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Abstract—In the field of face recognition, Sparse Represen-
tation (SR) has received considerable attention during the past
few years. Most of the relevant literature focuses on holistic de-
scriptors in closed-set identification applications. The underlying
assumption in SR-based methods is that each class in the gallery
has sufficient samples and the query lies on the subspace spanned
by the gallery of the same class. Unfortunately, such assumption is
easily violated in the more challenging face verification scenario,
where an algorithm is required to determine if two faces (where
one or both have not been seen before) belong to the same person.
In this paper, we first discuss why previous attempts with SR
might not be applicable to verification problems. We then propose
an alternative approach to face verification via SR. Specifically,
we propose to use explicit SR encoding on local image patches
rather than the entire face. The obtained sparse signals are
pooled via averaging to form multiple region descriptors, which
are then concatenated to form an overall face descriptor. Due to
the deliberate loss spatial relations within each region (caused by
averaging), the resulting descriptor is robust to misalignment and
various image deformations. Within the proposed framework, we
evaluate several SR encoding techniques: l1-minimisation, Sparse
Autoencoder Neural Network (SANN), and an implicit proba-
bilistic technique based on Gaussian Mixture Models. Thorough
experiments on AR, FERET, exYaleB, BANCA and ChokePoint
datasets show that the proposed local SR approach obtains
considerably better and more robust performance than several
previous state-of-the-art holistic SR methods, in both verification
and closed-set identification problems. The experiments also
show that l1-minimisation based encoding has a considerably
higher computational cost when compared to SANN-based and
probabilistic encoding, but leads to higher recognition rates.

I. INTRODUCTION

Face based identity inference (normally known by the all-

encompassing term “face recognition”), can be generalised

into three distinct configurations: closed-set identification,

open-set identification, and verification [10]. The task of

closed-set identification is to classify a given face as belonging

to one of K previously seen persons in a gallery. In such

configuration, identification performance can be maximised by

utilising class labels. For example, Linear Discriminant Analy-

sis (LDA) [5] separates the gallery such that small within-class

scatter and large between-class scatter are achieved. However,

this closed-set identification task assumes impostor attacks

do not exist and that each probe face must match a person

This paper is a revised and extended version of our earlier work [47].

in the gallery. This is a necessarily limiting assumption (as

the gallery cannot cover all people in existance), and hence

algorithms specifically relying on the closed-set assumption

do not readily translate to real-world applications [16]. In

contrast, both open-set identification and verification explicitly

take into account the possibilities of impostor attacks and

previously unseen people. In open-set identification, a given

face is assigned to one of K + 1 classes, with the extra class

representing an “unknown person”. The task of verification is

to determine if two given faces (or two face sets) belong to

the same person, where one or both identities may not have

been observed beforehand.

Verification can be implemented as a pair-wise comparison,

resulting in a distance or probability that is then thresholded

to achieve the final decision (which is a binary yes/no). As

such, open-set identification can be decomposed into a set of

verification tasks (one for each person in the gallery), as long

as the pair-wise verification distances or probabilities are used

instead of the verification decisions. In addition to the task of

biometric user authentication [10], [16], the ability to handle

previously unseen people is useful in video surveillance [3],

for applications such as person re-identification across multiple

cameras [43].

Wright et al. [48] recently proposed Sparse Representation

based Classification (SRC) for face identification problems.

The underlying idea is to represent a query sample y as

a sparse linear combination of a dictionary D, where the

dictionary usually contains holistic face descriptors. Moreover,

it is assumed that each subject has sufficient samples in the

dictionary to span over possible subspaces. Each probe image

can be considered to be represented by a sparse code that is

comprised of coefficients that linearly reconstruct the image

via the dictionary. As such, it is expected that only those

atoms in the dictionary that truly match the class query sample

contribute to the sparse code. Wright et al. [48] exploited

this by computing a class-specific similarity measure. More

specifically, they computed the reconstruction error of a query

image to class i by considering only the sparse codes associ-

ated with the atoms of the i-th class. The class that results in

the minimum reconstruction error specifies the label of query.

To handle the case of a preson not present in the gallery,

the given query image is considered as an imposter if the

minimum reconstruction error exceeds a predefined threshold.



A more thorough discussion of class-based SRC can be found

in [49].

A significant body of literature was proposed with the

aim of improving the original SRC. For example, Yang and

Zhang [50] extended the original approach to use a holis-

tic representation derived from Gabor features. The Gabor-

based SRC (GSRC) was shown to be relatively more robust

against illumination changes as well as small degree of pose

mismatches. Another example is the Robust Sparse Coding

(RSC) scheme proposed by Yang et al. [52], where sparse

coding is modelled as a sparsity-constrained robust regression

problem. RSC was shown to outperform the original SRC and

GSRC, as well as being more effective in handling of face

occlusions. However, RSC is computationally more expensive

when compared to various SRC approaches. Yang et al. [51]

explored the benefit of a structured dictionary, where each

atom is associated to a class label. Using the Fisher discrim-

ination criterion [19], a set of class-specified sub-dictionaries

is learned, where each class has small within-class scatter and

large between-class scatter.

In spite of the recent success in face identification, SRC

relies on the sparsity assumption. The assumption holds when

each class in the gallery has sufficient samples and the query

lies on the subspace spanned by the gallery of the same

class. Shi et al. [37] questioned the validity of the sparsity

assumption for face data and showed that the assumption

may be violated even in the identification scenario. Since in

a verification system there might not be any mutual overlap

between the probe faces and the training data (ie. the probe

identities were never seen by the system during training),

violation of the sparsity assumption is more likely to happen.

In other words, a verification system needs to be capable of

making decisions even for classes it has not seen before. This

contradicts the sparsity assumption, and hence existing SRC

approaches do not naturally extend to verification scenarios.

The majority of SR-based systems represent faces in a rigid

and holistic manner [48], [49], [50] (ie. holistic descriptors).

That is, each face is represented by one feature vector that

describes the entire face and implicitly embeds rigid spatial

constraints between face components [10], [23]. Examples of

such representation include classic techniques such as PCA-

based feature extraction [44]. Such treatment implies ideal

image acquisition (eg. perfect image alignment, perfect lo-

calisation/detection). In reality, especially for fully automated

systems, attaining ideal images is very challenging (if not im-

possible) for low resolution moving objects [38]. The adverse

impact of imperfect face acquisition on recognition systems

that utilise holistic face descriptors has been demonstrated

in [10], [33].

To tackle misalignment problems, Wagner et al. [45] re-

cently proposed an SR-based face alignment algorithm. Given

a set of frontal training images and a query face image,

xauto, extracted using an automatic face locator (detector), the

algorithm finds the image transformation parameters which

transform xauto for the best reconstruction error. Though this

approach has shown promising results, it can be criticised

as being a computationally intensive method for correcting

rigid face descriptors, rather than tackling the source of the

problem: rigid descriptors are inherently not robust to in-class

face variations (eg. face expressions variations).

In contrast to rigid representations, a face can also be

represented by a set of local features with relaxed spatial

constraints1. This allows for some movement and/or defor-

mations of face components [10], [24], [35], and in turn

leads to a degree of inherent robustness to expression and

pose changes [35], as well as robustness to misalignment

(where the misalignment is a byproduct of automatic face

locators/detectors [10]). Aharon et al. [1] showed that local

features satisfy the sparsity assumption when an overcomplete

dictionary (trained from a sufficient amount of samples) is

presented. Therefore, in this paper we focus on the use of SR

for encoding local features to handle the problem of imperfect

image acquisition.

In the field of object recognition, bag-of-words (BoW) ap-

proaches [15], [26] have been shown to be robust and effective

for general image categorisation problems. The underlying

idea is to treat any given image as a set of local keypoints or

patches, followed by assigning each patch to a predetermined

word with a vector quantisation (VQ) algorithm. The given

image can be represented as a vector of assignments, where

each dimension of the vector indicates the count of patches

assigned to a particular word. In the field of face recognition,

an extension of BoW for face images, called Multi-Region

Histograms (MRH), represents each image as a concatenated

set of regional probabilistic histograms [36].

We first note that VQ and probabilistic approaches to

BoW representations can be considered as a form of sparse

coding [13]. With this in mind, we propose to employ more

direct forms of SR within the MRH framework, namely

l1-minimisation and a Sparse Autoencoder Neural Network

(SANN). We denote this approach as Locally Sparse Encoded

Descriptor (LSED). As shown later, LSED in conjunction

with l1-minimisation outperforms MRH as well as previous

holistic SR methods, obtaining state-of-the-art performance in

various identity inference configurations (ie. both verification

and identification).

A. Contributions

There are four main contributions in this paper:

• We briefly discuss why previous attempts with SR are not

be applicable for verification tasks and show a possible

rudimentary extension of SR (with holistic face represen-

tation) to such tasks.

• In contrast to following the traditional approach of us-

ing holistic face representation in conjunction with SR,

we explicitly use a local feature-based face representa-

tion (based on the well-established bag-of-words litera-

ture [15], [26], [36]) and employ SR to encode local im-

age patches. In addition to the probabilistic approach for

SR implicitly used by MRH [36], we study the efficacy of

1 However, it must be noted that not all local feature-based face representa-
tions automatically have relaxed spatial constraints. For example, in [18] local
feature extraction is followed by concatenation of the local feature vectors into
one long vector. The concatenation, in this case, effectively enforces rigid
spatial constraints.



two more direct SR techniques, namely l1-minimisation

and Sparse Autoencoder Neural Network (SANN).

• Via thorough evaluations on face images captured in

controlled and uncontrolled environment conditions, as

well as in various challenging situations such as pose

mismatches, imperfect face alignment, blurring, etc.,

we show that the proposed local feature SR approach

considerably outperforms state-of-the-art holistic SR ap-

proaches. The experiments are conducted in both verifi-

cation and closed-set identification setups.

• We analyse the computation cost of the proposed local

feature SR approach in conjunction with various SR

encoding techniques. We show that l1 encoding leads to

the highest accuracy at the expense of considerably higher

computation cost than the second best technique, which

is implicit SR encoding via probabilistic histograms.

We continue the paper as follows. We first delineate the

background theory of sparse encoding in Section II. In Sec-

tion III, we discuss how can holistic SR approaches be applied

for face verification. In Section IV, we present and discuss

the proposed LSED. Section V is devoted to experiments

on various identity inference experiments using still images.

Image set matching experiments are given in Section VI.

Section VII provides the main findings.

II. BACKGROUND THEORY

In this section, we delineate the background theory of three

sparse encoding approaches, namely: (a) l1-minimisation,

(b) Sparse Autoencoder Neural Network (SANN), and

(c) probabilistic approach. Consider a finite training set

Y = [ y1, y2, · · · , yM ] ∈ R
d×M . Each sparse encoding ap-

proach requires a dictionary (or model), D ∈ R
d×N , where

each column di ∈ R
d is called an atom. Given the learned

dictionary D, a probe vector x is then encoded as a sparse

code α̂ by a chosen encoding scheme.

A. Sparse Encoding via l1-minimisation

Given the trained overcomplete dictionary D and a probe

vector x ∈ R
d that is compressible, a sparse solution α̂ ∈ R

N

exists such that x can be reconstructed with small residual.

The sparse solution α̂ can be found by solving the following

l0-minimisation problem:

min ‖α‖0 subject to ‖Dα− x‖22 ≤ ǫ (1)

where the notation ‖α‖0 counts the nonzero entries of α and

ǫ is the threshold for the reconstruction error ‖Dα− y‖22 .

Solving the l0-minimisation problem is NP-hard and diffi-

cult to approximate. As shown in [42], the solution of Eqn. (1)

can be approximated with the following l1-minimisation (aka

convex relaxation) problem:

min ‖α‖1 subject to ‖Dα− x‖22 ≤ ǫ (2)

which can be solved in polynomial time by linear program-

ming methods [48], [12]. Another popular choice of sparse

approximation technique is called the greedy pursuit approach,

which approximates the sparse solution through iterative local

approximation. However, the greedy pursuit approach can only

produce the optimal solution under very strict conditions [40],

whereas the convex relaxation has proven to be able to produce

optimal or near optimal solutions for variety of problems [42].

As discussed in [14], the choice of the dictionary learning

algorithm has minor influence to the performance of a selected

sparse encoding algorithm. Therefore, the aforementioned

l1-minimisation problem can be coupled with any dictionary

learning algorithm. In this paper, we train the dictionary

D using the K-SVD algorithm [1], which is effective for

representing small image patches for sparse encoding prob-

lems [34]. The algorithm first initialises a random dictionary

D with l2 normalised atoms and performs an iterative two

stage process until convergence. The objective function is to

minimise the following cost function:

min
D,α

‖Y −Dαtrain‖2F subject to ∀i, ‖αtrain
i ‖0 ≤ T0 (3)

where the notation‖A‖F stands for the Frobenius norm, with

‖A‖2F is defined as
∑

i

∑
j
|ai,j |

2.

The first stage (sparse coding stage), with dictionary D, the

representation vectors αtrain
i in Eqn. (3) are obtained using any

pursuit algorithm [41]. In the second stage (dictionary update

stage), the algorithm updates each atom, di, by first computing

the overall representation error matrix, Ei, using:

Ei = Y −
∑

j 6=i
djα

train
j (4)

By restricting to use a subset of Ei, which corresponds to

the training vectors that use the atom di, we obtain ER
i . Let

U∆V T represent the singular value decomposition of ER
i . The

updated version of atom di is then obtained as the first column

of U .

B. Sparse Encoding via Sparse Autoencoder Neural Network

An Artificial Neural Network (NN) is a non-linear statistical

approach to modelling complex relationships between input

and output data [7]. A generic configuration of a NN normally

contains an input layer, a number or hidden layers, and an

output layer. Each layer is comprised of a number of ‘neurons’

or ‘nodes’, which are basic computational units that take an

input vector, an intercept term b (or a bias unit), and compute

an output via:

hW ,b(x) = f

(∑N

i=1
wix+ b

)
(5)

where wi is the weight associated to neuron i and f (·) is an

activation function which maps the output to a fixed range.

The SANN [31], [22] is a NN for efficient feature encoding

where the aim is to learn a sparse and compressed represen-

tation for a set of training data. More specifically, SANN can

reconstruct the training data with small reconstruction error

using a small set of nodes in the hidden layer. Under the

framework of SANN, we employ unsupervised model training

to learn a hidden layer that consists of N nodes, which is

parameterised with a weight W ∈ R
d×N and bias b ∈ R

N .

The back-propagation algorithm [7] can be used for training

by minimising the following cost function [13]:

J(W , b) = Jerror + Jweight + βJsparsity (6)



where

Jerror =
1

M

M∑

i=1

(
1

2
‖x̂i − xi‖

2

)
(7)

Jweight =
λ

2
‖W ‖2 (8)

Jsparsity =

N∑

i=1

KL (ρ ‖ ρ̂i) (9)

=

N∑

i=1

[
ρ log

(
ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ

1− ρ̂i

)]
(10)

The cost functions Jerror, Jweight, and Jsparsity are respectively

the square reconstruction error term, weight decay term and

sparsity penalty term.

Jerror minimises the overall reconstruction error, with x̂i

denoting the reconstructed version of xi [22]. The regulari-

sation term Jweight decreases the magnitude of the weights to

prevent overfitting. Jsparsity constrains the network to achieve

low “activation”, where KL (ρ ‖ ρ̂i) is the Kullback-Leibler

divergence between ρ and ρ̂i. The parameter ρ controls the

degree of sparsity and ρ̂i is the average activation of hidden

node i. The parameter β in Eqn. (6) controls the contribution

of Jsparsity (typically equal to 3).

Given the trained SANN and a probe vector x, the elements

of the sparse code α̂ = [α̂1, α̂2, · · · , α̂N ] are calculated using:

α̂i = sig(wT
i x+ bi) (11)

where wi and bi are the i-th weight and bias respectively. The

logistic sigmoid function sig(t) = 1/(1 + exp(−t)) maps the

output to the range of [0, 1]. In contrast to the l1-minimisation

approach described previously, SANN has the advantage of

avoiding the minimisation problem during the sparse encoding

stage, resulting in a lower computational cost.

C. Implicit Sparse Encoding via Probabilistic Approach

In the context of probabilistic modelling, vectors are as-

sumed to be independent and identically distributed (this as-

sumption is often incorrect but necessary to make the problem

tractable [32]). By assuming the vectors obey a Gaussian

distribution, all data can be modeled as a mixture of Gaussians

or Gaussian Mixture Model (GMM). GMM is a parametric

probability density function represented as a weighted sum of

Gaussian component densities [10], [32], [8]. Given a probe

vector x and a trained model with relatively large number of

Gaussians, the normalised likelihood of x belonging to each

Gaussian can be represented as a sparse code α̂ with:

α̂ =




w1p (x|µ1,Σ1)

N∑
n=1

wnp (x|µn,Σn)

, · · · ,
wNp (x|µN ,ΣN )
N∑

n=1

wnp (x|µn,Σn)



 (12)

where

p (x|µn,Σn) =
exp

[
− 1

2 (x− µn)
T
Σ

−1
n (x− µn)

]

(2π)
d
2 |Σn|

1

2

(13)

is a multi-variate Gaussian function [8], [17]. The variables

wn, µn, and Σn are, respectively, the weight, mean vector and

diagonal covariance for Gaussian n. The dictionary is trained

by first initialising the mean vectors with a k-means clus-

tering algorithm followed by the Expectation-Maximisation

algorithm [17]. We note that most of the entries in sparse

code α̂ are typically not exactly zero but are small enough to

be treated as zero.

III. SR: IDENTIFICATION VS. VERIFICATION

In this section, we first briefly review the SR-based clas-

sification methodology for face identification problems. We

then discuss why such methodology is not suitable for face

verification problems and delineate a rudimentary extension to

allow the use of SR with holistic descriptors in such problems.

This rudimentary holistic approach is separate and distinct

from using SR at the level of local patches.

A. Holistic SR for Face Identification

Consider a closed-set face identification problem with a

gallery comprised of N samples. Let D ∈ R
d×N be the dic-

tionary comprising all samples in the gallery. Given a query

x ∈ R
d, the sparse solution α̂ can be estimated by solving

Eqn. (2). Using only the coefficients associated with the i-th

class, Wright et al. [48] computed the residual, ri(x), using:

ri(x) = ‖x−Dδi(α̂)‖22 (14)

where δi is a binary vector with the non-zero entries being

associated to class i. The identity of query x is assigned

using the rule: identity(x) = argmini ri(x). This classification

methodology is also used in the Gabor-based SRC [50] and

RSC [52].

B. Rudimentary Extension of Holistic SR to Face Verification

In the context of face verification, the identities of probe

faces may not be present in the gallery. As such, the sparsity

assumption is likely to be violated, making the classification

methodology described above not applicable to verification

problems.

An alternative way to incorporate SR in verification prob-

lems is to use the sparse code (ie. α̂) as a face descriptor.

Given a dictionary D and two faces xa,xb ∈ R
d, we first

generate their respective sparse solutions α̂a and α̂b using

Eqn. (2). The similarity score between these descriptors can

be calculated using:

sSR(xa,xb|D) = dist (α̂a − α̂b) (15)

where dist(·) is the distance function of choice, such as Eu-

clidean or Hamming distance, with a smaller value indicating

a higher similarity between xa and xb. The classification

decision (ie. whether xa and xb represent the same person)

can be obtained by comparing sSR to a decision threshold.

In the above approach, the sparse solutions can be obtained

from holistic face representations, such as PCA-based feature

extraction [44]. We therefore denote this approach as holistic

SR descriptor.



IV. LOCALLY SPARSE ENCODED DESCRIPTOR

In the previous section, we have shown an extension of

holistic SR to verification problems. However, as shown later,

the holistic SR descriptor delivers poor performance. In this

section, we present an alternative way to utilise sparse coding

in verification problems. Motivated by the benefits of local

feature-based face representation and BoW approaches, we

introduce a face descriptor termed Locally Sparse Encoded

Descriptor (LSED), which can be seen as an extension of

MRH [36]. In addition to the implicit probabilistic encoding

used in the original MRH formulation, we propose to use

two more direct sparse encoding techniques: l1-minimisation

and SANN, described in Sections II-A and II-B. We continue

this section by first describing the face encoding framework,

followed by brief discussions on the characteristics of each

sparse encoding technique. We then elaborate on how the

descriptor can be used for discriminating faces.

A. Framework

A given face image is first split into R fixed size regions,

where each region covers a relatively large portion of the

face image. For region r, a set of low-dimensional feature

vectors, Xr = {xr,1,xr,2, . . . ,xr,n}, is attained by dividing the

region into smaller patches pr,1,pr,2, . . . ,pr,n. To account for

varying contrast caused by illumination changes, each patch

is normalised to have zero mean and unit variance.

From each normalised patch p̂r,i, a low dimensional texture

descriptor, xr,i, is obtained via 2D DCT decomposition [21].

Preliminary experiments suggest that patches of size 8 × 8

pixels with 75% overlap (ie. adjacent patches are overlapped

by either 6× 8 or 8× 6 pixels) lead to good performance [36].

Moreover, we selected the 15 lowest frequency components of

the DCT coefficients, with the zeroth coefficient discarded (as

it has no information due to the aforementioned normalisation

step). We note that it is also possible to use other texture

descriptors, such as raw pixels, Gabor wavelets [27] and Local

Binary Patterns [2]. Preliminary experiments suggest that the

DCT-based texture descriptors lead to better performance.

Each i-th texture descriptor from region r, xr,i, is then

described by a sparse code α̂r,i. In the original formulation

of MRH [36], the sparse code is implicitly generated using

the probabilistic encoding approach elaborated in Eqn. (12).

Having each patch represented by a sparse code, each region

r is then described via the following pooling strategy:

hr =
1

Np

∑Np

i=1
α̂r,i (16)

where α̂r,i is the i-th sparse vector in region r and Np is the

number of patches in region r. Due to the averaging operation,

in each region there is a loss of spatial relations between

face parts. As such, each region is in effect described by an

orderless collection of local descriptors. A conceptual diagram

of the framework is shown in Figure 1.

We propose to use two other sparse encoding techniques to

generate the sparse code α̂r,i, namely, l1-minimisation (using

Eqn. (2)) and SANN (using Eqn. (11)). For the l1-minimisation

based encoding, the generated sparse codes may consist of

negative coefficients, which causes a problem with the aver-

aging pooling strategy in Eqn. (16). To address this, the patch

level sparse codes can be obtained with nonnegative encod-

ing [9] or by splitting the positive and negative coefficients

into two sparse codes followed by vector concatenation [14].

In preliminary experiments we found that the most robust

performance can be obtained by simply applying an absolute

function to each patch level sparse code.

The dictionary used by each sparse encoding approach is

described in Section II. Examples of LSED with the three

sparse encoding techniques are shown in Figure 2, where

LSED with probabilistic encoding is the sparsest at both the

patch level and the region level, whereas the SANN-based

encoding produces relatively noisier descriptors while main-

taining a good degree of sparsity. We discuss the differences

of the encoding techniques below.

B. Characteristics of Sparse Encoding

In Section II, we presented three sparse encoding ap-

proaches (ie. l1-minimisation, SANN and probabilistic encod-

ing). We note that there are some fundamental differences

between the approaches.

The probabilistic approach computes the normalised like-

lihood using each Gaussian in the GMM, which indirectly

models each patch as a sparse vector. The sparsity in this case

stems from a very small subset of the Gaussians (typically

2 or 3) being close to a given sample. The close Gaussians

provide high normalised likelihoods, while the remaining

Gaussians have likelihoods that are close to zero.

In contrast, the l1-minimisation approach solves an opti-

misation problem based on the reconstruction error (ie. re-

construct a given patch as a linear combination of dictionary

atoms), with the optimal solution obtained for each patch.

The SANN-based approach uses a similar objective (ie. patch

reconstruction). However, it avoids minimisation of the recon-

struction error for each patch [31]. The sparse solution for

any given local patch is obtained by feeding the given patch

into the SANN, which is a very fast process that consists of

straightforward linear algebra. SANN assumes that the training

samples provide the generic distribution of the data and the

optimisation is performed only on the training samples. As

such, this encoding approach may not deliver the optimal

solution for any given patch.

C. Similarity-Based Classification

Comparison between two faces is accomplished by compar-

ing their corresponding regional descriptors. Using the method

from [36], the matching score between faces A and B can be

calculated via:

sraw(A,B) =
1

R

∑R

r=1

∥∥∥h[A]
r − h[B]

r

∥∥∥
1

(17)

where R is the number of regions. To account for uncontrolled

image conditions not already handled by the patch-based

analysis, a cohort normalisation [16], [36] based distance can

be employed:

snorm(A,B) =
sraw(A,B)

∑NC

i=1 sraw(A,Ci) +
∑NC

i=1 sraw(B,Ci)
(18)
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Fig. 1. Conceptual demonstration of the LSED framework. A given face image is divided into regions, followed by breaking each region into smaller
patches. For each patch, a sparse vector is obtained by a sparse encoder using a learned dictionary. Each regional face descriptor is computed by pooling the
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Fig. 2. Left column: examples of sparse codes for a single patch. Right column: examples of resultant region descriptors obtained via the pooling strategy in
Eqn. (16). Three sparse encoding approaches are shown: (a) l1-minimisation, (b) Sparse Autoencoder Neural Network, (c) probabilistic. For l1-minimisation
based encoding, an absolute function is applied to each patch level code prior to applying the pooling strategy. For probabilistic encoding, most of the
coefficients are not exactly zero but are small enough to be treated as zero.



where the cohort faces Ci are assumed to be reference faces

that are different from images of persons A or B. To reach

a decision as to whether faces A and B belong to the same

person, snorm(A,B) can be compared to a decision threshold.

V. EXPERIMENTS WITH STILL IMAGES

In this section, we examine the performance of LSED on

several identity inference configurations: (a) verification with

various face alignment errors and sharpness variations, (b) ver-

ification with pose mismatches, (c) verification with controlled

and uncontrolled images, and (d) closed-set identification. We

also evaluate the computational cost for LSED generation as

well as the query time in closed-set identification problems. In

addition, we use synthetic data to demonstrate the weakness of

the holistic SR descriptor (from Section III-B) on verification

problems.

Experiments were conducted on five datasets: FERET [30],

AR [29], BANCA [4], exYaleB [27], and ChokePoint [46].

Figure 3 shows example raw images. In all experiments, we

used closely cropped face images with a size of 64×64 pixels.

Each image was manually aligned so that the eyes were at

fixed positions, except for experiments with simulated image

variations. See Figure 4 for examples.

In the following subsections, we denote the original for-

mulation of MRH with probabilistic encoding as LSED+prob.

Forms of LSED with the Sparse Autoencoder Neural Network

and l1-minimisation based encoding approaches are denoted as

LSED+SANN and LSED+l1, respectively. The LSED frame-

work has a number of parameters that affect performance.

Based on preliminary experiments, we split each image into

3×3 regions and used 32 cohorts for the distance normalisation

in Eqn. (18). LSED+SANN has 512 hidden units, where the

parameters of the cost function (Eqns. (6) and (10)) were set

as β = 3, ρ = 0.1, and λ = 0.01. LSED+prob and LSED+l1
have a dictionary with 1024 Gaussians/atoms. The threshold

for reconstruction error, ǫ, in Eqn. (2) was set to 0.1. These

parameters were kept unchanged for all experiments.

Unless otherwise specified, all experiments were imple-

mented in MATLAB using an in-house implementation. The

l1-minimisation problem was solved with SparseLab2.

A. Face Verification Experiments

In each of the following verification experiments, the face

images were divided into three sets: (1) training set, (2) de-

velopment set, and (3) evaluation set. For all experiments,

except the verification experiment on the BANCA dataset, we

exclusively used the CAS-PEAL dataset [20] as the training

set. The CAS-PEAL dataset provides 1200 face images from

1200 unique individuals. Note that the face images for cohort

normalisation are selected from the training set. The develop-

ment and evaluation sets have a balanced number of matched

and mismatched pairs.

Using the development set and the normalised matching

scores from Eqn. (18), we obtained a decision threshold, τD,

which was then used on the evaluation set for assessing the

2SparseLab is available at http://sparselab.stanford.edu/

final accuracy. Specifically, the threshold was adjusted such

that the False Acceptance Rate (FAR) and False Rejection

Rate (FRR) on the development set were equal (ie., the so-

called Equal Error Rate point [16]). The threshold was then

applied on the evaluation set, with the final accuracy defined as

1− 1
2
(FAR+FRR). The threshold was deliberately not found

on the evaluation set as in real-life conditions it has to be

selected a priori [10], [6].

In all experiments, we compared LSED with the holistic SR

descriptor described in Section III-B. We used the holistic SR

descriptor in conjunction with two feature extraction methods:

(1) PCA based [5] (denoted as PCA+SR), and (2) Gabor

based [28] (denoted as Gabor+SR). Based on preliminary

experiments, the similarity scores between two PCA+SR de-

scriptors were calculated via Hamming distance measurement,

whereas Euclidean distance was preferred for Gabor+SR. Ga-

bor based feature extraction followed the configuration in [50],

with PCA based dimensionality reduction. For both feature

extraction methods, PCA preserved 99% of the total energy.

We also evaluated verification performance of three base-

line holistic face descriptors (ie., without sparse encoding):

(1) PCA based (denoted as PCA), (2) Local Binary Patterns [2]

(denoted as LBP), and (3) Gabor based (denoted as Gabor).

The similarities between two face descriptors were calculated

using Euclidean distance measurement.

1) Face Verification with Alignment Errors and Blurring:

In this section, we evaluate the robustness of LSED on

blurring, as well as on four alignment errors using images

taken from the ‘fb’ subset of FERET. Example images are

shown in Figure 5. The generated alignment errors3 are:

horizontal shift and vertical shift (using displacements of

±2, ±4, ±6, ±8 pixels), in-plane rotation (using rotations

of ±10◦, ±20◦, ±30◦), and scale variations (using scaling

factors of 0.7, 0.8, 0.9, 1.1, 1.2, 1.3). To simulate variations in

sharpness, each original image was first downscaled to three

sizes (48× 48, 32× 32 and 16× 16 pixels), and then rescaled

to the baseline size of 64× 64 pixels. Using the frontal subset

‘ba’ and the expression subset ‘bj’, we randomly generated

800 matched and mismatched pairs for each alignment error.

The experiments were conducted with 5-fold validations. We

report the mean accuracy for each scenario.

The results, presented in Figure 7, show that the three LSED

approaches consistently achieved robust performance in all

simulated scenarios. LSED+SANN and LSED+prob achieved

average accuracies of 85.8% and 86.2%, respectively, whereas

LSED+l1 led the performance with an average accuracy of

89.2%. Overall, the accuracy of LSED+l1 is about 12.2

percentage points better than the baseline Gabor approach and

about 23.7 percentage points when compared to Gabor+SR.

The results also show that PCA+SR and Gabor+SR performed

poorly on all misalignment errors, with overall accuracies of

68.2% and 65.6%, respectively. The results suggest that scale

changes and in-plane rotation variations are in general the

hardest problems out of all alignment errors.

3 The generated alignment errors are representatives of real-life character-
istics of automatic face localisation/detection algorithms [33].
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Fig. 3. Example raw images from several datasets. (a) The AR dataset contains 14 images per subject with various expressions
and lighting conditions. (b) The BANCA dataset: each subject was recorded under 3 scenarios: controlled (columns 1 & 3),
degraded (column 2), and adverse (column 4). (c) The ChokePoint dataset contains 29 subjects captured in 4 distinct portals.
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Fig. 7. The average verification accuracy on FERET images with stimulated alignment errors and sharpness variations (demonstrated in Fig. 5). Experiments
were conducted with 5-fold validations.
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Fig. 8. Verification performance on pose mismatches for various angles. Faces from each pose angle are compared with the FERET frontal subset ‘ba’ and
the expression subset ‘bj’. Experiments were conducted with 5-fold validations.



2) Face Verification with Pose Mismatches: In this section

we evaluate the robustness of LSED for handling pose mis-

matches. We selected the ‘b’ subset from the FERET dataset,

which has 200 images per pose. The evaluation process on

each pose angle was the same as the method described in the

previous section. Example images are shown in Figure 6.

The results, shown in Figure 8, indicate that the three

LSED approaches considerably outperforms both PCA+SR

and Gabor+SR. Both of the holistic SR descriptors obtained

a maximum accuracy of 56.9% when the absolute value of

the pose angle was ≥ 40◦. In contrast, LSED+l1 achieved

an average accuracy of 73.6% under the same pose angles.

Note that the LSED+l1 was outperformed by LSED+SANN

and LSED+prob for pose angles of ±60◦. When the pose

angle was between −25◦ and +25◦ (ie. relatively frontal) the

best performing holistic SR descriptor (PCA+SR) achieved

an average accuracy of about 64.8%. All LSED approaches

outperformed the holistic SR descriptors by a comfortable

margin on the same range of pose angles, with LSED+l1
obtaining an average accuracy of 87.5%.

3) Face Verification with Frontal Faces: In this experiment,

we evaluated the performance on three datasets with images

captured in various environment conditions. Example images

are shown in Figure 4. The first dataset is AR [29], which

contains 100 unique subjects with 14 images per subject. We

randomly generated 9800 pairs of matched and mismatched

pairs and evaluated the performance of each algorithm with 5-

fold validations. The second dataset is BANCA [4]. We report

only the results on the ‘P’ protocol, where the algorithm was

trained in controlled conditions and tested on a combination

of controlled, degraded and adverse images. According to the

protocol, the 52 subjects were divided into two groups, where

each group played the role of the development set and evalu-

ation set in turn. We randomly selected one image per person

from each video. The third dataset is ChokePoint [46], which

was recorded under real-world surveillance conditions. It has

16 videos of 29 subjects recorded on four distinct portals4. We

randomly generated 38,710 matched and mismatched image

pairs where each pair consisted of images taken from different

portals (ie. cross environment matching). The experiments

were evaluated with 5-fold validations.

The results, presented in Table I, show that the three LSED

methods obtained the best overall performance. Both PCA+SR

and Gabor+SR performed at their best on the laboratory

captured AR dataset and considerably poorer on the more

realistic ChokePoint dataset. The results also show that both

the baseline LBP and Gabor methods outperformed the holistic

SR descriptors. For example, the baseline Gabor approach

obtained an overall accuracy of 73.2%, outperforming its

sparse counterpart (Gabor+SR) which obtained an overall

accuracy of 63.2%.

LSED+l1 achieved the best overall accuracy of 80.7%.

On the controlled AR dataset, The baseline LBP method

outperformed both LSED+SANN and LSED+prob by 5.7 and

1.1 percentage points, respectively. However, the performance

4 A portal is a location where a camera rig is placed to capture faces from
multiple angles. Each portal has a unique background and lighting conditions.

TABLE I
FRONTAL FACE VERIFICATION PERFORMANCE ON SEVERAL DATASETS.
THE FACE IMAGES WERE CLOSELY CROPPED TO EXCLUDE HAIR AND

BACKGROUND, AND SCALED TO 64× 64 PIXELS. THE VALUES IN bold

INDICATE THE BEST PERFORMING ALGORITHM FOR EACH DATASET.

Method AR BANCA ChokePoint Overall

PCA + SR 61.4% 58.8% 57.4% 59.4%
Gabor + SR 66.1% 63.3% 59.5% 63.2%

PCA 57.3% 63.5% 55.6% 59.0%
LBP 77.9% 60.3% 65.3% 68.1%
Gabor 74.5% 70.0% 75.6% 73.2%

LSED + SANN 72.2% 73.4% 75.1% 73.5%
LSED + prob 76.8% 75.4% 76.8% 76.3%
LSED + l1 80.0% 82.0% 79.8% 80.7%

of LBP dropped considerably on both the BANCA and

ChokePoint datasets, where LSED+prob outperformed LBP

by 15.1 and 11.5 percentage points on the corresponding

datasets. This indicates that while the LSED framework can

be outperformed by baseline holistic methods in controlled

conditions, LSED is more robust for face images obtained in

uncontrolled conditions.

4) Experiments with Synthetic Data: The results obtained

in the preceding sections indicate that holistic SR descrip-

tors were consistently outperformed by baseline holistic face

descriptors (ie., without sparse coding). In this section, we

performed a set of verification experiments with synthetic data

to study this phenomenon further.

We explicitly created a dictionary D which does not satisfy

the underlying sparsity assumption. Each sample from the

synthetic data is assumed to be a holistic representation of

a face. The synthetic data comprised of 232 random classes,

with the samples in each class obeying a normal distribution.

The dimensionality of data was 16. For each class 128 samples

were generated. We randomly selected 32 classes as the

training set and the remaining 200 classes as the development

set and evaluation set. The training set played the role of

dictionary D in Eqn. (15). The experiments were conducted

with 5-fold validations.

Several verification experiments with increasing difficulty

were generated by fixing the mean of each class and increasing

the class variance. The distribution of the class means was

carefully controlled such that at the smallest class variance

the mutual overlaps between classes are close to zero. We

employed direct feature matching as the baseline. In other

words, for two given samples, xa and xb, the matching score is

the Euclidean distance ‖xa − xb‖2. The holistic SR descriptor

was evaluated with Hamming distance measurement, as this

led to somewhat better performance than using the Elucidean

distance. The Hamming distance compares two descriptors

by measuring if the corresponding descriptors have the same

set of nonzero entries. In other words, Hamming distance

explicitly inspects if both descriptors are spanned by a set

of common subspaces.

The results in Figure 9 show that the baseline performance

is close to 100% when the class variance is small, and drops

to 53.5% when variance is at its maximum value. In contrast,

the holistic SR descriptor achieved poorer performance across
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Fig. 9. Verification performance on synthetic data. Experiments were
conducted with varying class variance, where large class variance
indicates strong overlap between classes. The baseline was achieved
by matching each feature pair using Euclidean distance. Experiments
were conducted with 5-fold validations.

the variance range, with accuracies of 97.6% and 51.1%

respectively for minimum and maximum class variance. This

result agrees with our discussion in Section III and the findings

from the preceding face verification experiments. Specifically,

if the class information of the atoms is not given and the

sparsity assumption does not hold for the dictionary D, the

resulting sparse solutions do not provide good discriminative

ability when compared to the original holistic representation.

B. Face Identification Experiments

In the preceding set of experiments, we demonstrated that

the proposed LSED framework outperforms holistic SR de-

scriptors on various face verification problems. In this section,

we evaluate the efficacy of LSED in closed-set face identifi-

cation, which is the identity inference configuration typically

used in SR related literature.

LSED was compared with five established holistic SR based

classification algorithms: (i) SR with PCA feature extrac-

tion (denoted as PCA+SRC) [48], (ii) SR with PCA feature

extraction and LDA (denoted as LDA+SRC) [48], (iii) SR

with Gabor feature extraction (denoted as Gabor+SRC) [50],

(iv) Robust Sparse Coding with PCA feature extraction (de-

noted as RSC) [52], and (v) orthonormal l2-norm approach

with vectorised raw image [37] (denoted as raw+l2). Instead of

solving an optimisation problem, raw+l2 estimates the sparse

code α using α = R−1QTx, where Q and R are the result of

QR factorisation [39] of dictionary D.

The experiments were conducted on AR, exYaleB and

ChokePoint datasets, with each gallery having 7, 16, and 16

images per class, respectively. To increase the difficulty, the

gallery of the ChokePoint dataset was selected from a portal

different than the portal used for the query images. Each

portal has a unique background and illumination conditions.

The identification performance of LSED was obtained with

the Nearest Neighbour classifier. Note that the results shown

for the established SR algorithms are slightly different from

the literature, due to the image size and dataset splits being

different.

TABLE III
AVERAGE COMPUTATION TIME FOR GENERATING A LOCALLY SPARSE

ENCODED DESCRIPTOR FOR ONE IMAGE.

Method Time (milliseconds)

LSED + SANN 110
LSED + prob 2021
LSED + l1 7739
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Fig. 10. Average computation time (including feature extraction,
sparse encoding and identification) for matching a probe image
against galleries of various sizes.

The results, shown in Table II, indicate that LSED+prob

and LSED+l1 consistently outperformed all SRC algorithms in

closed-set identification. The improvement on the ChokePoint

dataset is the most notable among the three datasets, where

LSED+l1 outperformed the closest SRC algorithm (ie. RSC)

by 20.5 percentage points. It also outperformed the raw+l2
approach by 9 percentage points.

C. Computation Time

The preceding verification and identification experiments

indicate that the LSED+l1 technique achieves the best overall

performance. However, the superior performance of LSED+l1
comes at the expense of considerably higher computational

cost. As shown in Table III, LSED+l1 requires 7739 millisec-

onds (ms) to generate a single face descriptor, mainly due to

solving multiple expensive l1-minimisation problems (one for

each small patch). In contrast, LSED+SANN is approximately

70 times faster, as it requires only 2.9ms to generate the

entire face descriptor. LSED+prob, which achieved the closest

performance to LSED+l1, requires approximately a quarter of

time when compared with LSED+l1. We note that the com-

putation cost for all three LSED variants can be considerably

reduced via parallelisation, as each patch can be processed

independently prior to the pooling operation in Eqn. (16).

Other than the computational cost generating each face

descriptor, the cost to match one probe against a large gallery

is also important. Using galleries with various amount of face

images, we evaluated the average time to recognise a single

probe using a closed-set identification setup. For each method,



TABLE II
CLOSED-SET IDENTIFICATION PERFORMANCE OF THE PROPOSED METHOD AND VARIOUS SR BASED APPROACHES. THE VALUES IN BRACKETS ARE THE

NUMBER OF IMAGES PER CLASS IN THE GALLERY. THE VALUES IN bold INDICATE THE BEST PERFORMING ALGORITHM FOR EACH DATASET.

Method AR (7) exYaleB (16) ChokePoint (16) Overall

PCA + SRC [48] 81.0% 67.9% 17.5% 52.1%
LDA + SRC [48] 89.7% 52.8% 65.3% 64.9%
Gabor + SRC [50] 91.7% 61.4% 63.4% 68.3%
RSC [52] 95.7% 72.8% 64.5% 74.4%
raw + l2 [37] 90.3% 75.1% 76.0% 78.5%

LSED + SANN 96.3% 66.0% 77.0% 76.2%
LSED + prob 97.9% 76.7% 80.5% 82.4%
LSED + l1 98.9% 90.9% 85.0% 90.4%

we measured the time for feature extraction, sparse encoding

(or approximate sparse solution) and identification. The raw+l2
method is not included in this evaluation as it does not solve

an optimisation problem.

The results, shown in Figure 10, indicate that the identifica-

tion time for LSED framework is almost constant. In contrast,

the computational cost of traditional SRC-based methods and

RSC increased considerably as the gallery size increased.

VI. EXPERIMENTS WITH IMAGE SETS

In the previous section we presented experiments using a

single face image per person at a time. In contrast, in this

section we evaluate the verification performance of LSED

using multiple images per person at a time. This recognition

task is also known as image set matching, with the aim of

determining if two face sets, A and B, belong to the same

person.

We first describe two image set matching approaches (Haus-

dorff distance and mean descriptors), followed by presenting

results on BANCA and ChokePoint datasets. We also contrast

the computational costs of the two matching approaches.

A. Image Set Matching via Hausdorff Distance

Given two finite image sets, A = {a1, a2, . . . , aNA
} and

B = {b1, b2, . . . , bNB
}, the Hausdorff distance is defined as:

H(A,B) = max { h(A,B), h(B,A) } (19)

where

h(A,B) = max
i∈A

{min
j∈B

{s(ai, bj)} } (20)

and s(·) measures the similarity between two images. The

function h(A,B) is called the directed Hausdorff distance from

A to B. In general, if the Hausdorff distance between image

set A and B is d, each image in A is within distance d to some

of the points in B, and vice-versa [25].

B. Image Set Matching with Mean Descriptors

The Hausdorff distance measurement is a computationally

expensive approach for image set matching. This is in par-

ticularly a problem for video surveillance of public spaces,

where the volume of surveillance video can be very high.

To address this problem, each image set can be represented

by an overall descriptor via straightforward averaging of the

corresponding face descriptors [11]. Specifically, given de-

scriptors from image set A, the mean descriptor is represented

as 1
NA

∑NA

n=1 hA,n, where hA,n is the n-th descriptor of A. The

similarity between two mean descriptors can be then computed

using Eqn. (18).

In contrast to image set matching using the Hausdorff

distance, the total number comparisons between A and B is

reduced from NA ×NB to one.

C. Results

We evaluate image set matching performance on two

datasets, with images captured under uncontrolled environment

conditions. The first dataset is BANCA dataset, where we

randomly generate 900 pairs of matched and mismatched pairs,

and each image-set contains 9 face images. The experiments

were evaluated with 5-fold validations. The second dataset

is the ChokePoint video dataset. We selected 16 images

with the highest quality as per [46] and randomly generated

5000 matched and mismatched pairs. The experiments were

evaluated using 10-fold validations. For comparison, we used

the same face descriptor methods as in Section V-A. The

results are shown in Figure 11.

On the BANCA dataset, the performance of the three

LSED approaches is very similar for both the Hausdorff and

mean descriptor matching approaches. Among the LSED vari-

ants, LSED+l1 in conjunction with mean descriptor matching

obtains the highest accuracy, with the computationally less

expensive LSED+prob variant not far behind. The performance

of baseline LBP and Gabor approaches are considerably lower

than LSED+l1. PCA+SR and Gabor+SR achieved poor perfor-

mance for both the Hausdorff and mean descriptor matching

approaches.

The verification performance on the ChokePoint dataset has

two notable differences when compared to the performance

on the BANCA dataset. All LSED variants achieved notably

better performance using the mean descriptor matching ap-

proach rather than the Hausdorff distance based approach.

Secondly, the traditional PCA approach obtained the worst ver-

ification accuracy among all face descriptors, with PCA+SR

outperforming it by 4.5 percentage points when using the

Hausdorff distance. The poor performance is mainly due

to image quality variations (ie. stemming from surveillance

environments), which was also shown in the face identification

experiments in Section V-B.
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Fig. 11. Image set verification performance on (a) BANCA dataset with
5-fold validations, and (b) ChokePoint dataset with 10-fold validations.

TABLE IV
AVERAGE TIME FOR MATCHING TWO IMAGE SETS. EACH IMAGE SET

CONTAINS 32 IMAGES. THE EXPERIMENTS WERE CONDUCTED WITH

LSED + l1 , WHERE THE DIMENSIONALITY OF EACH DESCRIPTOR IS 9216.

Method Time (milliseconds)

Matching via Hausdorff distance 1018
Matching via mean descriptor 7

The approximate computational cost for the mean and

Hausdorff matching approaches, using LSED+l1 descriptors,

is shown in Table IV. The straightforward mean descriptor

approach is approximately 2 orders of magnitude faster than

the computationally intensive Hausdorff approach, while ob-

taining similar or better results.

VII. MAIN FINDINGS

Most of the literature on Sparse Representation (SR) for face

recognition has focused on holistic face descriptors in closed-

set identification applications. The underlying assumption in

SR-based methods is that each class in the gallery has suffi-

cient samples and the query lies on the subspace spanned by

the gallery of the same class. Unfortunately, such assumption

is easily violated in the more challenging face verification

scenario, where an algorithm is required to determine if two

faces (where one or both have not been seen before) belong

to the same person.

We first discussed why previous attempts with SR might not

be applicable to verification problems. We then proposed an

alternative approach to face verification via SR. Specifically,

we proposed to use explicit SR encoding on local image

patches rather than the entire face. The obtained sparse signals

are pooled via averaging to form multiple region descriptors,

which are then concatenated to form an overall face descriptor.

Due to the deliberate loss spatial relations within each region

(caused by averaging), the resulting descriptor is robust to

misalignment and various image deformations. Within the

proposed framework, we evaluated several SR encoding tech-

niques: l1-minimisation, Sparse Autoencoder Neural Network

(SANN), and an implicit probabilistic technique based on

Gaussian Mixture Models.

Thorough experiments on AR, FERET, exYaleB, BANCA

and ChokePoint datasets show that the proposed local SR

approach obtains considerably better and more robust per-

formance than several previous state-of-the-art holistic SR

methods, in both verification and closed-set identification

problems. The proposed approach is particularly suited to

dealing with face images obtained in difficult conditions, such

as surveillance environments. The experiments also show that

l1-minimisation based encoding has a considerably higher

computational cost when compared to SANN-based and prob-

abilistic encoding, but leads to higher recognition rates.
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