
On Robust Key Agreement Based on Public Key
Authentication

(Short Paper)

Feng Hao

Thales E-Security, Cambridge, UK
feng.hao@thales-esecurity.com

Abstract. We describe two new attacks on the HMQV protocol. The
first attack raises a serious question on the basic definition of “authentica-
tion” in HMQV, while the second attack is generally applicable to many
other protocols. In addition, we present a new authenticated key agree-
ment protocol called YAK. Our approach is to depend on well-established
techniques such as Schnorr’s signature. Among all the related protocols,
YAK appears to be the simplest so far. We believe simplicity is an im-
portant engineering principle.

1 Introduction

There are two categories of authenticated two-party key agreement protocols:
Password Authenticated Key Exchange (PAKE) and Authenticated Key Ex-
change (AKE) [9]. The former realizes authentication based on a shared pass-
word, while the latter based on public key certificates [2,5,4,1,6]. In this paper,
we focus on discussing the second category. To better differentiate it from the first
category, we will call it Public Key Authenticated Key Exchange (PK-AKE).

2 Past Work

Many PK-AKE protocols claim to be provably secure in a formal model. Among
them, the HMQV scheme is perhaps the most well-known example [2]. In this
section, we will show two new attacks on HMQV.

The HMQV protocol is modified from MQV [6] with the primary aim for
provable security [2]. The most signficant change is that HMQV drops some
mandated verification steps in MQV, including the Proof of Possession (PoP)
check during the CA registration and the prime-order validation check of the
ephemeral public key.

Dropping the public key validations is highly controversial, despite that HMQV
has formal security proofs. In one attack, Menezes et al. demonstrated disclosing
the user’s private key without violating the HMQV model definition [8, 7]. This
attack indicates a flaw in the original design of HMQV.

In acknowledgement of the missing public key validation, Krawczyk revised
HMQV in the submission to IEEE P1363 Standards committee [3]. He added
the following validation: Alice checks the term Y Be has the correct prime order

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 383–390, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

384 F. Hao

and Bob does the same for XAd (see [2], p. 548, for the definition of symbols.)
This change prevents the small subgroup attack in [8], but decreases the claimed
efficiency. However, instead of validating the static and ephemeral public keys
separately as in MQV, the revision chooses to optimize efficiency by mixing the
two operations together. This causes the problem as below.

We now report a new “invalid public key attack” on HMQV. For illustration,
we follow the same symbols used in the original description of HMQV (see [2],
p. 548). In both the original and revised versions of HMQV, the CA is only
required to check the submitted public key is not 0. The attack works as follows.
Assume Bob (attacker) registers a small subgroup element s ∈ Gw as the public
key where w|p − 1. Bob chooses an arbitrary value z ∈ Zq. Let Y = gz · s′

where s′ is an element in the same small subgroup Gw. Exhaustively, Bob tries
every element s′ in Gw such that Y Be = gz · s′ · se = gz. In other words, the
small subgroup elements s and s′ cancel each other out. Suppose H̄ works like
a random oracle as assumed in HMQV. Then, for each try of s′, the probability
of finding s′ · se = 1 is 1/w. It will be almost certain to find such s′ after
searching all w elements in Gw (if not then change a different z and repeat
the procedure). Following the HMQV protocol, Bob sends Y = gz · s′ to Alice.
Alice checks Y Be has the correct prime order and computes the session key
κ = H((Y Be)x+da) = H(gz·(x+da)). Because Bob knows z, he can compute the
same session key κ and successfully authenticate himself to Alice.

The fact that an obviously invalid public key is totally undetected by all flows
in HMQV is unsettling. This raises a serious question on the basic definition of
“authentication” in HMQV – Bob does not even have a private key, yet he is able
to successfully pass all authentication checks. In fact, anyone can do the same
pre-computation as above and authenticate to Alice as “Bob”. In one attacking
scenario, Bob (the attacker) may at any time suddenly repudiate all previous
authenticated transactions with Alice by telling the judge that his public key is
invalid, so anyone can impersonate him. (Bob’s certificate is publicly available.)
In comparison, MQV does not have this problem.

The other attack on HMQV happens when two parties use the same certifi-
cate during self-communication [2]. Self-communication is a useful application
in practice. For example, a mobile user and the desktop computer may hold
the same static private key (registering two public key certificates costs more).
Krawczyk formally proved that self-communication is “secure” in HMQV [2].
However, the formal model in [2] only considers the user talking to one copy
of self, but neglects the possibility that the user may talk to multiple copies of
self at the same time. This deficiency is common among other formal models
too [11, 4, 1]. The attack works as follows (also see Figure 1):

1. Alice initiates the connection to a copy of herself by sending gx. The connection is
intercepted by Mallory who pretends to be Alice-1.

2. Mallory starts a separate session by pretending to be Alice-2. He initiates the
connection by sending to Alice gx (this is possible because HMQV does not require
the sender to know the exponent).

3. Alice responds to Alice-2 by sending gy.

On Robust Key Agreement Based on Public Key Authentication 385

Fig. 1. Wormhole attack on HMQV

4. Mallory replays gy to Alice as Alice-1.
5. Alice derives a session key and sends an encrypted message to Alice-1, say: “Transfer

to me $1m”.
6. Mallory replays the encrypted message to Alice. (After receiving money from Alice,

Mallory disconnects both connections.)

In the above attack, we only demonstrated the attack against the two-pass
HMQV (implicit authentication). For the three-pass HMQV (explicit authenti-
cation), the attack works exactly the same. Also, we have omitted the identities
in the message flows, because they are all identical according to the HMQV
specification [2].

This attack is essentially an unknown key sharing attack. Alice thinks she
is communicating to a mobile user with the same certificate, but she is actu-
ally communicating to herself. The attacker does not hold the private key, but
he manages to establish two fully authenticated channels with Alice (server).
The same attack also applies to other PK-AKE schemes, including NAXOS [4],
KEA+ [5], CMQV [11], MQV [6], and SIG-DH [1] etc, despite that many of
them have formal security proofs.

3 The YAK Protocol

In this section, we propose a new PK-AKE protocol called YAK1. Let G denote
a subgroup of Z∗

p with prime order q in which the Computational Diffie-Hellman
problem (CDH) is intractable. Let g be a generator in G. The two communicating
parties, Alice and Bob, both agree on (G, g).

3.1 Stage 1: Public Key Registration

In stage 1, Alice and Bob register static public keys from a Certificate Authority
(CA). Alice selects a random secret a ∈R Zq as her private key. Similarly, Bob
selects b ∈R Zq as his private key.
1 The yak lives in the Tibetan Plateau where environmental conditions are extremely

adverse.

386 F. Hao

CA-Registration. Alice sends to the CA ga with a knowledge proof for a.
Similarly, Bob sends to the CA gb with a knowledge proof for b.

The sender needs to produce a valid knowledge proof to demonstrate the Proof
of Possession (PoP) of the private key. As an example, we can use Schnorr’s
signature, which is provably secure in the random oracle model [9]. Let H be a
secure hash function. To prove the knowledge of the exponent for X = gx, one
sends {SignerID, OtherInfo, V = gv, r = v − x ·h} where SignerID is the unique
user identifier (also called Distinguished Name [10]), OtherInfo includes auxiliary
information to indicate this is a request for certifying a static public key and
may include other practical information such as the name of the algorithm etc,
v ∈R Zq and h = H(g, V, X, SignerID, OtherInfo). The CA checks that X has
prime order q and verifies that V = grXh (computing grXh requires roughly
one exponentiation using the simultaneous computation technique [9]).

3.2 Stage 2: Key Agreement

Alice and Bob execute the following protocol to establish a session key. For
simplicity of discussion, we explain the case that Alice and Bob have different
certificates (a �= b) and will cover self-communication later.

YAK-protocol. Alice selects x ∈R Zq and sends out gx with a knowledge proof
for x. Similarly, Bob selects y ∈ Zq and sends out gy with a knowledge proof
for y.

When this round of communication finishes, Alice and Bob verify the received
knowledge proof to ensure the other party possesses the ephemeral private key.
They also need to ensure the identity (i.e., SignerID) in the knowledge proof
must match the one in the public key certificate.

Upon successful verification, Alice computes a session key κ=H((gy ·gb)x+a)=
H(g(x+a)(y+b)). And Bob computes the same session key: κ = H((gx · ga)y+b) =
H(g(x+a)(y+b)).

In YAK, Alice needs to perform the following exponentiations: one to compute
an ephemeral public key (i.e., gx), one to compute the knowledge proof for x
(i.e., gvx), two to verify the knowledge proof for the exponent of Y = gy (i.e.,
Y q and gryY hy) and finally one to compute the session key (Y · B)x+a. Thus,
that is five in total: {gx, gvx , Y q, gryY hy , (Y · B)x+a}.

Among the above operations, some are merely repetitions. To explain this, let
the bit length of the exponent be L = log2 q. Then, computing gx alone would
require roughly 1.5L multiplications which include L square operations and 0.5L
multiplications of the square terms. However, the same square operations need
not be repeated for other items with the common base. If we factor this in, it will
take (1+0.5×3)L = 2.5L to compute {gx, gvx , gry}, and another (1+0.5×2)L =
2L to compute {Y q, Y hy} and finally 1.5L to compute (Y · B)x+a. Hence, that
is in total 6L, which is equivalent to 6L/1.5L = 4 usual exponentiations. This
is quite comparable to the 3.5 exponentiations in MQV (which cannot reuse the
square terms since the bases are different).

On Robust Key Agreement Based on Public Key Authentication 387

Fig. 2. The oracle diagrams in YAK. Alice is honest.

4 Security Analysis

We formulate the following requirements for the PK-AKE protocol.

1. Private key security: An attacker cannot learn any useful information
about the user’s static private key even if he is able to learn all session
specific secrets in any session.

2. Full forward secrecy: Session keys that were securely established in the
past uncorrupted sessions will remain incomputable in the future even when
both users’ static private keys are disclosed.

3. Session key security: An attacker cannot compute the session key if he
impersonates a user but has no access to the user’s private key.

The first requirement is generally not covered by a formal model, but we think it
is crucially important. For example, both the SIG-DH [1] and (original) HMQV
[2] protocols have been formally proven secure in the CK model. Yet attacks
reported in [4] and [8] show that in both protocols, an attacker is able to disclose
the user’s private key. In the second requirement, we use “full” to distinguish it
from the “half” forward secrecy, which only allows one user’s private key to be
revealed (e.g., KEA+ [5]). The third requirement has already covered the Key
Compromise Impersonation (KCI) attack [6]. The “invalid public key” attack in
Section 2 indicates that HMQV does not satisfy this property.

The goal of our design is to make the best use of well-established techniques
such as Schnorr’s signature. This strategy allows us to leverage upon the provable
results of Schnorr’s signature (see [9]), and thus greatly simplify the security
analysis. In the following, we will provide a simple and intuitive analysis, while
leaving detailed proofs to a full paper.

First, let us discuss the private key security. Without loss of generality, we
assume Alice is honest. As shown in Figure 2 (1), Mallory totally controls Bob’s
static and ephemeral private keys. Additionally, he has the extreme power that
allows him to learn Alice’s transient secrets in an arbitrary session. The only
power that he does not have is the access to Alice’s private key.

388 F. Hao

A sketch of the proof goes as follows. The knowledge proofs defined in YAK
prove that Mallory (the attacker) knows the value of y and b. He also knows
Alice’s public key ga. By revealing Alice’s transient secrets (i.e., x and K) in a
session, he learns x and K = g(a+x)(b+y). But learning K does not give Mallory
any information, because he can compute it by himself from {x, y, b, ga}. Effec-
tively, Mallory can actually simulate the attack all by himself through defining
arbitrary values of x, y, and b. Clearly, he does not learn any useful information
about Alice’s private key through his own simulations.

Next, we discuss the full forward secrecy requirement. The definition (see
Section 2) specifies that the past sessions must be “uncorrupted”, namely the
session-specific transient secrets must remain unknown to the attacker. In YAK,
this means x, y and K must remain unknown to the attacker. Obviously, knowing
K would have trivially broken the past session. Also, if Mallory can learn any
ephemeral exponent x or y in the past session in addition to knowing both
parties’ static private keys, he has possessed the power to trivially compromise
any PK-AKE. Therefore, as shown in Figure 2 (2), we assume the attacker
knows both Alice and Bob’s private keys, but not any transient secrets in the
past session.

We explain the YAK’s fulfillment of the full forward secrecy under the Compu-
tational Diffie-Hellman (CDH) assumption. To obtain a contradiction, we assume
the attacker can compute K = g(a+x)(b+y). The attacker knows the values of a
and b (see Figure 2 (2)). The ephemeral public keys gx and gy are public in-
formation. Therefore, Mallory can compute gab, gay and gbx. Now, we can solve
the CDH problem as follows: given gx and gy where x, y ∈R Zq, we use Mallory
as an oracle to compute gxy = K/(gab · gay · gbx). This, however, contradicts the
CDH assumption.

Finally, we discuss the session key security requirement. As shown in Figure
2 (3), Mallory does not hold Bob’s private key but he tries to impersonate Bob.
We assume the powerful Mallory even knows Alice’s private key a. The only
power he does not have is the access to Alice and Bob’s session states. If Mallory
can access Alice’s session state, he can impersonate anyone to Alice – he just
needs to “steal” the session key that Alice computes in the transient memory.
Similarly, if Mallory can access Bob’s session state, he can impersonate Bob to
anybody by waiting until Bob computes the session key and then stealing it.

In this case, the assumed attacker is less powerful than the one described
in the “private key security” argument. Previously, the attacker was able to
corrupt an arbitrary session of Alice’s or Bob’s. He however had learned no useful
information than what he can simulate. On discussing the session key security,
we assume the attacker no longer has access to either user’s session state. This
change is necessary, and is consistent with the extreme-adversary principle [4]:
the only powers that an attacker does not have are those that would allow him
to trivially break any PK-AKE protocol.

The YAK protocol satisfies the session key security requirement under the
CDH assumption. As shown in Figure 2 (3), Mallory does not possess Bob’s
static private key, or have access to either Alice or Bob’s session state. To obtain

On Robust Key Agreement Based on Public Key Authentication 389

a contradiction, we assume Mallory is able to compute K = g(a+x)(b+y). Bob’s
public key gb is public information. Mallory knows Alice’s private key a. The
knowledge proof in the protocol proves that Mallory also knows the value y.
Hence, he can compute gab, gay and gxy. Now, we can solve the CDH problem as
follows: given gb and gx where x, b ∈R Zq, we use Mallory as an oracle to compute
gbx = Z/(gab · gay · gxy). This, however, contradicts the CDH assumption, which
shows YAK satisfies the session key security requirement.

5 Self-communication

The user identity is an important parameter in the protocol definition. In the
past literature, almost all PK-AKE protocols use the Distinguished Name (DN)
in the user’s X.509 certificate as the user identity [1,2,5,6,4]. This practice also
carries over to the self-communication mode [2], which causes the “wormhole
attack” (see Section 2). In the self-communication mode, the two parties are still
distinct entities and hence, naturally require different identities.

To enable self-communication in YAK, we need to ensure the SignerID in
the Schnorr’s signature remains unique. This is to prevent Bob from replaying
Alice’s signature back to Alice and vice versa. One solution is to simply attach
an additional identifier to the mobile stations using the same certificate. For
example, when Alice (server) is communicating to the nth copy of herself (mobile
station), Alice uses “Alice” as her SignerID to generate the Schnorr’s signature
and the nth copy uses “Alice-n” as its SignerID. Thus, Alice-n cannot replay
Alice’s signature back to Alice and vice versa. This solution is also generically
applicable to fix the self-communication problem in past protocols [1, 2, 5, 6, 4].

Though self-communication is considered a useful feature [2], one should be
careful to enable this feature only when it is really needed. This is because, when
enabled, it may have negative impact on the theoretical security. In Section 4,
under the “private key security”, we have explained that, under normal operations
(using different certificates a �= b), an attacker cannot learn ga·a from a corrupted
session. However, if self-communication is enabled in YAK, we essentially allow
a = b, hence the attacker can learn ga·a from a corrupted session. This implies we
would need a stronger assumption than CDH to prove the “session key security”.
This is undesirable, but to our best knowledge, no PK-AKE protocol is reducible
to the CDH assumption with the self-communication enabled. In comparison,
in HMQV [2], the attacker can learn ga·a from a corrupted session regardless
whether the self-communication is enabled.

6 Conclusion

In this paper, we report two new attacks on the HMQV protocol. In addition, we
present a new authenticated key agreement protocol called YAK, and analyze
its robustness in an extremely adverse condition: the only powers that an at-
tacker does not have are those that would allow him to trivially break any other

390 F. Hao

protocols. Overall, YAK demonstrates robust security under the Computational
Diffie-Hellman assumption in the random oracle model.

Acknowledgment

We thank Alfred Menezes and Berkant Ustaoglu for their generous advice and
invaluable comments. We thank Lihong Yang for helping improve the readability.

References

1. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

2. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005), http://eprint.iacr.org/2005/176.pdf

3. Krawczyk, H.: HMQV in IEEE P1363. Submission to the IEEE P1363 Standard-
ization Working Group (2006),
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/
krawczyk-hmqv-spec.pdf

4. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

5. Lauter, K., Mityagin, A.: Security Analysis of KEA Authenticated Key Exchange
Protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006)

6. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An Efficient Protocol For
Authenticated Key Agreement. Designs, Codes and Cryptography 28(2), 119–134
(2003)

7. Menezes, A.: Another Look At HMQV. J. of Mathematical Cryptology 1(1), 47–64
(2007)

8. Menezes, A., Ustaoglu, B.: On The Importance of Public-Key Validation in the
MQV and HMQV Key Agreement Protocols. In: Barua, R., Lange, T. (eds.) IN-
DOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)

9. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

10. Mitchell, C.: Security For Mobility. The Institution of Electrical Engineers (2004)
11. Ustaoglu, B.: Obtaining A Secure And Efficient Key Agreement Protocol For

(H)MQV And NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008)

http://eprint.iacr.org/2005/176.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf

	On Robust Key Agreement Based on Public Key Authentication
	Introduction
	Past Work
	The YAK Protocol
	Stage 1: Public Key Registration
	Stage 2: Key Agreement

	Security Analysis
	Self-communication
	Conclusion
	References

