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	is paper investigates the robust synchronization of drive-response Boolean control networks (BCNs) with disturbances via
semi-tensor product of matrices. Firstly, the de
nition of robust synchronization is presented for the drive-response BCNs with
disturbances. 	en, based on the algebraic state space representation of drive-response BCNs, the robustly reachable states/sets
are presented to investigate robust synchronization of disturbed BCNs. According to the set of robustly reachable states, some
necessary and su�cient criteria are obtained for robust synchronization of drive-response BCNs with disturbances under a given
state feedback controller. Finally, an illustrative example is presented to demonstrate the obtained theoretical results.

1. Introduction

As an e�cient mathematical model of biological systems and
genetic regulatory networks (GRNs), Boolean network (BN)
has attractedmuch attention as a qualitative tool for analyzing
GRNs. BN theory was 
rstly proposed by Kau�man in 1969
[1] to model a gene as a binary device for studying the behav-
ior of large, randomly constructed networks of these genes.
	anks to Kau�man’s pioneering work [1], investigations
on Boolean networks (BNs) have attracted great attention
from biologists and systems scientists. Consequently, many
fundamental and excellent results have been established for
BNs [2]. In a BN, each node is characterized by two possible
values, 1 and 0, and its value (1 or 0) indicates its measured
abundance (expressed or unexpressed, active or inactive).
Meanwhile, the state evolution of each node on network is
determined by a series of Boolean rules. In the past few years,
some basic problems of BNs have been investigated in [3],
including the 
xed points, cycles, the basin of attractors, and
the transient time. BNs with additional inputs called Boolean
control networks (BCNs) were 
rstly proposed in [2] and
could be used to design and analyze therapeutic intervention

strategies. For example, in [4], Huang and Inber established
a simple Boolean control network (BCN) to simulate the
dynamics of signaling system within capillary endothelia
cells, where two external inputs represent growth factors and
cell shape (spreading). Recently, the controllability of BCNs
has been widely investigated by numerous researchers [5–9].

Recently, a new matrix product called semi-tensor prod-
uct (STP) of matrices proposed by Cheng and his colleagues
[10, 11] has been successfully used to study Boolean (control)
networks and game theory on static games [12, 13], and many
excellent results have been obtained [14–23]. Its main idea
is to convert a logical function into an algebraic function,
and, thus, the dynamic of BN can be uniquely converted
into a standard discrete algebraic dynamic [11]. However, it
should be noted that one main drawback of the algebraic
state expression of BNs is its computational complexity. 	e
algebraic state representation converts a BN with � state
variables and � control inputs into a state-control-space of
size 2�+�. 	us, any algorithm based on this approach has
an exponential time-complexity. Moreover, many problems
like determining 
xed points and observability of BCNs have
already beenproved to beNP-hard.Hence, the computational
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complexity is intrinsic and also independent of the models
adopted to describe BNs.

Since BN is an e�cient model to provide general features
of living organism and to well illustrate GRNs, the synchro-
nization problem for BNs (or BCNs) has received consider-
able research interests in the past few years. 	e researches
on synchronization of BNs (or BCNs) can capture lots of
useful information on the evolution of biological systems
whose corresponding subsystems in�uence each other. For
example, investigations on synchronized BNs are bene
cial
to better understand synchronization between two coupled
lasers [24]. Hence, there are both theoretical and practical
importance for studying the synchronization problem of BNs
(or BCNs). Recently, some important results corresponding
to complete synchronization for two deterministic BNs have
been obtained [25, 26].

In the past few years, much attention has been paid on
the synchronization phenomenon of collective behavior by
large amount of researches [27–34]. Aside from synchroniza-
tion, the ability of disturbances resisting for synchronized
networks has also attracted much attention [35–38]. In real
world, the external disturbances are ubiquitous and may also
lead the coupled networks to some unexpected behaviors
or even break the phenomenon of synchronization. Hence,
it is desirable to investigate the ability of coupled networks
to resist external disturbances. In order to deal with this
situation, it is practically signi
cant to investigate robust
synchronization of dynamical networks, which has gained
much research attention [39–41]. Gene regulation is an intrin-
sically noisy process, and it is always subject to intracellular
and extracellular disturbances and environment �uctuations
[42–44]. For example, a cell apoptosis Boolean model is
given to study the antiapoptotic pathway under external
disturbance inputs, one may be interested in whether there
exists a response system that can achieve synchronization
with the apoptosis network without disturbances. 	us,
when modeling GRNs, disturbances should be considered,
as the states of genes may be subject to instantaneous
perturbations and experience abrupt disturbances [45, 46].
	ese disturbance inputs may prohibit the e�ectiveness of
control strategies in keeping the cellular states of biological
systems and GRNs in a desirable set. 	us, it is necessary for
us to design some control mechanisms under which some
coupled GRNs are robustly synchronized to the external
disturbances. Unfortunately, concerning BCNs, to the best of
our knowledge, there is no result available corresponding to
robust synchronization.

In this paper, using STP technique, the robust synchro-
nization problem of drive-response BCNs with disturbances
is investigated, and some necessary and su�cient criteria are
obtained to check whether a given drive-response BCNs with
disturbances can be robustly synchronized. Moreover, a set of
robustly reachable states from a given initial state and a union
set of robustly reachable states from the initial states set Δ 22�
are proposed to check robust synchronization. Finally, one
numerical example is presented to illustrate the main results.

	e rest of this paper is structured as follows. In Sec-
tion 2, we present somenecessary notations and preliminaries
on STP technique. In Section 3, we present our problem

formulation and our main results on robust synchronization
of drive-response BCNswith disturbances, by resorting to the
matrix expression of logical functions and the STP technique.
Illustrative example is given to show the validness of ourmain
results in Section 4.

2. Some Preliminaries

In this section, we present some preliminaries on semi-tensor
product (STP) and matrix expression of logical functions,
which will be used in later analysis. 	emain tool used in this
paper is STP of matrices. Using STP of matrices, a Boolean
(control) network can be expressed in its equivalent algebraic
representation.

For statement ease, we 
rstly present some basic nota-

tions: 1� = [1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�

]�, where superscript 	 presents the

transpose of a matrix or a vector; D = {0, 1} with the usual
operations (sum +, product ⋅, and negation ¬); let ��� andΔ � = {�1�, . . . , ���} be the �-th column and the columns’ set of
identity matrixes �. When � = 2, we simply use Δ = Δ 2; let
Col�(�) (Row�(�)) and Col(�) (Row(�)) be the �-th column
(row) and the set of columns (rows) of matrix �; given an� × �� matrix �, denote by Blk�(�), � = 1, . . . , �, the �-th
block of an�×��matrix �; i.e.,� = (Blk1(�), . . . ,Blk�(�));� = [��1� , . . . , ���� ] is called a logical matrix if Col(�) ⊆ Δ �,
which can be simply denoted as � = ��[�1, . . . , ��]. Moreover,
here we call �1, . . . , �� the row indexes of columns for matrix�. 	e set of � × � logical matrices is denoted by L�×�.
Assume that � ∈ R

�×� is a real matrix (R�×� denotes the
set of real matrices with order � × �), if all the entries of �
are positive (nonnegative), that is, � �� > 0 (� �� ≥ 0) for any1 ≤ � ≤ �, 1 ≤ � ≤ �, then simply denote � > 0 (� ≥ 0).

Now, we present the de
nitions of Boolean addition and
Boolean product of Boolean matrices. An � × � matrix� = (���)�×� is called a Boolean matrix if ��� ∈ D, where
B�×� denotes the set of all � × � Boolean matrices. 	en,
we de
ne the Boolean addition below: �+B� fl � ∨ �,�, � ∈ D. 	erefore, for two Boolean matrices �,� ∈ B�×�,
we can obtain the Boolean addition for � and �: �+B� =(���+B���)�×�, 1 ≤ � ≤ �, 1 ≤ � ≤ �. Moreover, we can
also de
ne the Boolean product of two Boolean matrices � ∈
B�×� and � ∈ B�×	, denoted by �×B� = (���)�×	 ∈ B�×	
with ��� = ∑

B

	
�=1��� ∧ ���, 1 ≤ � ≤ �, 1 ≤ � ≤  . Particularly,

if � ∈ B�×�, then �(�) = �(�−1)×B�.
	en, we introduce the STP “⋉” between matrices (and in

particular, vectors) as follows [10].

De�nition 1 (see [10]). Consider � × � matrix � and  × "
matrix �. 	e STP of � and � is de
ned as follows: � ⋉ � =(� ⊗ 
/�)(� ⊗ 
/	), where $ = l.c.m.(�,  ), denotes the least
commonmultiple of� and  . Here, ⊗ denotes the Kronecker
product of matrices.

Remark 2. If � =  , then � ⋉ � = ��, which is the
standard matrix product. 	us, the STP of matrices is a
generalization of the standard matrix product providing a
new way to multiply two matrices with arbitrary dimensions.
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De�nition 3 (see [10]). If % ∈ Δ 2� , then % ⋉ % = Φ2�%, whereΦ2� is called power-reducing matrix for 2�-valued logical

vectors andΦ2� = �22�[1, 2� + 2, . . . , (2� − 2) ⋅ 2� + 2� − 1, 22�].
De�nition 4 (see [10]). An�� × ��matrix'[�,�] is called a
swap matrix, if it is constructed by the way: label its columns
by (11, 12, . . . , 1�, . . . , �1, . . . , ��) and similarly label its rows
by (11, 21, . . . , �1, . . . , 1�, 2�, . . . , ��). 	en its element in
the position ((, *), (�, �)) is assigned as

-(�,�),(�,�) = ��,��,� = {{{
1,  = � and * = �,
0, otherwise. (1)

When� = �, we denote'[�,�] by'[�] or'[�].
Identify Boolean variables 1 and 0 with vectors �12 and �22.

	at is to say, we consider a Boolean variable � ∈ D as a
vector � ∈ Δ; thus a Boolean function with � variables 5 :
D
� 6→ D is equivalent with a map 5 : (Δ 2)� 6→ Δ 2.

Proposition 5 (see [10]). Let 5 : (D)� 6→ D be a Boolean
function. en there exists a unique matrix 8 ∈ L2×2� such
that 5(%1, . . . , %�) = 8 ⋉ %1 ⋉ ⋅ ⋅ ⋅ ⋉ %�, for every (%1, . . . , %�) ∈(Δ 2)�, where 8 is called structure matrix of the logical function5.
3. Problem Formulation and Main Results

3.1. Problem Formulation. Since disturbance is an important
factor when modeling GRNs, here we consider the following
drive-response BCNs with disturbances:

�1 (9 + 1) = 51 (<1 (9) , . . . , <	 (9) , �1 (9) , . . . , �� (9)) ,
...

�� (9 + 1) = 5� (<1 (9) , . . . , <	 (9) , �1 (9) , . . . , �� (9)) ,
�1 (9 + 1) = @1 (B1 (9) , . . . , B� (9) , �1 (9) , . . . , �� (9)) ,

...
�� (9 + 1) = @� (B1 (9) , . . . , B� (9) , �1 (9) , . . . , �� (9)) .

(2)

Here, �� and �� represent the �-th node and �-th node of drive
and response BN, respectively, 5� : {1, 0}�+	 6→ {1, 0}, @� :{1, 0}�+� 6→ {1, 0} are Boolean functions, � = 1, . . . , �, � =1, . . . , �. In addition, B and <� are controls and disturbance
inputs, D = 1, . . . , �, E = 1, . . . ,  . We simply denote by�(9) = (�1(9), . . . , ��(9))� and �(9) = (�1(9), . . . , ��(9))� the
states of drive and response BN, respectively. We can observe
that the state evolution of drive-response BCNs depends on

the following initial states �(0) = (�1(0), . . . , ��(0))� and

�(0) = (�1(0), . . . , ��(0))�. Correspondingly, the dynamic of
the state feedback control is in the form of

B1 (9) = F1 (�1 (9) , . . . , �� (9) , �1 (9) , . . . , �� (9)) ,
...

B� (9) = F� (�1 (9) , . . . , �� (9) , �1 (9) , . . . , �� (9)) .
(3)

Here, F� : {1, 0}2� 6→ {1, 0} (� = 1, . . . , �) are Boolean
functions.

Now, we present the de
nition of robust synchronization
for drive-response BCNs (2) with disturbances.

De�nition 6. Consider the drive-response BCNs (2) with
disturbances and the state feedback control (3).	en, system
(2) is said to be robustly synchronized if, for any initial states
and any disturbance inputs, there exists an integer G such that�(9) = �(9), ∀9 ≥ G.
Remark 7. As we can see from system (2), the disturbances
are imposed on the states of drive BN, which implies that
the states of drive BN will be a�ected by the values of
disturbances <�(9) (� = 1, . . . ,  ). 	us, if there exists a state
feedback control in form of (3) such that the response BN
can always synchronize with the drive BN regardless of the
disturbances, it will be welcome. 	e main objective of this
paper is to establish robust synchronization criteria for the
drive-response BCNs (2) with disturbances.

3.2. Algebraic formofDrive-Response BCNswithDisturbances.
In this subsection, we will convert the drive-response BCNs
(2) with disturbances and the feedback control (3) into
equivalent algebraic forms by applying STP. Using the vector
form of Boolean variables and denoting �(9) = ⋉��=1��(9) ∈Δ 2� , �(9) = ⋉��=1��(9) ∈ Δ 2� , B(9) = ⋉��=1B�(9) ∈ Δ 2� , and<(9) = ⋉	�=1<�(9) ∈ Δ 2� , by Proposition 5, we can convert
systems (2) and (3) into the following algebraic forms:

� (9 + 1) = 8< (9) � (9) ,
� (9 + 1) = IB (9) � (9) , (4)

and

B (9) = J� (9) � (9) , (5)

where 8 ∈ L2�×2�+� , I ∈ L2�×2�+� , and J ∈ L2�×22� are
called the state transition matrices of drive BN and response
BN and the state feedback gain matrix, respectively.

Further, denote K(9) = �(9) ⋉ �(9) ∈ Δ 22� , and we can
combine (4) into the following equation:

K (9 + 1) = � (9 + 1) � (9 + 1) = 8< (9) � (9) IB (9) � (9)
= 8 (2�+� ⊗ I) < (9) � (9) B (9) � (9)
= 8 (2�+� ⊗ I) (2� ⊗'[2�,2�]) < (9) B (9) K (9)
≜ �< (9) B (9) K (9) ,

(6)

where � = 8(2�+� ⊗ I)(2� ⊗'[2� ,2�]) ∈ L22�×2�+�+2� .
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	us, for the drive-response BCNs (4) with disturbances
and the feedback control (5), we obtain another equivalent
algebraic form as follows:

K (9 + 1) = �< (9) B (9) K (9) ,
B (9) = JK (9) , (7)

where � ∈ L22�×2�+�+2� and J ∈ L2�×22� are the state
transition matrices of system (6) and state feedback gain
matrix of system (5).

Remark 8. De
ning K(9) = �(9)�(9), we transfer the disturbed
BCNs (4) and control system (5) into system (7). It has been
proved in [10] that, by de
ning K(9) = �(9)�(9), we can get a
bijective mapping (Δ)22� 6→ Δ 2� ×Δ 2� . For example, if K(9) =�34, we can derive that �(9) = �22 and �(9) = �12.
3.3.MainResults on Robust Synchronization. In the following
subsection, we will investigate the robust synchronization of
the drive-response BCNs (2) with disturbances based on the
equivalent algebraic form (7).

Consider the drive-response BCNs (2) with disturbances.
For a given state feedback control B(9) = JK(9) with J ∈
L2�×22� , one can see from Proposition 5 that

K (9 + 1) = �< (9) B (9) K (9) = �< (9) JΦ2�K (9)
= � (2� ⊗ JΦ2�) < (9) K (9) ≜ L< (9) K (9) , (8)

where L = �(2� ⊗ JΦ2�) = [Blk1(L), . . . ,Blk2�(L)] ∈
L22�×22�+� .

	en, in the following sequel, we introduce a set of
robustly reachable states from a given initial state at given
step.

De�nition 9. A state M is said to be a reachable state from the
initial state K(0) at the G-th step if there exists a disturbance
sequence <(0), . . . , <(G − 1), such that M = K(G). 	en, for
all possible disturbance sequences <(0), . . . , <(G − 1), we can
obtain the set of all possible reachable states, which is called
the set of robustly reachable states from the initial state K(0)
at the G-th step, denoted by N�

S
(K(0)).

According to (8), suppose that <(0) = ��2� and K(0) = ��22� ,
and we can obtain the set of robustly reachable states fromK(0) at the 
rst step, which is N1

S
(K(0)) = {Col�(Blk�(L)), O =1, . . . , 2	}. 	en, we can further de
ne the union set of

robustly reachable states from the initial states set Δ 22� at theG-th step as follows:

N�
S
(Δ 22�) = N�S (�122�) ∪ N�S (�222�) ∪ ⋅ ⋅ ⋅ ∪ N�S (�22�22�) . (9)

Particularly, when G = 0, we denote N0
S
(Δ 22�) = Δ 22� .

	e following proposition gives some important proper-

ties for the union set N�
S
(Δ 22�).

Proposition 10. (1) Let N�
S
(Δ 22�) be the union set of robustly

reachable states from the initial states set Δ 22� at the G-th step,
and then we have the following relationship:

Δ 22� fl N0
S
(Δ 22�) ⊇ N1S (Δ 22�) ⋅ ⋅ ⋅ ⊇ N�S (Δ 22�) ⋅ ⋅ ⋅ . (10)

(2) If there exists an integer G > 0 such that N�+1
S
(Δ 22�) =N�

S
(Δ 22�), then we have N�

S
(Δ 22�) = N�S(Δ 22�), 9 ≥ G.

Proof. (1) Since N1
S
(Δ 22�) ⊆ Δ 22� , we have

N�+1
S

(Δ 22�) = N�S (N1S (Δ 22�)) ⊆ N�S (Δ 22�) ,
G = 1, 2, . . . . (11)

(2) Suppose that there exists an integer G such thatN�+1
S
(Δ 22�) = N�

S
(Δ 22�); i.e., N�S(Δ 22�) = N1

S
(N�

S
(Δ 22�)). 	en

we have

N�
S
(Δ 22�) = N1S (N�+1S

(Δ 22�)) = N�+2S
(Δ 22�)

= N2
S
(N�+1

S
(Δ 22�)) = N�+3S

(Δ 22�)
...

= N�+�
S

(Δ 22�) , T = 1, 2, . . . .

(12)

	is completes the proof.

By resorting to the above important properties of the

union setN�
S
(Δ 22�), one can derive the following result, which

will be an auxiliary result for the robust synchronization.

Proposition 11. Assume that U is the smallest positive integer

such that N�+1
S
(Δ 22�) = N�

S
(Δ 22�), and then we have 0 ≤ U ≤22� − 1.

Proof. If N1
S
(Δ 22� ) = Δ 22� , then we have N0

S
(Δ 22�) =N1

S
(Δ 22�) = Δ 22� , which implies that U = 0. Nowwe claim that1 ≤ U ≤ 22� − 1. To prove this claim, it is su�cient to prove

that |N�
S
(Δ 22�)| ≤ 22� − G holds for every 1 ≤ G ≤ 22� − 1.

We draw the conclusion by induction on G. Consider the case
of G = 1. Suppose on the contrary that N1

S
(Δ 22�) > 22� − 1,

which implies that |N1
S
(Δ 22�)| = 22�. 	is implies the fact ofN1

S
(Δ 22�) = Δ 22� , and thenwe have N�S(Δ 22�) = Δ 22� , 9 = 1, . . ..

	is is a contradiction with the fact that N0
S
(Δ 22�) ⊇ N1S(Δ 22�);

i.e., U ≥ 1. 	us, we prove that, for the case of G = 1,N1
S
(Δ 22�) ≤ 22� − 1.
Now, let 1 < G ≤ U and suppose that |N�

S
(Δ 22�)| ≤22� − G by induction. According to Proposition 10, we haveN�+1

S
(Δ 22�) ⊆ N�

S
(Δ 22�). 	is together with the induction

hypothesis yields that |N�+1
S
(Δ 22�)| ≤ |N�

S
(Δ 22�)| ≤ 22� − G.

If |N�+1
S
(Δ 22�)| > 22� − G − 1, then we have |N�+1

S
(Δ 22�)| =|N�

S
(Δ 22�)| = 22� − G, which implies that N�+1

S
(Δ 22�) =N�

S
(Δ 22�).	is contradictswith the fact of theminimality ofU.

	us, one can derive that |N�
S
(Δ 22�)| ≤ 22�−G.	is completes

the proof.
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Based on Proposition 10, we obtain the following neces-
sary and su�cient condition for robust synchronization of
the drive-response BCNs (2) with disturbances.

�eorem 12. Consider the drive-response BCNs (2) with dis-

turbances. Let N�
S
(Δ 22�) be the union set of robustly reachable

states from the initial states setΔ 22� at the G-th step.en system
(2) can be robustly synchronized if and only if there exists an

integer G satisfying 1 ≤ G ≤ 22� − 1, such that
N�
S
(Δ 22�) ⊆ Ξ, (13)

where Ξ = {�(�−1)2�+�22� : � = 1, . . . , 2�} denotes the synchronized
states set.

Proof. Based on Proposition 10, if there exists an integer G
satisfying 1 ≤ G ≤ 22� − 1, such that N�

S
(Δ 22�) ⊆ Ξ, then,

given any integer 9 ≥ G, N�
S
(Δ 22�) ⊆ Ξ. 	en, according

to the de
nition of set Ξ, the states of �(9) and �(9) reach
synchronization a�er G steps. 	e proof of su�cient part can
be directly obtained, which is omitted here. 	is completes
the proof.

Remark 13. If �(9) = �(9) = ��2� , then the equality K(9) =
�(9) ⋉ �(9) yields that K(9) = �(�−1)2�+�22� . 	us, we use the set

Ξ = {�(�−1)2�+�22� : � = 1, . . . , 2�} to denote the synchronized
states set. According to Proposition 10, for the initial states
set Δ 22� , we can always calculate the union set of robustly
reachable states at given step by recurrence method. More-
over, according to Proposition 11, we can conclude that one
only needs to calculate the union set of robustly reachable
states for 
nite steps in order to check robust synchronization.

Consider a set Π = {��122� , ��222� , . . . , ���22�}. Note that each

state ���22� (� = 1, . . . , Y) is a column of the identity matrix 22� ,
we de
ne the column vector form of the set Π by Boolean
summing up of all the states as follows:

Π� = (. . . , 0, (�1)1 , 0, . . . , 0, (��)1 , . . .)
� ∈ B2�×1. (14)

Here, the ^1, . . . , ^�-th elements ofΠ� are 1, and the rest are 0.
Particularly, whenΠ = Δ 22� , one can derive its corresponding
column vector form of Δ 22� , denoted by (1, . . . , 1)� ∈ B2�×1.
	us, for the union set of robustly reachable states from the

initial states Δ 22� , i.e., N�S(Δ 22�), we use R�S(Δ 22�) to denote
the corresponding column vector form. 	en, we have

N�
S
(Δ 22�) = 2

2�

⋃
�=1

N�
S
(��22�) ∼ R

�
S
(Δ 22�)

= 2
2�

∑
�=1

B

R
�
S
(��22�) .

(15)

Since L in (8) is a 22� × 22�+	 matrix, we split it into 2	
equal blocks as L = [L1, . . . ,L2�], where L� ∈ L22� (� =

1, . . . , 2	).	en, the following result will provide an algebraic

representation forR�
S
(Δ 22�).

�eorem 14. Consider the drive-response BCNs (2) with dis-

turbances. Let N�
S
(Δ 22�) be the union set of robustly reachable

states from the initial states set Δ 22� at the G-th step. en,
we have the following equation for the column vector form

R
�
S
(Δ 22�):

R
�
S
(Δ 22�) = 2

2�

∑
�=1

B

Col� (Ľ(�)) , Ľ = 2
�

∑
�=1

B

L�. (16)

Proof. We prove the result by induction. Consider the case ofG = 1. Given an initial state K(0) = ��22� , one can obtain the

column vector form of N1
S
(��22�) as follows:

R
1
S
(��22�) = (L ⋉ �12�) ��22�+B ⋅ ⋅ ⋅ +B (L ⋉ �2�2�) ��22�

= 2
�

∑
�=1B

L���22� = Col� (Ľ) .
(17)

	us, the union set of robustly reachable states from the

initial states set Δ 22� at the 
rst step is R
1
S
(Δ 22� ) =

∑
B

22�
�=1R
1
S
(��22�) = ∑

B

22�
�=1Col�(Ľ), which proves the case ofG = 1.

	en, we assume that (16) holds for the case of G = � and
consider the case of G = � + 1. Suppose that the reachable
states inN�

S
(Δ 22�) are��122� , . . . , ���22� , where c = |N�S(Δ 22�)|. Note

that the trajectory starting from K(0) ∈ Δ 22� to K(� + 1) ∈N�+1
S
(Δ 22�) can be decomposed into trajectory starting fromK(0) to some K(�) = ��	22� (� ∈ {1, . . . , c}) at the �-th step and

the trajectory from the possible states K(�) = ��	22� to K(�+1) ∈N�+1
S
(Δ 22�) at one step. 	us, one can derive that

R
�+1
S

(Δ 22�) = R
1
S
(R�

S
(Δ 22�))

= R
1
S
(��122�) +B ⋅ ⋅ ⋅ +BR

1
S
(���22�) .

(18)

	is together with (17) yields

R
�+1
S

(Δ 22�) = �∑

=1B

2�∑
�=1

B

L���
22�

= 2
�

∑
�=1

B

L� ×B

�∑

=1B

��
22�
= Ľ×BR

�
S
(Δ 22�) .

(19)

On the other hand, one can obtain that

22�∑
�=1B

Col� (Ľ(�+1)) = 2
2�

∑
�=1B

Col� (Ľ×BĽ
(�))
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= 2
2�

∑
�=1B

Ľ×BCol� (Ľ(�))

= Ľ×B

22�∑
�=1B

Col� (Ľ(�)) .
(20)

Applying the induction hypothesis, by (19), we have

∑
B

22�
�=1Col�(Ľ(�+1)) = Ľ×BR

�
S
(Δ 22�) = R

�+1
S
(Δ 22�), which

proves the case of G = � + 1. 	us, according to the
mathematical induction, we can conclude that (16) holds for
any positive integer G, which completes the proof.

Let
6→Ξ = ∑2��=1 �(�−1)2�+�22� be the column vector form of the

synchronized states set Ξ. 	us, based on	eorem 14, we can
obtain the following result for robust synchronization.

Corollary 15. Consider the drive-response BCNs (2) with dis-

turbances. Let
6→Ξ be the column vector form of the synchronized

states set Ξ.en system (2) can be robustly synchronized if and

only if there exists an integer 1 ≤ G ≤ 22� − 1, such that
6→Ξ − 2

2�

∑
�=1

B

Col� (Ľ(�)) ≥ 0. (21)

4. Illustrative Example

In this section, we present an illustrative example to demon-
strate the e�ectiveness of our obtained results.

Consider the following drive-response BCNs with one
disturbance input, and each BN has two nodes:

�1 (9 + 1) = < (9) ∧ �1 (9) ∧ �2 (9)
�2 (9 + 1) = < (9) ∧ �1 (9) ∧ �2 (9) , (22a)

and

�1 (9 + 1) = [B1 (9) ∧ �1 (9)] ∨ {B1 (9)
∧ {[B2 (9) ∧ �1 (9)] ∨ [B2 (9)
∧ ((�1 (9) ∧ �2 (9)) ∨ (�1 (9) ∧ �2 (9)))}}

�2 (9 + 1) = [B1 (9) ∧ �2 (9)] ∨ {B1 (9)
∧ [(B2 (9) ∧ �2 (9)) ∨ (B2 (9) ∧ �2 (9))]} ,

(22b)

where �1, �2 ∈ D and �1, �2 ∈ D are two state variables of
drive BN and response BN respectively; B1, B2 ∈ D are two
control inputs and < ∈ D is an external disturbance. Here,
we use � to substitute the symbol ¬�, in order to simplify the
logical functions. For example, if � = 1 (� = 0), we have � = 0
(� = 1).

Suppose that the state feedback control is given in the
following form:

B1 (9)
= �1 (9)
∨ {�1 (9) ∧ [�2 (9) ∨ (�2 (9) ∧ �1 (9) ∧ �2 (9))]}

B2 (9)
= �1 (9) ∨ [�1 (9) ∧ �2 (9) ∧ �1 (9) ∧ �2 (9)]
∨ [�1 (9) ∧ �2 (9)] .

(23)

	en, using the vector forms of Boolean variables and

denoting �(9) = ⋉2�=1��(9) ∈ Δ 4, �(9) = ⋉2�=1��(9) ∈ Δ 4,
and B(9) = ⋉2�=1B�(9) ∈ Δ 4, we can obtain the following
algebraic forms of the drive-response BCNs (22a) and (22b)
with disturbance and the state feedback control (23):

� (9 + 1) = 8< (9) � (9) ,
� (9 + 1) = IB (9) � (9) ,

B (9) = J� (9) � (9) ,
(24)

where 8 = �4[2, 3, 4, 4, 3, 3, 4, 4], I = �4[1, 2, 3, 4, 1, 2, 3, 4,1, 2, 3, 4, 2, 3, 4, 1], and J = �4[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,4, 4, 4, 1].
	en, denote K(9) = �(9) ⋉ �(9) ∈ Δ 16, and we can obtain

the following equivalent algebraic form of the drive-response
BCNs (24) with disturbance:

K (9 + 1) = �< (9) B (9) K (9) , (25)

where � = 8(2�+� ⊗ I)(2� ⊗ '[2�,2�]) ∈ L16×27 . We present
the row indexes of columns in matrix � as follows:

� = �16 [5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 5, 6, 7, 8, 9,
11, 12, 13 , 14, 15, 16, 13, 14, 15, 16, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 6, 7, 8,
5, 10, 11, 12, 9, 14, 15, 16, 13, 14, 15, 16, 13, 9,
10, 11, 12, 9,
10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9,
10, 11, 12, 9,
10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9,
10, 11, 12, 9,
10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 10, 11, 12, 9,
10, 11, 12, 9, 14, 15, 16, 13, 14, 15, 16, 13] .

(26)

Figure 1 shows the row indexes of columns in matrix �.
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Figure 1: 	e row indexes of each column of matrix � obtained in system (25). Each point corresponds to the row index of each column,
which implies the position of element 1.

	us, under the state feedback control B(9) = J�(9)�(9),
we obtain the following system: K(9 + 1) = L<(9)K(9), where
L = �(2 ⊗ JΦ4) ∈ L16×32. A calculation yields

L = �16 [5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 14, 15, 16, 16, 9,
10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 14, 15, 16, 16] .

(27)

Our objective is to check whether the drive-response BCNs
(22a) and (22b) with disturbances can be robustly synchro-

nized. As discussed in Remark 13, if �(9) = �(9) = ��4
(1 ≤ � ≤ 4) then the equality K(9) = �(9) ⋉ �(9) yields
that K(9) = �(�−1)4+�16 . 	us, we can obtain the synchronized

states set Ξ = {��16 : � = 1, 6, 11, 16} and the unsynchronized

states set Ξ = {��16 : � = 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15}. For
example, if K(9) = �216, one can obtain that �(9) ̸= �(9), since�(9) = �14 and �(9) = �24. A calculation yields

Ľ = [�516 + �916, �616 + �1016 , �716 + �1116 , �816 + �1216 , �916, �1016 ,
�1116 , �1216, �1316 , �1416, �1516 , �1616, �1416 , �1516, �1616 , �1616] .

(28)

	us, according to Corollary 15, we can obtain that

16∑
�=1

B

Col� (Ľ(6)) = �1616 ≤ 6→Ξ = ∑
�=1,6,11,16

B

��16, (29)

which implies that the drive-response BCNs (22a) and (22b)
with disturbance can be robustly synchronized. 	e set of
trajectories starting from the initial states set Δ 16 converging

to synchronized states set Ξ = {��16 : � = 1, 6, 11, 16} from
time 9 = 0 to time 9 = 6 can be given as follows:

{{{{{{{{{{{{{{{

K1 (0) = �116
K2 (0) = �216...
K16 (0) = �1616

}}}}}}}}}}}}}}}

�(0)666→ ⋅ ⋅ ⋅ �(4)666→

{K15 (5) = �1516K16 (5) = �1616}
�(5)666→ {K16 (6) = �1616} ⊆ Ξ.

(30)

As we can see from the above trajectories, at time 9 = 4,
there exist two states �1416 and �1516 in N4S(Δ 16) that belong to

the unsynchronized states set Ξ. At time 9 = 5, there still

exists one state�1516 inN5S(Δ 16) belonging toΞ.	us, the drive-
response BCNs (22a) and (22b) with disturbance can not be
robustly synchronized at time 9 = 5. However, at time 9 = 6,
there is only one state �1616 in N6S(Δ 16), which belongs to the
synchronized states set Ξ. 	us, the drive-response BCNs
(22a) and (22b) with disturbance is robustly synchronized at
time 9 = 6. Moreover, the row indexes of the column vectorN�
S
(Δ 16) versus time G = 1, 2, . . . , 6 are plotted in Figure 2.

	us, the validness of Corollary 15 has been well illustrated
by this example.

5. Conclusion

In this paper, we have investigated robust synchronization
of drive-response BCNs with disturbances. Based on the
fundamental properties of STP, we 
rstly have obtained
the algebraic representations of drive-response BCNs with
disturbances. By de
ning a set of robustly reachable states
from a given initial state at a given time step, we have
obtained the set of all possible reachable states for any given
disturbance sequences from the global initial states set a�er
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Figure 2: 	e whole row indexes of the column vectors obtained in N�
S
(Δ 16) (G = 1, 2, . . . , 6). Each point corresponds to the row index of

each column, which implies the position of element 1.

given steps, which is called the union set of robustly reachable
states from the global initial states set. 	en, based on the
de
ned union sets, several necessary and su�cient criteria
have been obtained for robust synchronization of disturbed
BCNs. Moreover, the obtained results also have been veri
ed
that one only needs to calculate 
nite steps to check whether
the drive-response BCNs with disturbances can be robustly
synchronized.
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