which requires flops. Therefore, the computa-
tional complexity of our RCB is comparable with that of the
SCB.

Next, observe that both the power and the steering vector of
the SOI are treated as unknowns in our robust Capon beam-
forming formulation [see (8)] and, hence, that there is a “scaling
ambiguity” in the SOI covariance term in the sense that
and (for any ) give the same term .
To eliminate this ambiguity, we use the knowledge that

[see (2)] and, hence, estimate as [26]

(28)

The numerical examples in [26] confirm that is a (much)
more accurate estimate of than . To summarize, our pro-
posed RCB approach consists of the following steps.

Proposed RCB (Spherical Constraint):

Step 1) Compute the eigendecomposition of (or more
practically of ).

Step 2) Solve (24) for , e.g., by a Newton’s method, using
the knowledge that the solution is unique and it be-
longs to the interval in (27).

Step 3) Use the obtained in Step 2 to get

(29)

where the inverse of the diagonal matrix is
easily computed. [Note that (29) is obtained from
(20).]

Step 4) Compute by using

(30)

where the inverse of is also
easily computed. Note that in (7) is replaced by

in (19) to obtain (30). Then, use the in (28) to
obtain the estimate of .

We remark that in all of the steps above, we do not need to have
for all . Hence, or can be

singular, which means that we can allow to compute
.
Unlike our approach, the approaches of [8] and [9] do not

provide anydirectestimate . Hence, they do not dispose of a
simple way [such as (28)] to eliminate the scaling ambiguity of
the SOI power estimation that is likely a problem for all robust
beamforming approaches (this problem was in fact ignored in

both [8] and [9]). Note that SOI power estimation is the main
goal in many applications including radar, sonar, and acoustic
imaging.

In other applications, such as communications, the focus is on
SOI waveform estimation. Let denote the waveform of the
SOI. Then, once we have estimated the SOI steering vector with
our RCB, can be estimated like in the SCB as follows:

(31)

where in (19) is used to replace in (6) to obtain :

(32)

(33)

Note that our robust Capon weight vector has the form of di-
agonal loading except for the real-valued scaling factor in the
denominator of (33). However, the scaling factor is not really
important since the quality of the SOI waveform estimate is typ-
ically expressed by the signal-to-interference-plus-noise ratio
(SINR)

SINR (34)

which is independent of the scaling of the weight vector.
When is not a scaled identity matrix, the diagonal loading

is added to the weighted matrix defined in (12), and we refer
to this case as extended diagonal loading. To exclude the trivial
solution to (8), we now need to assume, like in (15), that

(35)

which is equivalent to

(36)

We remark that the discussions above indicate that our robust
Capon beamforming approach belongs to the class of (extended)
diagonally loaded Capon beamforming approaches. However,
unlike earlier approaches, our approach can be used to deter-
mine exactly the optimal amount of diagonal loading needed
for a given ellipsoidal uncertainty set of the steering vector at a
very modest computational cost.

Our approach is different from the recent RCB approaches in
[8] and [9]. The latter approaches extended Step a) of the SCB to
take into account the fact that when there is uncertainty in, the
constraint on in (6) should be replaced with a constraint
on for any vector in the uncertainty set (the constraints
on used in [8] and [9] are different from one another); then,
the so-obtained is used in to derive an estimate of ,
as in Step b) of the SCB. Despite the apparent differences in for-
mulation, we prove in Appendixes A and C that our RCB gives
the same weight vector as the RCBs presented in [8] and [9],
yet our RCB is computationally more efficient. The approach
in [8] requires flops [31], where is the number of
iterations, whereas our RCB approach requires flops.
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Moreover, our RCB can be readily modified for recursive imple-
mentation by adding a new snapshot toand possibly deleting
an old one. By using a recursive eigendecomposition updating
method (see, for example, [32], [33], and the references therein)
with our RCB, we can update the power and waveform estimates
in flops. No results are available so far for efficiently
updating the second-order cone program (SOCP) approach in
[8]. The approach in [9] can be implemented recursively by up-
dating the eigendecomposition similarly to our RCB. However,
the total computational burden is higher than for our RCB, as
explained in the next subsection.

We also show in Appendix B that although this aspect was
ignored in [8] and [9], the RCBs presented in [8] and [9] can
also be modified to eliminate the scaling ambiguity problem that
occurs when estimating the SOI power.

B. Flat Ellipsoidal Uncertainty Set

When the uncertainty set for is a flat ellipsoid, as is con-
sidered in [9] and [28] to make the uncertainty set as tight as
possible (assuming that the availablea priori information al-
lows that), (8) becomes

subject to

(37)

where is an matrix with full column rank,
and is an vector. [When , (37) becomes (4) with

.] Below, we provide a separate treatment of the case
of due to the differences from the case of in
the possible values of the Lagrange multipliers and the detailed
computational steps. The RCB optimization problem in (37) can
be reduced to [see (9)]

subject to (38)

Note that

(39)

Let

(40)

and

(41)

Using (39)–(41) in (38) gives

subject to (42)

To avoid the trivial solution to the RCB problem in
(37), we impose the following condition (assumingbelow ex-
ists; otherwise, there is no trivial solution). Letbe the solution
to the equation

(43)

Hence

(44)

Then, we require that

(45)

where denotes the Moore–Penrose pseudo-inverse of.
TheLagrange multiplier methodologyis based on the func-

tion [34]

(46)

where is the Lagrange multiplier [30]. Differentiation of
(46) with respect to gives

(47)

which yields

(48)

If , then the unique solution in (48) with ,
which is , solves (42). If , then
is determined by solving

(49)

Note that is a monotonically decreasing function of .
Let

(50)

where the columns of contain the eigenvectors of and the
diagonal elements of the diagonal matrix,

are the corresponding eigenvalues. Let

(51)

and let denote theth element of . Then

(52)

Note that and . Hence,
there is a unique solution to (25) between 0 and. By replacing
the in (52) with and , respectively, we obtain tighter
upper and lower bounds on the solution to (52):

(53)

Hence, the solution to (52) can be efficiently determined, e.g.,
by using the Newton’s method, in the above interval. Then, the
solution to (52) is used in (48) to obtain thethat solves (42).

To summarize, our proposed RCB approach consists of the
following steps.

Proposed RCB (Flat Ellipsoidal Constraint):

Step 1) Compute the inverse of (or more practically of
), and calculate and using (40) and (41), re-

spectively.
Step 2) Compute the eigendecomposition of[see (50)].
Step 3) If , then set . If ,

then solve (52) for , e.g., by a Newton’s method,
using the knowledge that the solution is unique and
it belongs to the interval in (53).



LI et al.: ROBUST CAPON BEAMFORMING AND DIAGONAL LOADING 1707

(a) (b)

Fig. 1. ~� (SCB usingR̂ andR) and ^̂� (RCB usingR̂ andR) versusN for (a) � = 0:5 and (b)� = 3:5. The true SOI power is 10 dB, and� = 0 (i.e., no
mismatch).

Step 4) Use the obtained in Step 3) to get

(54)

[which is obtained from (48)]. Then, use theto
obtain the optimal solution to (37) as

(55)

Step 5) Compute by using (7) with replaced by ,
and then, use the in (28) to obtain the estimate
of .

Hence, under the flat ellipsoidal constraint, the complexity of
our RCB is also flops, which is on the same order as for
SCB and is mainly due to computing and the eigendecom-
position of . If , then the complexity is mainly due to
computing .

For applications such as SOI waveform estimation, we can
calculate (assuming ) as

(56)

To obtain (56), we have used the fact [also using (48) in (55)]
that

(57)

where the last equality follows from the matrix inversion lemma.
Despite the differences in the formulation of our RCB problem
and that in [9], we prove in Appendix C that our in (56) and
the optimal weight in [9] are identical. Note, however, that to
compute , we need flops, whereas the approach in [9]
requires flops (and ).

IV. NUMERICAL EXAMPLES

Our main motivation for studying the RCB problem was an
acoustic imaging application in which the goal was to estimate
the SOI power in the presence of strong interferences as well as
some uncertainty in the SOI steering vector. In all of the exam-
ples considered below, we assume a uniform linear array with

sensors and half-wavelength sensor spacing.
First, we consider the effect of the number of snapshotson

the SOI power estimate when the sample covariance matrixin
(3) is used in lieu of the theoretical array covariance matrixin
both the SCB and RCB. (Wheneveris used instead of , the
average power estimates from 100 Monte Carlo simulations are
given. However, the beampatterns shown are obtained using
from one Monte-Carlo realization only.) We assume a spatially
white Gaussian noise whose covariance matrix is given by
. The power of SOI is dB, and the powers of the two

( ) interferences assumed to be present are
dB. We assume that the steering vector uncertainty is due to the
uncertainty in the SOIs direction of arrival, which we assume
to be . We assume that belongs to the uncertainty
set

(58)

where is a user parameter. Let . Then,
choosing gives the smallest set that includes . How-
ever, since is unknown in practice, the we choose may be
greater or less than . To show that the choice of is not a
critical issue for our RCB approach, we will present numerical
results for several values of. We assume that the SOIs direc-
tion of arrival is and that the directions of arrival of the
interferences are and .

In Fig. 1, we show and versus the number of snapshots
for the no-mismatch case; hence, in (58), and con-

sequently, . Note that the power estimates obtained by
using approach those computed via as increases and
that our RCB converges much faster than the SCB. The SCB
requires that is greater than or equal to the number of array
sensors . However, our RCB works well even when
is as small as .

Fig. 2 shows the beampatterns of the SCB and RCB using
as well as with , 100, and 8000 for the same case as in
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(a) (b)

(c) (d)

Fig. 2. Comparison of the beampatterns of SCB and RCB when� = 3:5 for (a) usingR, (b) usingR̂ with N = 10, (c) usingR̂ with N = 100, and (d) using
R̂ with N = 8000. The true SOI power is 10 dB, and� = 0 (i.e., no mismatch).

(a) (b)

Fig. 3. ~� (SCB usingR̂ andR) and ^̂� (RCB usingR̂ andR) versusN for (a) � = 2:5 and (b)� = 4:5. The true SOI power is 10 dB, and� = 3:2460

(corresponding to� = 2:0 ).

Fig. 1.Note that the weight vectorsused tocalculate the beampat-
terns of RCB in this example (as well as in the following exam-
ples)areobtainedbyusingthescaledestimateofthearraysteering
vector in(32) insteadof .Theverticaldottedlines
inthefiguredenotethedirectionsofarrivaloftheSOIaswellasthe
interferences.Thehorizontaldotted lines in the figurecorrespond
to 0 dB. Note from Fig. 2(a) that although the RCB beampatterns
do not have nulls at the directions of arrival of the interferences
as deep as those of the SCB, the interferences (whose powers are
20 dB) are sufficiently suppressed by the RCB to not disturb the
SOI power estimation. Regarding the poor performance of SCB

for small , note that the error betweenand can be viewed
as due to a steering vector error [24].

Figs. 3 and 4 are similar to Figs. 1 and 2, except that now the
mismatch is and accordingly . We note
from Fig. 3 that even a relatively small can cause a signifi-
cant degradation of the SCB performance. As can be seen from
Fig. 4, the SOI is considered to be an interference by SCB, and
hence, it is suppressed. On the other hand, the SOI is preserved
by our RCB and the performance of obtained via our ap-
proach is quite good for a wide range of values of. Note that
the RCB also has a smaller “noise gain” than the SCB.
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(a) (b)

(c) (d)

Fig. 4. Comparison of the beampatterns of SCB and RCB when� = 1:0 for (a) usingR and (b) usingR̂ with N = 10 and when� = 4:5 for (c) usingR and
(d) usingR̂ with N = 10. The true SOI power is 10 dB, and� = 3:2460 (corresponding to� = 2:0 ).

In Fig. 5, we compare the performance of our RCB with a
fixed diagonal loading level-based approach. Specifically, the
fixed loading level was chosen equal to ten times the noise
power (assuming the knowledge of the noise power). Consider
the same case as Fig. 4(d), except that now, we assume that
is available, and we vary the SNR by changing the SOI or noise
power. For Fig. 5(a), (c), and (e), we fix the noise power at 0 dB
and vary the SOI power between10 and 20 dB. For Fig. 5(b),
(d), and (f), we fix the SOI power at 10 dB and vary the noise
power between 10 and 20 dB. Fig. 5(a) and (b) shows the
diagonal loading levels of our RCB as functions of the SNR.
Fig. 5(c) and (d) shows the SINRs of our RCB and the fixed di-
agonal loading level approach, and Fig. 5(e) and (f) shows the
corresponding SOI power estimates, all as functions of the SNR.
Note from Fig. 5(a) and (b) that our RCB adjusts the diagonal
loading level adaptively as the SNR changes. It is obvious from
Fig. 5 that our RCB significantly outperforms the fixed diagonal
loading level approach when the SNR is medium or high.

We next consider an imaging example, where we wish
to determine the incident signal power as a function of the
steering direction . We assume that there are five incident
signals with powers 30, 15, 40, 35, and 20 dB from directions

35 , 15 , 0 , 10 , and 40, respectively. To simulate the
array calibration error, each element of the steering vector for
each incident signal is perturbed with a zero-mean circularly
symmetric complex Gaussian random variable so that the
squared Euclidean norm of the difference between the true
steering vector and the assumed one is 0.05. The perturbing

Gaussian random variables are independent of each other. Fig. 6
shows the power estimates of SCB and RCB that are obtained
using as a function of the direction angle for several values
of . The small circles denote the true (direction of arrival,
power)-coordinates of the five incident signals. Fig. 6 also
shows the power estimates obtained with the data-independent
beamformer using the assumed array steering vector divided
by as the weight vector. This approach is referred to as
the delay-and-sum beamformer. We note that SCB can still
give good direction-of-arrival estimates for the incident signals
based on the peak power locations. However, the SCB estimates
of the incident signal powers are way off. On the other hand,
our RCB provides excellent power estimates of the incident
sources and can also be used to determine their directions
of arrival based on the peak locations. The delay-and-sum
beamformer, however, has much poorer resolution than both
SCB and RCB. Moreover, the sidelobes of the former give
false peaks.

Finally, we examine the effects of the spherical and flat ellip-
soidal constraints on SOI power estimation. We consider SOI
power estimation in the presence of several strong interferences.
We will vary the number of interferences from to .
The power of SOI is dB, and the interference powers
are dB. The SOI and interference di-
rections of arrival are , , ,

, , , , ,
and . We assume that there is a look direction mis-
match corresponding to , and accordingly, .
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparison of a fixed diagonal loading level approach and our RCB when� = 4:5 and� = 3:2460 (corresponding to� = 2:0 ).

(a) (b)

Fig. 6. Power estimates (usingR) versus the steering direction� when (a)� = 0:03 and (b)� = 0:1. The true powers of the incident signals from�35�,�15�,
0�, 10�, and 40� are denoted by circles, and� = 0:05.
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(a) (b)

Fig. 7. ~� (SCB), ^̂� (RCB with flat ellipsoidal constraint withL = 2), and^̂� (RCB with spherical constraint), based onR, versus the number of interferences
K when (a)� = 1:8 and (b)� = 2:4 . The true SOI power is 20 dB, and� = 3:1349 (corresponding to� = 2 ).

Fig. 7 shows the SOI power estimates, as a function of the
number of interferences , obtained by using SCB, RCB (with
flat ellipsoidal constraint), and the more conservative RCB (with
spherical constraint) all based on the theoretical array covari-
ance matrix . For the RCB with flat ellipsoidal constraint, we
let contain two columns with the first column being

and the second column being
. Note that choosing gives the

smallest flat ellipsoid that this can offer to include .
However, we do not know the exact look-direction mismatch
in practice. We choose and in Fig. 7(a)
and (b), respectively. For RCB with spherical constraint, we
choose to be the larger of
and . Note that RCB with flat el-
lipsoidal constraint and RCB with spherical constraint perform
similarly when is small. However, the former is more accu-
rate than the latter for large . Fig. 8 gives the beampatterns of
the SCB and RCBs using, as well as with for var-
ious . For large , the more conservative RCB with spherical
constraint amplifies the SOI while attempting to suppress the in-
terferences, as shown in Fig. 8. On the other hand, the RCB with
flat ellipsoidal constraint maintains an approximate unity gain
for the SOI and provides much deeper nulls for the interferences
than the RCB with spherical constraint at a cost of worse noise
gain. As compared with the RCBs, the SCB performs poorly as
it attempts to suppress the SOI. Comparing Fig. 8(b) with 8(a),
we note that for small and , RCB with spherical constraint
has a much better noise gain than RCB with flat ellipsoidal con-
straint, which has a better noise gain than SCB. From Fig. 8(d),
we note that for large and small , RCB with flat ellipsoidal
constraint places deeper nulls at the interference angles than the
more conservative RCB with spherical constraint. Fig. 9 shows
the SOI power estimates versus the number of snapshotsfor

and when the sample covariance matrix
is used in the beamformers. Note that for small, RCB with
spherical constraint converges faster than RCB with flat ellip-
soidal constraint as increases, whereas the latter converges
faster than SCB. For large , however, the convergence speeds
of RCB with flat ellipsoidal constraint and RCB with spherical
constraint are about the same as that of SCB; after convergence,
the most accurate power estimate is provided by RCB with flat
ellipsoidal constraint.

V. CONCLUSIONS

We have shown how to obtain a robust Capon beamformer
(RCB) based on an ellipsoidal (including flat ellipsoidal) un-
certainty set of the array steering vector at a comparable com-
putational cost with that associated with SCB. The data-adaptive
RCB is much less sensitive to steering vector mismatches than
the standard Capon beamformer (SCB), and yet, it can retain
the appealing properties of SCB including better resolution and
much better interference rejection capability than the standard
(data-independent) beamformer. We have shown that the RCB
belongs to the class of diagonal loading approaches, but the
amount of diagonal loading can be precisely calculated based on
the uncertainty set of the steering vector. We have proven that
despite the apparent differences between our RCB approach and
the approaches presented in two recent publications, our RCB
gives the same weight vector as the latter approaches, yet our
RCB is computationally more efficient. The excellent perfor-
mance of our RCB for SOI power estimation and imaging has
been demonstrated via a number of numerical examples.

APPENDIX A
RELATIONSHIP BETWEENOUR RCB AND THE RCB IN [8]

We repeat our optimization problem:

subject to (59)

Let denote the optimal solution of (59). Let

(60)

We show below that the above is the optimal solution to the
following SOCP considered in [8]:

subject to

Im (61)

First, we show that if , then there is no that
satisfies . By using the Cauchy–Schwarz
inequality, we have

(62)



1712 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 7, JULY 2003

(a) (b)

(c) (d)

Fig. 8. Comparison of the beampatterns of SCB, RCB (with flat ellipsoidal constraint), and RCB (with spherical constraint) when� = 2:4 for (a)K = 1

and usingR, (b)K = 1 and usingR̂ with N = 10, (c)K = 8 and usingR, and (d)K = 8 and usingR̂ with N = 10. The true SOI power is 20 dB, and
� = 3:1349 (corresponding to� = 2 ).

Fig. 9. Comparison of the SOI power estimates versusN obtained using SCB, RCB (with flat ellipsoidal constraint), and RCB (with spherical constraint), all
with R̂, when� = 2:4 for (a)K = 1 and (b)K = 8. The true SOI power is 20 dB, and� = 3:1349 (corresponding to� = 2 ).

which is impossible. Hence, the constraint in (15), which is
needed for our RCB to avoid the trivial solution, must also be
satisfied by the RCB in [8].

Next, let

(63)

We show below that the solution of (61) corresponds to .
Insertion of (63) in (61) gives

Re (64)

subject to

(65)

and

Im (66)

Let

(67)
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Then, (65) and (66), respectively, become

(68)

and

Im (69)

which implies that

Re Re (70)

Since

Re

(71)

it follows from (70) that

Re (72)

This implies at once that the minimizer of (64) is , pro-
vided that we can show that satisfies the constraints (65)
and (66) or, equivalently, (68) and (69), that is

Re (73)

and

Im (74)

Inserting (60) in (73) yields

Re (75)

Using (60) in (74) gives

Im (76)

To prove (75) and (76), we need to analyze (59). By using the
Lagrange multiplier theory, we obtain [see (18)]

(77)

where is the Lagrange multiplier. Using (67) in (77)
yields

(78)

Using (78) in (75) gives

Re (79)

However, due to the constraint in (59), i.e., , (79) is
satisfied with equality, which proves that (75) is satisfied with
equality. This means that the first constraint in (61) is satisfied
with equality and, hence, that the optimal solution to (61) also
occurs at the boundary of its constraint set, as expected (see also
[9]). Using (78) in (76) proves (76) since

Im (80)

APPENDIX B
CALCULATING THE STEERING VECTOR FROM THE

OPTIMAL WEIGHT VECTOR

We now show how to obtain the steering vectorfrom the
optimal solution of the SOCP (61). In Appendix A, we have
shown that

(81)

Hence

(82)

which, along with (81), leads to

(83)

Hence, from the optimal solution of the SOCP (61), we can
obtain the as above and then correct the scaling ambiguity
problem of the SOI power estimation in the same way as in our
RCB approach [see (28)].

APPENDIX C
RELATIONSHIP BETWEENOUR RCB AND THE RCB IN [9]

Consider the SOCP with the ellipsoidal (including flat ellip-
soidal) constraint on and not on as in our formulation, which
is considered in [9]:

subject to (84)

The Lagrange multiplier approach gives the optimal solution [9]

(85)

where is the unique solution of

(86)

and [to obtain (85), we have used the matrix
inversion lemma]. Note that solving for the Lagrange multiplier
from (86), as discussed in [9], is more complicated than solving
our counterpart in (52).
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To prove that the weight vectors in (56) and (85) are the same,
we first prove that for the satisfying (49), we have

(87)

To prove (87), note that

(88)

Since [see (85)]

(89)

we can write as a fraction whose numerator is

(90)

Since satisfies (49), we have that

(91)

which proves (87).
Next, we prove that the denominators of (56) and (85) are the

same. The denominator of (56) can be written as

(92)

where we have used (91). Since for thesatisfying (49) and
satisfying (86), , and the proof is concluded.
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