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Fixed-Order Controller Design for Uncertain
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Abstract—Typically, it is desirable to design a control system
that is not only robustly stable in the presence of parametric
uncertainties but also guarantees an adequate level of system
performance. However, most of the existing methods need to take
all extreme models over an uncertain domain into consideration,
which then results in costly computation. Also, since these
approaches attempt rather unrealistically to guarantee the system
performance over a full frequency range, a conservative design
is always admitted. Here, taking a specific viewpoint of robust
stability and performance under a stated restricted frequency
range (which is applicable in rather many real-world situations),
this paper provides an essential basis for the design of a fixed-
order controller for a system with bounded parametric uncer-
tainties, which avoids the tedious but necessary evaluations of the
specifications on all the extreme models. A Hurwitz polynomial is
used in the design and the robust stability is characterized by the
notion of positive realness, such that the required robust stability
condition is then suitably successfully constructed. Also, the
robust performance criteria in terms of sensitivity shaping under
different frequency ranges are constructed based on an approach
of bounded realness analysis. Furthermore, the conditions for
robust stability and performance are expressed in the framework
of linear matrix inequality (LMI) constraints, and thus can
be efficiently solved. Comparative simulations are provided to
demonstrate the effectiveness and efficiency of the proposed
approach.

Index Terms—Loop shaping, robust stability, robust perfor-
mance, parametric uncertainty, positive realness, bounded real-
ness, linear matrix inequality, fixed-order controller.

I. INTRODUCTION

In quite a large number of control engineering applications,
the presence of parametric uncertainties have been challenging
issues to deal with, and there is a clear and evident need
to consider their effects on the deterioration of system per-
formance or even the cause of instability. There thus have
been many great efforts which are devoted to developments in
robust control for designing a control system that guarantees
the required robust stability [1]. Among all the techniques for
robust stabilization, quadratic stabilization theory provides an
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effective basis to cater to these parametric uncertainties [2],
[3]. Related work in [4] presents a controller design approach
to guarantee a prespecified disturbance attenuation level based
on the algebraic Riccati equation. Further, these results have
been extended in [5] to solve the H8 control problem. As
a methodology with attractive applicability, H8 control has
been extensively researched and developed over the period of
the 1980s, particularly in view of the rather commonly needed
requirement of robust stabilization and disturbance attenuation.
In this very attractive approach, the frequency-domain charac-
teristics are also expressed by related mathematical statements
in the time domain. With such a framework, developments
proceeded such that in [6], several fundamental results on
H8 control are established. However, these results are only
for the classes of well-known systems. Then in [7], a linear
system with norm-bounded parametric uncertainties is related
to ARE-based H8 norm conditions. Moreover, robust H8
performance problems are addressed in [8]–[12] and a class
of systems with norm-bounded parametric uncertainties is also
taken into consideration.

Substantial further works on guaranteed cost control have
also been presented [13]–[17], which aim to design a control
system such that an upper bound of the quadratic performance
is guaranteed for all admissible parametric uncertainties. Ad-
ditionally in [18], a stabilizing controller is proposed for
a class of systems with convex-bounded parametric uncer-
tainties, which assures a certain specified attenuation level.
However, to obtain a deterministic and reliable solution, it is
required to check the stability and performance of the vertex
set consisting of several extreme matrices [19]. Because the
number of extreme systems to be checked increases expo-
nentially with the uncertain parameters, the computation is
always costly [20]–[22]. Meanwhile, other extensive develop-
ments have been made on the robustness property attainment
involving interval matrix uncertainties to reduce the number of
vertices that are required to be checked. For example, the work
in [23] presents a new vertex result for the robust synthesis
problem. But here too, if the interval uncertainties appear in
the linear matrix inequality (LMI) in an affine way, a rather
substantial number of LMIs will need to be integrated to be
solved, and the solution is still exponential. Yet in some other
scenarios, a randomized algorithm approach is employed to
ensure the required stochastic robust stability and performance.
However, most of these probabilistic approaches are solved
based on Monte-Carlo simulation [24], and they are typically
not considered as practically preferred due to these excessive
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simulations.
In view of the great potential for practical usage, the

methodology of fixed-order controllers has attracted consid-
erable attention for finite frequency specifications due to their
simplicity, reliability, and ease of implementation [25]. Though
the design of a fixed-order controller in the presence of para-
metric uncertainties is NP-hard, a variety of design approaches
have been rather successfully used including bilinear matrix
inequality (BMI) [26], [27], convex approximation [28], [29]
and iterative heuristic optimization [30]. It is worthwhile to
mention that for all these above-mentioned control methods,
the robust performance property is achieved over the full
frequency range. However, in many real-world situations, the
control performance specifications are typically only specified
and of pertinent interest within a stated frequency range for
the real-world system to be controlled [31], [32]. Therefore,
the design from the perspective of the full frequency range
is overly conservative. To cater to the more realistic practical
requirement of a restricted frequency range, recent researches
reveal that these control strategies can be combined with
certain appropriate frequency weighting functions [33]; but
here, a required concomitant strong computational capability
of the hardware is a burden in practical usage because these
weighting functions invariably cause a marked increase in the
system orders. Under these circumstances, a rather significant
and important open problem therefore exists on an effective
and efficient approach to design a fixed-order controller for
a system affected by bounded parametric uncertainties, and
which considers robust stability and performance under the
condition of a stated restricted frequency range, but without
all the afore-mentioned practical difficulties.

Thus in this work, the key objective is to design a fixed-
order controller for an uncertain system that guarantees closed-
loop stability and a suitably adequate level of performance
under a stated restricted frequency range, and which addresses
all the short-comings previously highlighted. As part of the
methodology in the development in this work, the connec-
tion between the time-domain method and frequency-domain
specifications are established to meet the stability criteria
and the performance specifications. Several theorems are then
developed and provided to support the derivation of the main
results. Then, an LMI condition is given to ensure the robust
stability of the closed-loop system in the presence of the
bounded parametric uncertainties. Additionally further, certain
LMI conditions are also provided for the robust performance of
the system which is guaranteed in terms of sensitivity shaping.
Consequently, the required controller is obtained by solving
the above-mentioned LMIs.

The remainder of this paper is organized as follows. In
Section II, the necessary preliminaries on the closed-loop
control of a system with bounded parametric uncertainties
and frequency range characterization are provided. Then, a
first set of newly developed theoretical results in this work on
the robust stability condition is presented in Section III. Next,
further theoretical results developed in this work on robust
performance criteria are presented in Section IV. In Section
V, to validate the new proposed controller design approach, a
numerical example is provided with simulation results to show

its effectiveness. Finally, conclusions are drawn in Section VI.
Notations: For matrix A, the symbols AT and A˚ represent

the transpose and the complex conjugate transpose of a matrix,
respectively. RepAq denotes the real part of a matrix. I
represents the identity matrix with appropriate dimensions.
diagta1, a2, ¨ ¨ ¨ , anu represents the diagonal matrix with num-
bers a1, a2, ¨ ¨ ¨ , an as diagonal entries. R and C indicate the
sets of real and complex matrices, respectively. Hn stands for
the set of n ˆ n complex Hermitian matrices. f ˚ g denotes
the convolution operation of two functions. The operator b
represents the Kronecker’s product. The symbol s in the
bracket, when it typically appears in such expressions as T psq,
etc., represents the Laplace variable.

II. PRELIMINARIES

A. Problem statement

As in typical nomenclature, the Single-Input-Single-Output
(SISO) plant is represented by an nth-order rational transfer
function in continuous time, and is given by

P psq “
b1s

n´1 ` ¨ ¨ ¨ ` bn
sn ` a1sn´1 ` ¨ ¨ ¨ ` an

, (1)

where ai and bi are uncertain parameters with ai P ra
l
i, a

u
i s

and bi P rbli, b
u
i s, i “ 1, 2, ¨ ¨ ¨ , n.

Next, define aci “ pa
l
i ` a

u
i q{2 and bci “ pb

l
i ` b

u
i q{2 as the

medians of the uncertain parameters ai and bi, respectively.
Similarly, further define adi “ paui ´ aliq{2 and bdi “ pbui ´
bliq{2 as the deviations of the uncertain parameters ai and bi,
respectively. Then, ai “ aci ` adi δai, bi “ bci ` bdi δbi, where
δai P r´1, 1s and δbi P r´1, 1s are standard interval variables.

Also, define ∆a “ diagtδa1, δa2, ¨ ¨ ¨ , δanu and ∆b “

diagtδb1, δb2, ¨ ¨ ¨ , δbnu, and the plant (1) can be expressed by

P psq “
pbc ` r0 bd∆bsqs

T
n

pac ` r0 ad∆asqsTn
, (2)

where ac “ r1 ac1 ac2 ¨ ¨ ¨ acns, bc “

r0 bc1 bc2 ¨ ¨ ¨ bcns, ad “ rad1 ad2 ¨ ¨ ¨ adns,
bd “ rb

d
1 bd2 ¨ ¨ ¨ bdns, sn “ rs

n sn´1 ¨ ¨ ¨ s 1s. For
brevity, define a “ ac`r0 ad∆as and b “ bc`r0 bd∆bs.

By the standard negative feedback configuration, an mth-
order controller is to be designed, which is given by

Kpsq “
y0s

m ` y1s
m´1 ` ¨ ¨ ¨ ` ym

sm ` x1sm´1 ` ¨ ¨ ¨ ` xm
. (3)

Equivalently, (3) is expressed by

Kpsq “
ysTm
xsTm

, (4)

where x “ r1 x1 x2 ¨ ¨ ¨ xms, y “

ry0 y1 y2 ¨ ¨ ¨ yms, sm “ rsm sm´1 ¨ ¨ ¨ s 1s.
For the closed-loop system, the sensitivity transfer function

Spsq and the complementary sensitivity transfer function T psq
are given by

Spsq “
Snum

Sden
, T psq “

Tnum
Tden

, (5)

respectively, where Snum “ pa ˚ xqsTm`n, Tnum “ pb ˚
yqsTm`n, Sden “ Tden “ pa ˚ x ` b ˚ yqsTm`n, with
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sm`n “ rsm`n sm`n´1 ¨ ¨ ¨ s 1s. Equivalently, we
have

Snum “ pa
c ˚ xqsTm`n ` ppad∆aq ˚ xqs

T
m`n´1,

Tnum “ pb
c ˚ yqsTm`n ` ppbd∆bq ˚ yqs

T
m`n´1,

Sden “ Tden “ pa
c ˚ x` bc ˚ yqsTm`n

` ppad∆aq ˚ x` pbd∆bq ˚ yqs
T
m`n´1,

(6)
where sm`n´1 “ rs

m`n´1 sm`n´2 ¨ ¨ ¨ s 1s.

Thus the objective here is to design a fixed-order controller
Kpsq for the uncertain system P psq such that
(1). The robust stability of the closed-loop system is guaran-
teed in the presence of parametric uncertainties.
(2). The robust performance specifications of the closed-
loop system in terms of sensitivity shaping are satisfied, i.e.
ˇ

ˇSpjωq
ˇ

ˇ ă ρs, ω P Ωs and
ˇ

ˇT pjωq
ˇ

ˇ ă ρt, ω P Ωt.

Remark 1. In the literature, many instances of controller
design methods result in the controller with a larger or equal
order as that of the plant. However, this might be a restrictive
condition in certain scenarios because the implementation of
such controllers will lead to high cost and fragility. On the
other hand, there has been a considerable interest in design of
low-order controllers to facilitate the practical implementation.
Normally the selection of controller order is decided by the
user in view of specific situations.

B. Frequency range characterization

Basically, a frequency range can be visualized as a curve
on the complex plane. Note that a curve on the complex plane
is a collection of points λptq P C continously parameterized
by t, for t0 ď t ď tf , where t0, tf P R Y t˘8u, which can
be characterized by a set [34]

Λ “ tλ P C : σpλ,Φq “ 0, σpλ,Ψq ě 0u, (7)

where Φ, Ψ P H2 and

σpλ,Φq “

„

λ
1

˚

Φ

„

λ
1



, σpλ,Ψq “

„

λ
1

˚

Ψ

„

λ
1



.

(8)
For the continuous time domain, one has

Φ “

„

0 1
1 0



, Λ “ tjω : ω P Ωu, (9)

where Ω is a subset of real numbers specified by Ψ. Table
1 summarizes the characterization of finite frequency ranges,
and more details can be referred in [34] .

TABLE I
CHARACTERIZATION OF FREQUENCY RANGE

Ω ω P r0, ωls ω P rωl, ωhs ω P rωh, `8q

Ψ

„

´1 0
0 ω2

l



«

´1 j ωh`ωl
2

´j ωh`ωl
2

´ωlωh

ff

„

1 0
0 ´ω2

h



C. Lemmas used in the sequel

In this subsection, the following lemmas are presented to
be used in the sequel for the derivation of the main results.

Lemma 1. [12] Given matrices Q, H , E and R of appropriate
dimensions and with Q and R symmetrical and R ą 0, then

Q`HFE ` ETFTHT ă 0, (10)

for all F satisfying FTF ď R, if and only if there exists some
ε ą 0 such that

Q` ε2HHT ` ε´2ETRE ă 0. (11)

Lemma 2. [35] Consider
ř

fi tA,B,C,Du as a minimal
state-space realization of a rational and proper transfer func-
tion Gpsq, the positive realness condition

Re
`

Gpsq
˘

ą 0, (12)

is guaranteed if and only if there admits a Hermitian matrix
P ą 0 such that
„

A B
I 0

T „

0 P
P 0

 „

A B
I 0



´

„

0 CT

C D `DT



ă 0.

(13)

Lemma 3. [34] Consider pA,B,C,Dq as a minimal state-
space realization of a rational transfer function Gpsq, given
ρ ą 0, the finite frequency bounded realness condition

ˇ

ˇGpjωq
ˇ

ˇ ă ρ, ω P Ω, (14)

is guaranteed if and only if there exist Hermitian matrices P
and Q ą 0, such that
»

–

„

A B
I 0

T

Ξ

„

A B
I 0



`

„

0 0
0 ´ρ



CT

DT

C D ´ρ

fi

fl ă 0,

(15)
where Ξ “ Φ b P ` Ψ b Q, and Φ and Ψ are matrices to
characterize the frequency range Ω.

III. ROBUST STABILITY CHARACTERIZATION VIA REAL
POSITIVENESS ANALYSIS

In this section, first of all, pertinent new results Theorem 1
and Theorem 2 are presented, which are used in the sequel
for deriving the robust stability condition.

Theorem 1. Given matrices Q, H , E with appropriate
dimensions, Q is symmetrical, ∆ “ diagtδ1, δ2, ¨ ¨ ¨ , δnu with
δi P r´1, 1s, i “ 1, 2, ¨ ¨ ¨ , n,

Q`

„

0 ET ∆HT

H∆E 0



ă 0 (16)

holds if and only if there exists a matrix R “

diagtε1, ε2, ¨ ¨ ¨ , εnu with εi ą 0, i “ 1, 2, ¨ ¨ ¨ , n, such that

Q`

„

ETR´1E 0
0 HRHT



ă 0. (17)

Proof of Theorem 1: Sufficiency: By matrix decomposition,
(16) is equivalent to

Q`

„

0
H



∆
“

E 0
‰

`
“

E 0
‰T

∆

„

0
H

T

ă 0. (18)
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“

0 H
‰T

can be partitioned as n column vectors, i.e.
H1, H2, ¨ ¨ ¨ , Hn; similarly,

“

E 0
‰

can be partitioned as n
row vectors, i.e. E1, E2, ¨ ¨ ¨ , En. Then, it is easy to obtain

„

0
H



∆
“

E 0
‰

`
“

E 0
‰T

∆

„

0
H

T

“

n
ÿ

i“1

pHiδiEi ` E
T
i δiH

T
i q.

Thus, (18) is equivalent to

Q`
n
ÿ

i“1

pHiδiEi ` E
T
i δiH

T
i q ă 0. (19)

Define

Qn´1 “ Q`
n´1
ÿ

i“1

pHiδiEi ` E
T
i δiH

T
i q, (20)

then (19) can be written as

Qn´1 `HnδnEn ` E
T
n δnH

T
n ă 0. (21)

From Lemma 1, (21) holds if and only if there exists εn ą 0
such that

Qn´1 ` εnHnH
T
n ` ε

´1
n ET

nEn ă 0. (22)

Similarly, define

Qn´2 “ Q`
n´2
ÿ

i“1

pHiδiEi`E
T
i δiH

T
i q`εnHnH

T
n`ε

´1
n ET

nEn,

(23)
then we have

Qn´2 `Hn´1δn´1En´1 ` E
T
n´1δn´1H

T
n´1 ă 0. (24)

Again, from Lemma 1, (24) holds if and only if there exists
εn´1 ą 0 such that

Qn´2 ` εn´1Hn´1H
T
n´1 ` ε

´1
n´1E

T
n´1En´1 ă 0. (25)

Substitute (23) to (25), we have

Q`
n´2
ÿ

i“1

pHiδiEi ` E
T
i δ
´1
i HT

i q ` εn´1Hn´1H
T
n´1

` ε´1
n´1E

T
n´1En´1 ` εnHnH

T
n ` ε

´1
n ET

nEn ă 0.

(26)

In a similar way, it is straightforward that (18) holds if and
only if there exist ε1, ε2, ¨ ¨ ¨ , εn ą 0 such that

Q`
n
ÿ

i“1

pεiHiH
T
i ` ε

´1
i ET

i Eiq ă 0. (27)

Define R “ diagtε1, ε2, ¨ ¨ ¨ , εnu, we have

Q`
“

E 0
‰T
R´1

“

E 0
‰

`

„

0
H



R

„

0
H

T

ă 0,

(28)
which can be further expressed by

Q`

„

ETR´1E 0
0 HRHT



ă 0. (29)

Necessity: it can be proved in a similar way thus is omitted.

Theorem 2. Given matrices Q, Hi, Ei, i “ 1, 2, ¨ ¨ ¨ ,m
with appropriate dimensions, Q is symmetrical, ∆i “

diagtδi1, δi2, ¨ ¨ ¨ , δinu with δij P r´1, 1s, i “ 1, 2, ¨ ¨ ¨ ,m,
j “ 1, 2, ¨ ¨ ¨ , n,

Q`

»

—

—

–

0
m
ř

i“1

ET
i ∆iH

T
i

m
ř

i“1

Hi∆iEi 0

fi

ffi

ffi

fl

ă 0 (30)

holds if and only if there exist matrices Ri “

diagtεi1, εi2, ¨ ¨ ¨ , εinu with εij ą 0, i “ 1, 2, ¨ ¨ ¨ ,m,
j “ 1, 2, ¨ ¨ ¨ , n, such that

Q`

»

—

—

–

m
ř

i“1

ET
i R

´1
i Ei 0

0
m
ř

i“1

HiRiH
T
i

fi

ffi

ffi

fl

ă 0. (31)

Proof of Theorem 2: Theorem 2 is essentially an extension of
Theorem 1, the proof is rather straightforward and is omitted
here.

Next, a Hurwitz polynomial dcpsq is selected and an asso-
ciated transfer function is defined as

Gspsq “
pa ˚ x` b ˚ yqsTm`n

dcpsq

“Gsnpsq `Gsupsq,

(32)

where Gsnpsq and Gsupsq are the nominal part and uncertain
part of Gspsq, respectively, which are given by

Gsnpsq “
pac ˚ x` bc ˚ yqsTm`n

dcpsq
,

Gsupsq “
ppad∆aq ˚ x` pbd∆bq ˚ yqs

T
m`n´1

dcpsq
.

(33)

The realization of Gsnpsq in the controllable canonical form
is denoted by

ÿ

sn
fi tAsn, Bsn, Csn, Dsnu, (34)

and then the realization of Gspsq is given by
ÿ

s
fi tAsn, Bsn, Csn ` ad∆aX ` bd∆bY,Dsnu, (35)

where X and Y are the Toeplitz matrices given by

X “

»

—

—

—

–

1 x1 ¨ ¨ ¨ xm 0 0 0
0 1 x1 ¨ ¨ ¨ xm 0 0
...

...
...

. . .
...

...
...

0 0 0 1 x1 ¨ ¨ ¨ xm

fi

ffi

ffi

ffi

fl

,

Y “

»

—

—

—

–

y0 y1 ¨ ¨ ¨ ym 0 0 0
0 y0 y1 ¨ ¨ ¨ ym 0 0
...

...
...

. . .
...

...
...

0 0 0 y0 y1 ¨ ¨ ¨ ym

fi

ffi

ffi

ffi

fl

.

(36)

Notably here, the stability of the system is closely related to
the notion of positive realness, and it is guaranteed if and only
if

Re
`

Gspsq
˘

ą 0. (37)
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Then, to construct a condition for the needed robust stability
in the presence of parametric uncertainties, Theorem 3 is
proposed.

Theorem 3. The robust stability of the system (1) in the
presence of bounded parametric uncertainties characterized
by standard interval variables is guaranteed under the con-
troller (3) if and only if there exist a Hermitian matrix Ps ą 0,
diagonal matrices Rsa ą 0 and Rsb ą 0 such that

»

—

—

–

Γs
XT Y T

0 0
X 0
Y 0

´Rsa 0
0 ´Rsb

fi

ffi

ffi

fl

ă 0, (38)

where

Γs “

„

Asn Bsn

I 0

T „

0 Ps

Ps 0

 „

Asn Bsn

I 0



´

„

0 CT
sn

Csn Dsn `D
T
sn ´ adRsaa

T
d ´ bdRsbb

T
d



.

(39)

Proof of Theorem 3: From Lemma 2, considering the state-
space realization (35), the positive realness condition (37)
is guaranteed if and only if there exists a Hermitian matrix
Ps ą 0 such that

„

Asn Bsn

I 0

T „

0 Ps

Ps 0

 „

Asn Bsn

I 0



´

„

0 CT
sn

Csn Dsn `D
T
sn



`

„

0 ´XT ∆aa
T
d ´ Y

T ∆bb
T
d

´ad∆aX ´ bd∆bY 0



ă 0.

(40)
From Theorem 2, (40) holds if and only if there exist

positive definite diagonal matrices Rsa and Rsb such that

„

Asn Bsn

I 0

T „

0 Ps

Ps 0

 „

Asn Bsn

I 0



´

„

0 CT
sn

Csn Dsn `D
T
sn



`

„

XTR´1
sa X ` Y

TR´1
sb Y 0

0 adRsaa
T
d ` bdRsbb

T
d



ă 0.

(41)
Then, we have
„

Asn Bsn

I 0

T „

0 Ps

Ps 0

 „

Asn Bsn

I 0



´

„

0 CT
sn

Csn Dsn `D
T
sn



`

„

0
ad



Rsa

“

0 aT
d

‰

`

„

0
bd



Rsb

“

0 bTd
‰

`

„

XT

0



R´1
sa

“

X 0
‰

`

„

Y T

0



R´1
sb

“

Y 0
‰

ă 0,

(42)
which can be further expressed in the form of (38). This
completes the proof of the theorem.

IV. ROBUST PERFORMANCE CHARACTERIZATION WITH
SENSITIVITY SHAPING

To develop an effective methodology for robust performance
characterization with sensitivity shaping, it is pertinent to note
here that robust performance specifications are suitably char-
acterized, where the infinity norm of the sensitivity function
and the complementary sensitivity function are bounded by
certain values. With a given Hurwitz polynomial, the stated
bound condition on the infinity norm of a rational transfer
function can be separated by two conditions. To summarize
this finding, Theorem 4 is now presented.

Theorem 4. Consider a rational transfer function
Gpsq “ npλ, sq{dpλ, sq, where λ is a parameter vector
appeared affinely in the polynomials npλ, sq and dpλ, sq.
For any given Hurwitz polynomial dcpsq,

ˇ

ˇGpsq
ˇ

ˇ ă ρ is
guaranteed if the following two conditions hold:

ˇ

ˇ

ˇ

ˇ

npλ, sq

dcpsq

ˇ

ˇ

ˇ

ˇ

ă p1´ δqρ, (43)

and ˇ

ˇ

ˇ

ˇ

1´
dpλ, sq

dcpsq

ˇ

ˇ

ˇ

ˇ

ă δ, (44)

where δ P p0, 1q.

Proof of Theorem 4: From (44), we have

1´ δ ă

ˇ

ˇ

ˇ

ˇ

dpλ, sq

dcpsq

ˇ

ˇ

ˇ

ˇ

ă 1` δ. (45)

By (43)/(45), it is easy to verify that
ˇ

ˇ

ˇ

ˇ

npλ, sq

dpλ, sq

ˇ

ˇ

ˇ

ˇ

ă ρ, (46)

which corresponds to
ˇ

ˇGpsq
ˇ

ˇ ă ρ.
Following the above developments, here remarkably, it can

be seen that it is possible to note that dcpsq is appropriate
to be interpreted as a central polynomial to characterize the
basic performance of the system, and additional discussions on
the design of an appropriate central polynomial can be found
in [29].

Then, before proceeding to develop the required robust
performance criterion, Theorem 2 is next readily extended to
be suitable for a more general case, which is summarized by
the following theorem.

Theorem 5. Given matrices Q, Hi, Ei, i “ 1, 2, ¨ ¨ ¨ ,m
with appropriate dimensions, Q is symmetrical, ∆i “

diagtδi1, δi2, ¨ ¨ ¨ , δinu with δij P r´1, 1s, i “ 1, 2, ¨ ¨ ¨ ,m,
j “ 1, 2, ¨ ¨ ¨ , n, holds if and only if there exist matrices
Ri “ diagtεi1, εi2, ¨ ¨ ¨ , εinu with εij ą 0, i “ 1, 2, ¨ ¨ ¨ ,m,
j “ 1, 2, ¨ ¨ ¨ , n, such that

Q`

»

—

—

—

—

—

—

—

—

—

–

m
ř

i“1

ET
i R

´1
i Ei 0 ¨ ¨ ¨ 0 0

0 0 ¨ ¨ ¨ 0 0
...

...
. . .

...
...

0 0 ¨ ¨ ¨ 0 0

0 0 ¨ ¨ ¨ 0
m
ř

i“1

HiRiH
T
i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ă 0.

(47)
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Proof of Theorem 5: Theorem 5 is an extension of Theorem 2,
and the mostly straightforward proof is omitted.

At this stage, define the transfer functions Gp1psq and
Gp2psq as

Gp1psq “Gp1npsq `Gp1upsq,

Gp2psq “Gp2npsq `Gp2upsq,
(48)

where
Gp1npsq “1´Gsnpsq,

Gp1upsq “ ´Gsupsq,

Gp2npsq “
pac ˚ xqsTm`n

dcpsq
,

Gp2upsq “
ppad∆aq ˚ xqs

T
m`n´1

dcpsq
.

(49)

From Theorem 4, |Spjωq| ă ρs, ω P Ωs is guaranteed if the
following two conditions hold:

|Gp1pjωq| ă δs, ω P Ωs, (50)

and
|Gp2pjωq| ă p1´ δsqρs, ω P Ωs, (51)

with δs P p0, 1q. Since Gp1npsq and Gp2npsq can be realized
in the controllable canonical form as

ÿ

p1n
fi tAp1n, Bp1n, Cp1n, Dp1nu,

ÿ

p2n
fi tAp2n, Bp2n, Cp2n, Dp2nu,

(52)

respectively, the state-space realizations of Gp1psq and Gp2psq
are given by

ÿ

p1
fi tAp1n, Bp1n, Cp1n ` ad∆aX ` bd∆bY,Dp1nu,

ÿ

p2
fi tAp2n, Bp2n, Cp2n ` ad∆aX,Dp2nu,

(53)
respectively.

Then, the conditions of robust performance specification in
terms of the sensitivity function are summarized by Theo-
rem 6.

Theorem 6. The robust performance specification
ˇ

ˇSpjωq
ˇ

ˇ ă

ρs, ω P Ωs of the system (1) in the presence of bounded
parametric uncertainties characterized by standard interval
variables is guaranteed under the controller (3) if and only
if there exist Hermitian matrices Pp1 and Qp1 ą 0, Pp2

and Qp2 ą 0, diagonal matrices Rp1a ą 0, Rp1b ą 0 and
Rp2a ą 0, Rp2b ą 0 such that
»

—

—

—

—

–

Γp1
CT

p1n

DT
p1n

XT

0
Y T

0

Cp1n Dp1n Hp1 0 0
X 0 0 ´Rp1a 0
Y 0 0 0 ´Rp1b

fi

ffi

ffi

ffi

ffi

fl

ă 0,

(54)
»

—

—

–

Γp2
CT

p2n

DT
p2n

XT

0

Cp2n Dp2n Hp2 0
X 0 0 ´Rp2b

fi

ffi

ffi

fl

ă 0, (55)

where

Γp1 “

„

Ap1n Bp1n

I 0

T

Ξp1

„

Ap1n Bp1n

I 0



`

„

0 0
0 ´δs



,

(56)

Γp2 “

„

Ap2n Bp2n

I 0

T

Ξp2

„

Ap2n Bp2n

I 0



`

„

0 0
0 pδs ´ 1qρs



,

(57)

Ξp1 “ Φs b Pp1 ` Ψs b Qp1, Ξp2 “ Φs b Pp2 ` Ψs b Qp2,
Φs and Ψs are matrices that characterize the frequency range
as given in Section I, Hp1 “ adRp1aa

T
d ` bdRp1bb

T
d ´ δs,

Hp2 “ adRp2aa
T
d ` pδs ´ 1qρs.

Proof of Theorem 6: From Lemma 3, the robust specification
(50) is guaranteed if and only if there exist Hermitian matrices
Pp1 and Qp1 ą 0, such that
»

—

—

—

—

–

Γp1

CT
p1n `X

T ∆aa
T
d

` Y T ∆bb
T
d

DT
p1n

Cp1n ` ad∆aX
` bd∆bY

Dp1n
´δs

fi

ffi

ffi

ffi

ffi

fl

ă 0,

(58)
Equivalently, we have
»

–

Γp1
CT

p1n

DT
p1n

Cp1n Dp1n ´δs

fi

fl

`

»

–

0 0 XT ∆aa
T
d ` Y

T ∆bb
T
d

0 0 0
ad∆aX ` bd∆bY 0 0

fi

fl ă 0.

(59)
From Theorem 5, (59) holds if and only if there exist

positive definite diagonal matrices Rp1a and Rp1b such that
»

–

Γp1
CT

p1n

DT
p1n

Cp1n Dp1n ´δs

fi

fl

`

»

–

XTR´1
p1aX ` Y

TR´1
p1bY 0 0

0 0 0
0 0 adRp1aa

T
d ` bdRp1bb

T
d

fi

fl

ă 0.
(60)

Then, we have
»

–

Γp1
CT

p1n

DT
p1n

Cp1n Dp1n ´δs

fi

fl`

»

–

0
0
ad

fi

flRp1a

“

0 0 aT
d

‰

`

»

–

0
0
bd

fi

flRp1b

“

0 0 bTd
‰

`

»

–

XT

0
0

fi

flR´1
p1a

“

X 0 0
‰

`

»

–

Y T

0
0

fi

flR´1
p1b

“

Y 0 0
‰

ă 0,

(61)
which can be further expressed in the form of (54).
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Therefore, it can be obtained that the condition (50) is
guaranteed if and only if there exist Hermitian matrices Pp1

and Qp1 ą 0, and positive definite diagonal matrices Rp1a and
Rp1b such that (54) is satisfied. Similarly, the condition (51)
is guaranteed if and only if there exist Hermitian matrices Pp2

and Qp2 ą 0, and positive definite diagonal matrices Rp2a and
Rp2b such that (55) is satisfied. This completes the proof of
the theorem.

Furthermore, the results on the specification in terms of the
sensitivity function

ˇ

ˇSpjωq
ˇ

ˇ ă ρs, ω P Ωs can be extended
to the specification on the complementary sensitivity function
ˇ

ˇT pjωq
ˇ

ˇ ă ρt, ω P Ωt. Thus define transfer functions Gp3psq
as

Gp3psq “Gp3npsq `Gp3upsq, (62)

where

Gp3npsq “
pbc ˚ yqsTm`n

dcpsq
,

Gp3upsq “
ppbd∆bq ˚ yqs

T
m`n´1

dcpsq
.

(63)

From Theorem 4, |T pjωq| ă ρt, ω P Ωt is guaranteed if the
following two conditions hold:

|Gp1pjωq| ă δt, ω P Ωt, (64)

and
|Gp3pjωq| ă p1´ δtqρt, ω P Ωt, (65)

with δt P p0, 1q. Gp3npsq can be realized in the controllable
canonical form as

ÿ

p3n
fi tAp3n, Bp3n, Cp3n, Dp3nu, (66)

then the state-space realization of Gp3psq is given by
ÿ

p3
fi tAp3n, Bp3n, Cp3n ` bd∆bY,Dp3nu. (67)

It is worth mentioning, at this point, that some rather useful
properties hold for the state-space realizations of the nominal
models (34), (52), and (66), where Asn “ Ap1n “ Ap2n “

Ap3n, Bsn “ Bp1n “ Bp2n “ Bp3n, Csn “ ´Cp1n, Dsn “

1´Dp1n.
In a similar manner here, in what follows, Theorem 7 is

proposed to cater to the robust performance specification in
terms of the complementary sensitivity function.

Theorem 7. The robust performance specification
ˇ

ˇT pjωq
ˇ

ˇ ă

ρt, ω P Ωt of the system (1) in the presence of bounded
parametric uncertainties characterized by standard interval
variables is guaranteed under the controller (3) if and only
if there exist Hermitian matrices Pp3 and Qp3 ą 0, Pp4

and Qp4 ą 0, diagonal matrices Rp3a ą 0, Rp3b ą 0 and
Rp4a ą 0, Rp4b ą 0 such that
»

—

—

—

—

–

Γp3
CT

p1n

DT
p1n

XT

0
Y T

0

Cp1n Dp1n Hp3 0 0
X 0 0 ´Rp3a 0
Y 0 0 0 ´Rp3b

fi

ffi

ffi

ffi

ffi

fl

ă 0,

(68)

»

—

—

–

Γp4
CT

p3n

DT
p3n

XT

0

Cp3n Dp3n Hp4 0
X 0 0 ´Rp4b

fi

ffi

ffi

fl

ă 0, (69)

where

Γp3 “

„

Ap1n Bp1n

I 0

T

Ξp3

„

Ap1n Bp1n

I 0



`

„

0 0
0 ´δt



,

(70)

Γp4 “

„

Ap3n Bp3n

I 0

T

Ξp4

„

Ap3n Bp3n

I 0



`

„

0 0
0 pδt ´ 1qρt



,

(71)

Ξp3 “ Φt b Pp3 ` Ψt b Qp3, Ξp4 “ Φt b Pp4 ` Ψt b Qp4,
Φt and Ψt are matrices that characterize the frequency range
as given in Section I, Hp3 “ adRp3aa

T
d ` bdRp3bb

T
d ´ δt,

Hp4 “ bdRp4ab
T
d ` pδt ´ 1qρt.

Proof of Theorem 7: The proof of Theorem 7 proceeds along
with the same procedures as the proof of Theorem 6.

Based on all the above developments and analysis, it can
now be noted that with the work in this paper, the fixed-order
controller considering robust stability and performance can be
designed by solving the LMIs (38), (54), (55), (68), and (69).

Remark 2. For an uncertain system, our proposed methodol-
ogy formulates the loop shaping problem with fewer condi-
tions, as compared to classical robust control methods. Take
an uncertain polytopic system as an example, each vertex
is required to be taken into account in the loop shaping
problem, and the number of these vertices grows exponentially
with the number of parametric uncertainties, which results
in significantly increasing conditions in the classical design
algorithms. For instance, by using the classical robust control
methods, if the number of parametric uncertainties is 8, then
a total of 256 vertices are to be considered, which leads to
1280 LMIs to solve. But with our proposed approach, only
one-time checking of matrix existence by solving 5 LMIs is
needed exclusively, regardless of the numbers of parameter
uncertainties.

Remark 3. It can also be noted that depending on the
design specifications on a specific problem, the conditions on
the robust stability, the robust performance in terms of the
sensitivity function, and the robust performance in terms of
the complementary sensitivity function can be implemented
either separately or together.

Remark 4. In closed-loop shaping problem, the specifications
on the sensitivity function and the complementary sensitivity
function are important indicators to ensure good system perfor-
mance. The magnitudes of their target values under a specific
frequency range are usually pre-defined by the user, which
are dependent on the actual problem. It is well known that
standard and typical selections of their limiting bounds ρs and
ρt are given by ´3 dB, and these limiting bounds physically
guarantee an effective closed-loop bandwidth and a roll-off
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frequency for the control system. It is also noted that ρs and
ρt can be simply converted to the optimization objective, so
that they can be minimized during the optimization, which
physically represents the optimization of disturbance rejection
ability and roll off ability, respectively.

V. ILLUSTRATIVE EXAMPLE

Consider the nominal model of a second-order plant with
an unstable pole

P psq “
b1s` b2

s2 ` a1s` a2
, (72)

with a1 “ 3, a2 “ ´10, b1 “ 8, b2 “ 4. Assume the
parametric uncertainties exist in a1, a2 and b1, b2, and the
deviations of these parameters are all ˘20% of their nominal
values. A second-order controller is to be designed, where

Kpsq “
y0s

2 ` y1s` y2
s2 ` x1s` x2

. (73)

To the industrial preference in terms of practical implemen-
tation, x2 is set to be zero so that Kpsq becomes a PID
controller with a low-pass filter. Here, the typical desirable
design specifications would include the robust stability and the
robust performance with the sensitivity function

ˇ

ˇSpjωq
ˇ

ˇ ă ´3
dB under the frequency range ω P r0.01 rad/s, 0.1 rad/ss,
and the complementary sensitivity function

ˇ

ˇT pjωq
ˇ

ˇ ă ´3 dB
under the frequency range ω P r20 rad/s, 100 rad/ss (essentially
stated in this equivalent manner).

With the methodology proposed here, thus the design can
proceed with the steps where a Hurwitz polynomial is chosen
as dcpsq “ s4`16s3`89s2`390s`200 and the parameters δs
and δt are chosen as 0.5. The LMIs (38), (54), (55), (68), and
(69) are then constructed and solved by the YALMIP Toolbox
in MATLAB. The resulting controller parameters are given by
x1 “ 0.3307, y0 “ 1.5790, y1 “ 16.9886, y2 “ 10.2572.
In the simulation, we use a plant P̃ psq with one set of the
uncertain parameters given by ã1 “ 3.5486, ã2 “ ´9.9415,
b̃1 “ 6.9044, b̃2 “ 3.6471. The controller parameters ob-
tained by the proposed approach are then implemented on
the uncertain plant P̃ psq, and it can be easily verified that
the closed-loop system is stabilized, where the closed-loop
poles are ´6.7471 ˘ 7.1417i, ´0.8072, and ´0.4801. The
Bode diagrams of the uncertain plant P̃ psq, the controller
Kpsq, and the open-loop system P̃ psqKpsq are shown in
Figure 1. Also, the Bode diagrams of the sensitivity function
Spjωq and the complementary sensitivity function T pjωq are
illustrated in Figure 2 and Figure 3, respectively. It is shown
that all the design specifications are met by using the proposed
approach, and the stated robust stability and performance
are successfully achieved with a fixed-order controller design
under this situation of an uncertain system.

In the following work, the case by using our proposed
method is denoted by Case I. For comparative purposes, the
fixed-order controller design approach adopted in [36] is used
with the same Hurwitz polynomial as our proposed approach.
With this approach, first of all, all the uncertain systems are
considered, and this case is denoted by Case II. Since there
are 4 uncertain parameters in the plant, the number of the
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Fig. 1. Bode diagrams of the plant, the controller, and the open-loop system.
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Fig. 2. Bode diagram of the sensitivity function.

resulting uncertain systems is given by 24 “ 16. As a result,
80 LMIs are integrated into the program considering robust
stability and robust performance in terms of the sensitivity
function and the complementary sensitivity function. In this
case, the controller parameters are given by x1 “ 7.2850,
y0 “ 1.0875, y1 “ 13.1769, y2 “ 68.6918. Secondly, only the
nominal system is considered in this method, and this case is
denoted by Case III. In this case, only 5 LMIs are required
in the program, and the controller parameters are given by
x1 “ 12.7610, y0 “ 0.4414, y1 “ 11.6312, y2 “ 62.9964.

In terms of the computational effort, the computational time
in all three cases is recorded and summarized in Table II.
As can be seen, the computational time in Case I and Case
III is less than half of Case II, and the main reason is that
Case II considers the whole uncertain domain by checking
all the 4 uncertain systems. In fact, the number of uncertain
systems grows exponentially with the number of parametric
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Fig. 3. Bode diagram of the complementary sensitivity function.

uncertainties in the plant. When the number of uncertainties
increases, the computation is rather costly and the difference in
computational time between Case I and Case II would be more
significant and more clearly observed. Compared with Case II,
our proposed methodology manipulates all these parametric
uncertainties as a whole, and thus only a one-time checking
of matrix existence by solving 5 LMIs is needed exclusively,
regardless of the number of parameter uncertainties. Moreover,
the difference in computational time between Case I and Case
III is minimal. However, Case III only takes the nominal
system into consideration, and thus the system performance
would be degraded if the system is perturbed.

To clearly observe the comparison of these methods in terms
of system performance, simulations in the time domain are
conducted, and the objective is to track a sinusoidal signal.
In the simulation, the uncertain plant P̃ psq is used again, and
Figure 4 depicts the comparison of tracking performance in
the closed-loop control with different methods. Besides, the
resulting root-mean-square error (RMSE) and the maximum
absolute error (MaxAE) is given in Table II. It is straightfor-
ward to see that Case I achieves the best system performance in
this task. On the other hand, the performance in Case III is the
worst. The main reason behind this phenomenon is that Case
III does not take the parametric uncertainties into account, and
thus the controller parameters do not have enough robustness
to resist the effects of parametric uncertainties. Since the plant
used in this simulation is perturbed, the system performance
is downgraded.

To sum up, the proposed approach has demonstrated its
effectiveness and efficiency in solving a class of loop shaping
problems. Rather importantly, the proposed method maintains
good robustness towards parametric uncertainties, and also
avoids the computational burden resulted from the necessity of
checking the robust stability and performance for all uncertain
systems in the traditional robust control techniques.
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Fig. 4. Comparison of tracking performance.

TABLE II
COMPARISON OF COMPUTATIONAL EFFICIENCY AND SYSTEM

PERFORMANCE

Case I Case II Case III
Time (s) 1.0883 2.6000 1.1206
RMSE 0.0325 0.0794 0.1652
MaxAE 0.0488 0.1205 0.2498

VI. CONCLUSION

In this work, a fixed-order robust controller design approach
is developed under a specific restricted frequency range. To
achieve this, first of all, an initial set of newly developed
theoretical results to be used in the robust stability and
robust performance criteria are presented. Secondly, the robust
stabilization condition for the situation of uncertain systems
is constructed with the concept of positive realness. Thirdly,
the robust performance specifications are characterized under
a restricted frequency range; and the frequency-domain sys-
tem performance from the viewpoint of sensitivity shaping
is realized in a time-domain framework. These conditions
for robust stability and robust performance are given and
formulated by the respective LMIs. An illustrative example
of a relevant appropriate controller design problem is given
and the effectiveness and efficiency of the proposed theoretical
results are validated from the comparative simulations.
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