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Abstract — The robust stability of uncertain linear 

neutral systems with time-varying discrete and neutral 
delays is investigated. The uncertainties under 
consideration are nonlinear time-varying parameter 
perturbations and norm-bounded uncertainties, 
respectively.  Both delay-dependent and delay-derivative 
-dependent stability criteria are proposed and are 
formulated in the form of linear matrix inequalities 
(LMIs).  The results in this paper contain some existing 
results as their special cases.  A numerical example is 
also given to indicate significant improvements over 
some existing results. 

I. INTRODUCTION 

THE problem of stability of delay-differential systems 
of neutral type has received considerable attention in 

the last two decades; see for example, [1]. The practical 
examples of neutral systems include the distributed 
networks containing lossless transmission lines [2], and 
population ecology [3]. Depending on whether a stability 
criterion itself contains the information of delay or not, 
current stability criteria on this topic can be divided into 
two categories, namely, delay-independent stability 
criteria [4-5] and delay-dependent stability criteria [6-8].  
However, the references mentioned above only consider 
the neutral systems with a constant neutral delay. 

In recent years, the problem of robust stability of 

retarded systems with nonlinear parameter perturbations 
has also received considerable attention. In [9], for 
example, some delay-independent and delay-dependent 
stability criteria are obtained by using the properties of 
the matrix measure and comparison theorem.  In [10], 
based on the matrix measure, the matrix norm and a 
decomposition technique, two stability criteria are 
derived.  The results in [9-10] are very conservative since 
they required the matrix measure to be negative.  In [11], 
a model transformation technique is used to transform the 
system with a discrete delay to a system with a distributed 
delay, and delay-dependent stability criteria are obtained 
by using a Lyapunov-Krasovskii functional approach.  
Although these results in [11] are less conservative than 
some existing ones, they are still conservative since the 
model transformation introduced additional dynamics 
discussed in [12].  In [13], based on a descriptor model 
transformation [8] and the decomposition technique of a 
discrete-delay term matrix, the robust stability of 
uncertain systems with a single time-varying discrete 
delay is investigated by applying an integral inequality 
that is introduced in [13] instead of applying bounding of 
the cross terms introduced in [14].  Numerical examples 
show that the results obtained in [13] are less 
conservative than some existing ones in the literature.  To 
the author’s best knowledge, up to now, the problem of 
robust stability of neutral systems with nonlinear 
parameter perturbations has not been addressed in the 
case of a time-varying neutral delay. 

 
The research work of Qing-Long Han was supported in 

part by Central Queensland University for the 2004 
Research Advancement Awards Scheme Project “Analysis 
and Synthesis of Networked Control Systems”.  The 
research work of Li Yu was supported by the National 
Natural Science Foundation of China under Grant 
60274034. 

Qing-Long Han is with the Faculty of Informatics and 
Communication, Central Queensland University, 
Rockhampton, Qld 4702, Australia (phone: 
61-7-4930-9270; fax: 61-7-4930-9729; e-mail: 
q.han@cqu.edu.au).  

Li Yu is with the Department of Automation, Zhejiang 
University of Technology, Hangzhou 310032, P.R.China 
(e-mail: E-mail: lyu@zjut.edu.cn). 

In this paper, based on the Lyapunov-Krasovskii 
functional approach, we will investigate the robust 
stability of uncertain neutral systems.  We will consider 
both nonlinear parameter perturbations and the 
well-known norm-bounded uncertainties.  The delays 
under considerations will include time-varying discrete 
and neutral delays. Then we will transform the robust 
stability problem of considered system into the existence 
of some symmetric positive-definite matrices.  Both 
delay-dependent and delay-derivative-dependent 
stability criteria will be proposed and be formulated in the 
form of linear matrix inequalities (LMIs), which can be 
effectively solved by well-known interior-point 
optimization algorithms [15]. 

In this paper, a delay-dependent stability criterion for 
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linear systems with a time-varying delay means that the 
criterion itself contains the information of both the bound 
and delay-derivative bound of the time-varying delay 
while a delay-derivative-dependent criterion only 
contains the information of delay-derivative bound of the 
time-varying delay.  For the case of a constant 
time-delay, the delay-derivative-dependent criterion 
reduces to delay-independent one. 

The purpose of this paper is to formulate some 
practically computable criteria to check the stability of 
system described by (1)~(3). 
 

II. PROBLEM STATEMENT 
 

Consider the following linear neutral system with 
time-varying discrete and neutral delays  

( ) ( ) ( ( )) ( ( )) ( ( ), )x t Ax t Bx t r t Cx t t f x t tτ= + − + − +  
( ( ( )), ) ( ( ( )), )g x t r t t h x t t tτ+ − + −                   (1) 

where  is the state, A , ( ) nx t ∈ n n×∈ n nB ×∈

( )), )r t t− ∈

 and 

 are constant matrices. The time-varying vector 
-valued functions ,  

and  are unknown and represent the 
parameter perturbations with respect to the current state 

n n×

( ( )),h x t tτ−

C ∈

(

( )

( ( ), )f x t t ∈

) nt ∈

n ( (g x nt

x t  and delayed state ( ( ))x t r− t  and ( ( ))x t tτ−
(0, )f t

 of the 
system, respectively.  They satisfy that 0= , 

 and .  The delay r t  is a 
time-varying discrete delay and 

(0, )g t 0= (0, ) 0h t = ( )
( )tτ  is a time-varying 

neutral delay, which satisfy  
0 ( ) Mr t r≤ ≤ , ; ( ) dr t r≤ 0 ( ) Mtτ τ≤ ≤ , ( ) dtτ τ≤    (2) 

where Mr , , dr Mτ  and dτ  are constants, and 0 1dr≤ <  
and 0 1dτ≤ < . 

The initial condition of system (1) is given by 
0( ) (x t )θ ϕ θ+ = , 0( ) (x t )θ ϕ θ+ =  

[ max{ , },  0]M Mrθ τ∀ ∈ −                           (3) 

where ( )ϕ ⋅  is a vector-valued initial function. 
 

III. NONLINEAR PARAMETER PERTURBATION 
 

In this section, we assume that ( ( ), )f x t t , 
( ( ( )), )g x t h t t−  and ( ( ( )), )h x t t tτ−  represent the 

nonlinear parameter time-varying perturbations of system 
(1) which satisfy that 

( ( ), ) ( )f x t t x tα≤                        (4a) 

( ( ( )), ) ( ( ))g x t r t t x t r tβ− ≤ −               (4b) 

( ( ( )), ) ( ( ))h x t t t x t tτ γ τ− ≤ −               (4c) 
where 0α ≥ , 0β ≥  and 0γ ≥  are given constants. 

Constraint (4) can be rewritten as 
2( ( ), ) ( ( ), ) ( ) ( )T Tf x t t f x t t x t x tα≤              (5a) 

               ( ( ( )), ) ( ( ( )), )Tg x t r t t g x t r t t− −  

  2 ( ( )) ( (T ))x t r t x t r tβ −≤ −                          (5b) 

                ( ( ( )), ) ( ( ( )), )Th x t t t h x t t tτ τ− −
2 ( ( )) ( ( ))Tx t t x t tγ τ τ≤ − − .                          (5c) 

For robust stability of system (1)~(3), with uncertainty 
(4), we have the following delay-dependent stability 
result. 
 

Proposition 1: The system described by (1) to (3), 
with uncertainty described by (4) is asymptotically 
stable if 1C γ+ <

1 0

 and there exist a real matrix X, 
symmetric positive definite matrices P, R, S, Y and 
scalars ε ≥ 2, 0ε ≥  and 3 0ε ≥  such that the LMI 
(6) (at the bottom of the page) holds, where  

2
1(1,1) ( ) ( )T T TA B P P A B R X B B X Iε α+ + + + + + +

2
2(2,2) (1 )dr R Iε β− − + 2

3(3,3) (1 )d S I, τ ε γ− − +  
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d
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−
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Choosing the Lyapunov-Krasovskii functional 
candidate for system (1) as  

1 2 3 4( ) ( ) ( ) ( ) ( )V t V t V t V t V t= + + +  
where  

1( ) ( ) ( )TV t x t Px t=  

( )2 ( )

1( ) ( ) ( ) ( )
1

t T T
t r t

d
V t r t t x B QBx d

r
ξ ξ ξ

−
= − +

− ∫ ξ  

3 ( )
( ) ( ) ( )

t T
t r t

V t x Rx dξ ξ ξ
−

= ∫  

4 ( )
( ) ( ) ( )

t T
t t

V t x Sx d
τ

ξ ξ ξ
−

= ∫  

 
where symmetric positive definite matrices P, R, S, 

 are solutions of (6), one can prove Proposition 
1.  For the detail, see the full version of the paper [16]. 

( MY r Q= )

 

Remark 1: The condition 1C γ+ <

))

 in Proposition 1 
guarantees that Lipschitz constant for the right hand of 
(1) with respect to ( (x t tτ−  is less than one. 

If we choose the following Lyapunov-Krasovskii 
functional candidate for system (1) as 

( )
( ) ( ) ( ) ( ) ( )

tT T
t r t

V t x t Px t x Rx dξ ξ ξ
−

= + ∫  

                       ( )
( ) ( )

t T
t t

x Sx d
τ

ξ ξ ξ
−

+∫  

Similar to the proof of Proposition 1, we have the 
following delay-derivative-dependent stability result.  
 Proposition 2:  The system described by (1) to (3), with 
uncertainty described by (4) is asymptotically stable if 

1C γ+ <  and there exist symmetric positive definite 
matrices P, R, S, and scalars 1 0ε ≥ , 2 0ε ≥  and 3 0ε ≥  
such that the following LMI holds 
 

1

2

3

(1,1)
(2,2) 0 0 0 0

0 (3,3) 0 0 0
00 0 0 0

0 0 0 0
0 0 0 0

T

T T

T T

PB PC P P P A S
B P B S
C P C S

P I S
P I S
P I S
SA SB SC S S S S

ε
ε

ε

 
 
 
 
  <− 
 − 

− 
 − 

 (7) 

where 
2

1(1,1) TA P PA R Iε α+ + +  
2

2(2,2) (1 )dr R Iε β− − +  
2

3(3,3) (1 )d S Iτ ε γ− − + . 
 

If 0C ≡  and ( ( ( )), ) 0h x t t tτ− ≡ , then system (1) 
reduces to the following system 

 
( ) ( ) ( ( )) ( ( ), )x t Ax t Bx t r t f x t t= + − +  

( ( ( )), )g x t r t t+ −                                  (8) 
 
with initial condition  
 

0( ) (x t )θ ϕ θ+ = , [ ,  0Mr ]θ∀ ∈ .             (9) −
 
According to Proposition 1, we have the following 

corollary for the delay-dependent stability of system 
(8)~(9). 
 

Corollary 1:  The system described by (8), (9), (3), with 
uncertainty described by (4a) and (4b) is asymptotically 
stable if there exist a real matrix X, symmetric positive 
definite matrices P, R, Y and scalars 1 0ε ≥ , 2 0ε ≥  such 
that the following LMI holds 

1

2

(1,1)         ( )
(2,2) 0 0                 0        

0  0                    0         
0 0                   0           

   (1 )       0          
( ) 0 0

T T T T
M

T T T

T

T

d

M

X B P P A B Y r X P
B X B B Y
P I B Y
P I B Y

YBA YBB YB YB r Y
r X P

ε
ε

− +

−

−

−
− −

+

0

0             0                   Y

 
 
 
 
  <
 
 
 
 − 

                 (10) 
where 

2
1(1,1) ( ) ( )T T TA B P P A B R X B B X Iε α+ + + + + + +  

2
2(2,2) (1 )dr R Iε β− − + . 

 
Remark 2: If ( ( ), ) 0f x t t ≡ , , and ( ( ( )), ) 0g x t h t t− ≡
( )r t r≡  (constant), system (8)~(9) becomes 

( ) ( ) ( )x t Ax t Bx t r= + −                   (11) 
with initial condition  

0( ) (x t )θ ϕ θ+ = , [ ,  0r ]θ∀ ∈ .          (12) −
By Corollary 1, we can conclude that system (11)~(12) is 
asymptotically stable if there exist a real matrix X, 
symmetric positive definite matrices P, R, and Y such that  

(1,1) ( )
0 0
0

( ) 0 0

T T T T

T T T

X B A B Y r X P
B X R B B Y
YBA YBB Y

r X P Y

 − +
 

− −  <
 −
  + − 

   (13) 

where  
(1,1) ( ) ( )T TA B P P A B R X B B X+ + + + + + T . 

Then the Theorem 1 in [16] is recovered. 
 



 
 

 

By Proposition 2, the following corollary is easily 
obtained for the delay-derivative-dependent stability of 
system (8)~(9).  

 
Corollary 2:  The system described by (8), (9), (3), with 

uncertainty described by (4a) and (4b) is asymptotically 
stable if there exist symmetric positive definite matrices 
P, R, and scalars 1 0ε ≥ , 2 0ε ≥  such that the following 
LMI holds 

2
1

2
2

1

2

(1 ) 00 0

0 0
0 0

T

T d

A P PA PB P P
R I

r R
B P

I
P I
P

ε α

ε β
ε

ε

 + +
  +  
 − −  <  +  
 − − 




. (14) 


( ) ( ) ( ( )) ( ( ))x t Ax t Bx t r t Cx t t Luτ= + − + − +    (19a) 

I
 

Remark 3:  Corollary 2 is the Theorem 1 in [13].  This 
means that Proposition 2 extends the result in [13] to 
neutral systems. 
 

IV. NORM-BOUNDED UNCERTAINTY 
 

In this section we will handle the case that ( ( ), )f x t t , 
( ( ( )), )g x t h t t−  and ( ( ( )), )h x t t tτ−  are norm-bounded 

uncertainties that are well known in robust control of 
uncertain systems [15].  Then system (1) becomes the 
following system 

( ) ( )( ) ( ) ( ) ( ) ( ( ))a bx t A LF t E x t B LF t E x t r t= + + + −  

( )( ) ( ( ))cC LF t E x t tτ+ + −                            (15) 

where ( ) p qF t ×∈  is an unknown real and possibly 
time-varying matrix with Lebesgue measurable elements 
satisfying 

( ) ( )TF t F t I≤                             (16) 

and L , Ea , Eb , and cE  are known real constant matrices 
which characterize how the uncertainty enters the 
nominal matrices A, B and C. 

System (15) can be written as  
( ) ( ) ( ( )) ( ( ))x t Ax t Bx t r t Cx t t Luτ= + − + − +       (17a) 

( ) ( ( )) ( ( ))a b cy E x t E x t r t E x t tτ= + − + −              (17b) 
with the constraint 

( )u F t y= .                                (18) 
We further rewrite (17)~(18) as  

     u u  ( )( ) ( ( )) ( ( )) TT
a b cE x t E x t r t E x t tτ≤ + − + −

( )( ) ( ( )) ( ( ))a b cE x t E x t r t E x t tτ× + − + −   (19b)  
We now state and establish the following 

delay-dependent stability result.  
 

Proposition 3:  The system described by (15), (16), (2), 
(3) is asymptotically stable if there exist a scalar 0δ >  
satisfying 0TI L Lδ − > , and a real matrix X , 
symmetric positive definite matrices P , R ,  and Y  
such that the following LMI 

S

  

0
( )

T T T
c c

T

C C I E E C L
LC I L L

δ
δ

 − +
<  − − 

      (20) 

 
and the LMI (21) (at the bottom of the page) hold ,where 

(1,1) ( ) ( )T TA B P P A B R X B B X+ + + + + + T . 
 

Proof: See the full version of the paper [16]. 
 

Remark 4:  Although norm-bounded uncertainties can 
be treated as a special case of nonlinear parameter 
perturbations, one can get a less conservative result using 
Proposition 3 than Proposition 1.  
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Similar to Proposition 2, we have the following 
delay-derivative-dependent stability result. 
 

Proposition 4:  The system described by (15), (16), 
(2), (3) is asymptotically stable if there exist a scalar 

0δ >  satisfying , and symmetric 
positive definite matrices , 

0TI L Lδ − >
P R , , such that (20) and 

the following LMI are satisfied, 
S

 

(1,1)     
   (2,2)     0    0     

   0     (3,3)  0  
0

0       0   0
   0

0 0     

T
a

T T
b

T T
c

T T

T T T
a b c

PB PC PL A S E
B P B S E
C P C S E
L P I L S
SA SB SC SL S

IE E E

 
 
 
 
  <
 −
 

− 
  − 

  (22) 

where 
(1,1) TA P PA R+ + , (2  ,2) (1 )dr R− −

(3,3) (1 )d Sτ− −  
 
If  and , then system (15) reduces to the 

following system 
0C ≡ 0cE ≡

              ( )( ) ( ) ( )ax t A LF t E x= + t  

 ( )( ) ( ( ))bB LF t E x t r t+ + −               (23) 
with initial condition  

0( ) (x t )θ ϕ θ+ = , [ ,  0Mr ]θ∀ ∈ − .         (24) 
 
For the stability of system (23) to (24), in light of 

Propositions 3 and 4, we have the following corollaries. 
 

Corollary 3 (Delay-dependent stability): The system 
described by (23), (24), (16), (2) is asymptotically stable 
dependence if there exist a real matrix X , symmetric 
positive definite matrices P , R , and Y  such that the 
LMI (25) (at the bottom of the page) holds, where  

(1,1) ( ) ( )T TA B P P A B R X B B X+ + + + + + T . 
 

Corollary 4 (Delay-derivative-dependent stability):  
The system described by (23), (24), (16), (2) is 
asymptotically stable if there exist symmetric positive 
definite matrices  and P R  such that the LMI (26) (at the 
bottom of the page) is satisfied.  

 
V. AN EXAMPLE  

 
Consider system (1) with  

1.2 0.1
0.1 1A − =  − − 

, , C , 0.6 0.7
1 0.8B − =  − − 

0
0
c

c
 =  
 

( ( ), ) ( )f x t t x tα≤ , 

( ( ( )), ) ( ( ))g x t r t t x t rβ− ≤ t− , 

( (h x ( )), ) (t t t xτ γ− ≤ ( ))t tτ−  

where 0 1c≤ < , 0α ≥ , 0β ≥ , 0γ ≥ . 
Case I:  For c 0≡  and ( ( ( )), ) 0h x t t tτ− ≡ , the system 

under consideration reduces to the system studied in [13].  
Applying the criteria in [13], [15] and in this paper, the 
maximum value of Mr  for stability of system is listed in 
Table 1.  It is easy to see that the stability criterion in this 
paper gives a much less conservative result than one in 
[13] and [15].  Other results surveyed in [13] are even 
more conservative.  
 

0α = , 0.1β =  0.1α = , 0.1β =   
0dr =  0.5dr =  0dr =  0.5dr =  

[13] 0.6811 0.5467 0.6129 0.4950 
[15] 1.3279 0.6743 1.2503 0.5716 

This paper  2.7427 0.8036 1.8753 0.7037 
 

Table 1. Bound Mr  for c 0≡  and ( ( ( )), ) 0h x t t tτ− ≡  
 

Case II:  For h x( ( ( )), ) 0t t tτ− ≡  and 0dτ = , the 
maximum value Mr  is listed in Table 2 for different c. 
 As c  increases, Mr  decreases. 
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0α = , 0.1β =  0.1α = , 0.1β =   
0dr =  0.5dr =  0dr =  0.5dr =  

0.1c =  2.0366 0.6596 1.4753 0.5762 

0.3c =  1.0924 0.4016 0.8587 0.3463 

0.5c =  0.5314 0.1888 0.4312 0.1547 

0.7c =  0.1765 0.0265 0.1336 0.0064 
 

Table 2. Bound Mr  for h x( ( ( )), ) 0t t tτ− ≡ , 0dτ =  and 
different c 

 
Case III:  For c  and/or 0.1= 0dτ =  ( 0.5dτ = ), we 

now consider the effect of uncertainty bound γ  on the 
maximum value Mr . Tables 3 and 4 illustrates the 
numerical results for different γ , 0dτ ≡  and 0.5dτ = , 
respectively. We can see that Mr  decreases as γ  
increases.  
 

0α = , 0.1β =  0.1α = , 0.1β =   
0dr =  0.5dr =  0dr =  0.5dr =  

0.0γ =  2.0366 0.6596 1.4753 0.5762 
0.1γ =  1.4937 0.5234 1.1356 0.4553 
0.2γ =  1.0838 0.3986 0.8451 0.3440 
0.3γ =  0.7697 0.2858 0.6215 0.2428 

 
Table 3. Bound Mr  for  and 0.1c = 0dτ =  

 
0α = , 0.1β =  0.1α = , 0.1β =   

0dr =  0.5dr =  0dr =  0.5dr =  
0.0γ =  1.7967 0.6028 1.3287 0.5257 
0.1γ =  1.1481 0.4197 0.8995 0.3628 
0.2γ =  0.7054 0.2606 0.5718 0.2200 
0.3γ =  0.3923 0.1269 0.3166 0.0988 

 
Table 4. Bound Mr  for  and 0.1c = 0.5dτ =  

 
VI. CONCLUSION 

 
The robust stability problem of uncertain linear systems 

with time-varying discrete and neutral delays has been 
studied.  Some practically computable stability criteria 
have been obtained.  The results have included some 
existing results as their special cases.  An example has 
also been given to show significant improvements over 
the existing results in the literature. 
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