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Abstract. A toric ideal is called robust if its universal Gröbner basis is a min-

imal set of generators, and is called generalized robust if its universal Gröbner
basis equals its universal Markov basis (the union of all its minimal sets of

binomial generators). Robust and generalized robust toric ideals are both

interesting from both a Commutative Algebra and an Algebraic Statistics per-
spective. However, only a few nontrivial examples of such ideals are known. In

this work we study these properties for toric ideals of both graphs and numeri-

cal semigroups. For toric ideals of graphs, we characterize combinatorially the
graphs giving rise to robust and to generalized robust toric ideals generated

by quadratic binomials. As a byproduct, we obtain families of Koszul rings.

For toric ideals of numerical semigroups, we determine that one of its initial
ideals is a complete intersection if and only if the semigroup belongs to the

so-called family of free numerical semigroups. Hence, we characterize all com-
plete intersection numerical semigroups which are minimally generated by one

of its Gröbner basis and, as a consequence, all the Betti numbers of the toric

ideal and its corresponding initial ideal coincide. Moreover, also for numerical
semigroups, we prove that the ideal is generalized robust if and only if the

semigroup has a unique Betti element and that there are only trivial examples

of robust ideals. We finish the paper with some open questions.
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1. Introduction

Let A = {a1, . . . ,am} ⊆ Nn be a finite set of nonzero vectors and NA := {l1a1 +
· · ·+ lmam | li ∈ N} the corresponding affine monoid. We grade the polynomial ring
K[x1, . . . , xm] over an arbitrary field K by the semigroup NA setting degA(xi) = ai
for i = 1, . . . ,m. For u = (u1, . . . , um) ∈ Nm, we define the A-degree of the
monomial xu := xu1

1 · · ·xum
m to be degA(xu) := u1a1 + · · ·+ umam ∈ NA, while we

denote the usual degree u1+· · ·+um of xu by deg(xu). The toric ideal IA associated
to A is the ideal generated by all the binomials xu − xv such that degA(xu) =
degA(xv). It is a prime ideal of height m−r, being r the rank of the subgroup of Zm
spanned by A (see, e.g., [39]). Toric ideals have applications in several areas such as:
algebraic statistics, biology, computer algebra, computer aided geometric design,
dynamical systems, hypergeometric differential equations, integer programming,
toric geometry, graph theory, e.t.c. (see, e.g. [1, 3, 20, 21, 28, 31, 34, 35, 39, 45, 46]).

A binomial xu−xv in IA is called primitive if there is no other binomial xw−xz in
IA, such that xw divides xu and xz divides xv. The set of primitive binomials, which
is finite, is the Graver basis of IA and is denoted by GrA. The universal Gröbner
basis of an ideal IA, is denoted by UA and is defined as the union of all reduced
Gröbner bases G≺ of IA, as ≺ runs over all term orders. Since IA is generated
by binomials, then every reduced Gröbner basis of IA consists of binomials (see,
e.g. [21]). Thus, the universal Gröbner basis of IA is a finite subset of binomials
in IA and it is a Gröbner basis for the ideal with respect to all term orders. By
[39, Proposition 4.11], we have that UA ⊆ GrA. A Markov basis MA is a minimal
binomial generating set of the toric ideal IA (its name Markov basis comes from its
relation with Markov chains, see [20, Theorem 3.1]). The universal Markov basis of
the ideal is denoted by MA and is defined as the union of all the Markov bases of
the ideal. The elements of MA are called minimal binomials. Since A ⊆ Nn, then
NA is pointed (that is, NA ∩ (−NA) = {0}). As a consequence MA ⊆ GrA and,
hence, MA is also a finite set (see [14, Theorem 2.3] and [15]). The Graver basis,
the universal Gröbner basis and the universal Markov basis are usually called toric
bases.

An ideal I is called robust if its universal Gröbner basis is a minimal set of
generators of the ideal. Even in the context of toric ideals, robustness is a property
that has not been fully described. It is known that Lawrence ideals are robust and
robustness has also been studied in [12] for toric ideals of graphs, and in [11] for
toric ideals which are generated by quadratic binomials. Some of the interests in
studying robustness stems from the fact that they are ideals which are minimally
generated by a Gröbner basis, see [4, 16]. Whenever I is an ideal with a quadratic
Gröbner basis, then K[x1, . . . , xm] is a Koszul algebra. Hence, another interesting
feature of robust ideals generated by quadrics, is that they provide examples of
Koszul algebras. Nevertheless, robustness is a rare property and there are very
few nontrivial examples of robust ideals. This makes it natural to consider a wider
family of ideals that shares many of its good properties. In this paper we study
the property of a toric ideal being generalized robust. An ideal is called generalized
robust if its universal Gröbner basis is equal to its universal Markov basis. The
notion of generalized robustness of a toric ideal was introduced in [41] and, as its
name indicates, it is a family containing robust toric ideals (see [41, Corollary 3.5]).
Since determining or computing the universal Gröbner basis of I is a very difficult
and computationally demanding problem, it is still difficult to determine whether
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a toric ideal is generalized robust. The main goal of this paper is to provide several
families of generalized robust toric ideals.

The present paper is divided into the following sections. In Section 2, we collect
some basic facts related to the toric bases, that can be found in the literature or
are easy consequences of known results. In particular, we give a description of the
universal Markov basis (Proposition 2.1) and study how the toric bases behave with
respect to the elimination of variables (Propositions 2.3 and 2.4). In Theorem 2.5
we prove that a homogeneous toric ideal is generalized robust and generated by
quadrics if and only if its universal Gröbner basis only consists of quadrics.

The main results of this paper are divided in two parts. The first one is presented
in Section 3, in which we completely characterize the graphs giving rise to robust
and generalized robust toric ideals that both are generated by quadrics. More
precisely, we provide the following structural theorem, which summarizes Theorem
3.7 and Theorem 3.13 (see also Definition 3.9 and Definition 3.11):

Theorem 1.1. Let G be a finite, connected and simple graph. The toric ideal
associated to G is generalized robust and generated by quadrics if and only if G has
at most one non bipartite block which is either a K4, or a K2,` ∪ {e} or a double-
K2,(r,s) or a necklace-K2,` graph. The bipartite blocks of G are either K2,` or cut
edges.

Interestingly, K[x1, . . . , xm]/IG is a Koszul ring for all the graphs G described in
this theorem.

As a direct consequence of this, our second main result is Theorem 3.17, in which
we characterize all graphs whose toric ideal is robust and is generated by quadratic
binomials. It should be noticed that this result also completes [12, Corollary 5.2],

Theorem 1.2. Let G be a non bipartite graph. The toric ideal associated to G is
robust and is generated by quadrics if and only if all the blocks of G are bipartite
except one which is either a K2,`∪{e} or a double-K2,(r,s) or a necklace-K2,` graph.
The bipartite blocks of G are of type K2,` or cut edges.

The second part of the main results is presented in Section 4, where we work
in the framework of toric ideals associated to submonoids of N. More precisely,
given a submonoid S of (N,+), then it has a unique minimal set of generators
A = {a1, . . . , am}, and the toric ideal of S is defined as IS := IA. Taking d :=
gcd(a1, . . . , am) and A′ := {a1/d, . . . , am/d}, then IA = IA′ . Hence, one may
assume without loss of generality that A = {a1, . . . , am} consists of relatively prime
positive integers and, in this case, S is called a numerical semigroup (for a detailed
study of numerical semigroups we refer the reader to [6, 36]). Since IS has height
m − 1, we have that IS is a complete intersection if and only if one of its Markov
basis (and, thus, all its Markov bases) consists of m − 1 binomials. Complete
intersection numerical semigroups have been widely studied in the literature, see,
e.g., [5, 8, 9, 17, 18, 27].

Take ≺ a monomial order in K[x1, . . . , xm] and denote by in≺(IS) the corre-
sponding initial ideal of IS . Since ht(in≺(IS)) = ht(IS) = m− 1, then in≺(IS) is a
complete intersection if it can be generated by m − 1 monomials. In other words,
in≺(IS) is a complete intersection if and only if the reduced Gröbner basis of IS
with respect to ≺ consists of m− 1 binomials. Since Gröbner bases are generating
sets of the ideal, whenever in≺(IS) is a complete intersection for a monomial order
≺, then IS so is.
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Our main results in this section are summarized in the following diagram:

S = 〈a1, a2〉 ⇐⇒ S is robust
⇓

S has a unique Betti element ⇐⇒ S is generalized robust
⇓

S is free ⇐⇒ in≺(IS) is a C.I. for some ≺
⇓

IS is a C.I.

Theorem 4.7 states that IS has a complete intersection initial ideal if and only
if S is a free numerical semigroup, a family of semingroups studied in [7, 27, 37].
Since in this case, both IS and the corresponding initial ideal in≺(IS) are complete
intersections, it turns out that all the Betti numbers in the whole minimal graded
free resolution of IS and in≺(IS) coincide, providing examples of robustness of Betti
numbers. This is an interesting phenomenon which is known to occur for robust
toric ideals generated by quadrics [11] and also to the ideal of maximal minors of
a generic matrix and its Gröbner basis with respect to a certain monomial order
[16]. In Theorem 4.12 we determine all toric ideals of numerical semigroup that
are generalized robust. It turns out that this property is characterized by a known
subfamily of numerical semigroups studied in [23, 24, 29], namely the semigroups
with a unique Betti element. As an easy consequence, we get in Corollary 4.17 that
there are no nontrivial examples of robust toric ideal of a numerical semigroup,
that is, IS is robust if and only if IS a principal ideal or, in other words, if S is a
2-generated numerical semigroup.

Finally, we state some conclusions and formulate some conjectures and open
problems concerning robustness, generalized robustness and related properties in
toric ideals. These conjectures are supported by some experimental evidence with
the computer softwares CoCoA [1] and Singular [19].

2. Remarks on toric bases

Let A ⊆ Nn be a finite set of nonzero vectors. In this section we will discuss
some known basic facts about the bases associated to the toric ideal IA ⊆ K[x] :=
K[x1, . . . , xn], namely the universal Markov basisMA, the universal Gröbner basis
UA, the Graver basis GrA and the set of the circuits CA. A binomial xu − xv ∈ IA
with u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Nm is called a circuit if it has minimal
support (with respect to set containment), if gcd(xu,xv) = 1 and the nonzero
entries of u + v are relatively prime.

First of all, it is worth pointing out that, since NA is pointed, then the graded ver-
sion of Nakayama’s lemma holds. As a consequence, if we consider a set {g1, . . . , gr}
of A-homogeneous polynomials, one has that IA = 〈g1, . . . , gr〉 if and only if the
cosets of g1, . . . , gr span the K-vector space IA/〈x1, . . . , xm〉 ·IA. As a consequence,
any minimal set of A-homogeneous generators of IA has the same cardinality, which
is µ(IA) := dimK(IA/〈x1, . . . , xm〉 · IA). Moreover, Nakayama’s lemma also guaran-
tees that the A-degrees appearing in any minimal set of A-homogeneous generators
are invariant, these values are usually called Betti degrees of IA. Since every bino-
mial in IA is A-homogeneous, we have the following result.
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Proposition 2.1. The universal Markov basis MA is the set of binomials in IA
that do not belong to 〈x1, . . . , xm〉 · IA.

Moreover, the following inclusions of toric bases hold:

Theorem 2.2. [39, Proposition 4.11], [14, Theorem 2.3] For any toric ideal it holds

CA ⊆ UA ⊆ GrA.
Moreover, since A defines a pointed semigroup, then MA ⊆ GrA.

In the forthcoming we use many times how the toric bases behave with respect
to an elimination of variables, these are summarized in the following result (see,
e.g., [39, Proposition 4.13]).

Proposition 2.3. Let A′ ⊆ A and denote K[xA′ ] := K[xi | ai ∈ A′], then

(a) IA′ = IA ∩K[xA′ ].
(b) CA′ = CA ∩K[xA′ ].
(c) UA′ = UA ∩K[xA′ ].
(d) GrA′ = GrA ∩K[xA′ ].
(e) MA′ ⊇MA ∩K[xA′ ].

In general we do not have equality in Proposition 2.3.(e). For example, for
A′ = {a1, a2} ⊆ A = {a1, a2, a3} ⊆ N with a1 = 4, a2 = 5 and a3 = 6, we
have that MA = {x3

1 − x2
3, x

2
2 − x1x3}, and hence MA ∩ K[x1, x2] = ∅, whereas

MA′ = {x5
1 − x4

2}.
In [11, Proposition 2.5] the authors proved that robustness is preserved under an

elimination of variables, that is, if an ideal IA is robust and A′ ⊆ A, then the ideal
IA′ is also robust. We do not know if generalized robustness is preserved under
elimination of variables, see Question 5.1. Nevethelesss, the following results hold.

Proposition 2.4. Let A ⊆ Nn be a finite set of nonzero vectors and A′ ⊆ A. Then,

(a) If UA ⊆MA, then UA′ ⊆MA′ .
(b) If CA ⊆MA, then CA′ ⊆MA′ .
(c) If GrA =MA, then GrA′ =MA′ .

Proof. (a) If UA ⊆ MA, by Proposition 2.3 we have that UA′ = UA ∩ K[xA′ ] ⊆
MA ∩K[xA′ ] ⊆MA′ . The proof of (b) is analogue to the one of (a).

(c) If GrA = MA, by Proposition 2.3 we have that GrA′ = GrA ∩ K[xA′ ] =
MA ∩K[xA′ ] ⊆MA′ , the inclusion MA′ ⊆ GrA′ follows from Proposition 2.2. �

The next theorem gives a nice property which motivates the study of generalized
robust toric ideals which are generated by quadrics.

Theorem 2.5. A homogeneous toric ideal IA ⊆ K[x1, . . . , xm] is generalized robust
and generated by quadrics if and only if the universal Gröbner basis of IA only
consists of quadrics.

Proof. (=⇒) Since IA is generated by quadrics, then its universal Markov basis
MA consists of quadrics. The result follows from the definition of a generalized
robust toric ideal.

(⇐=) Since the universal Gröbner basis is a set of generators, then IA is generated
by quadrics. Let us see now that MA = UA.

Let f ∈ UA, then f ∈ IA is a quadric and f /∈ 〈x1, . . . , xm〉 · IA (since the
elements of 〈x1, . . . , xm〉 · IA have degree at least three). By the graded version
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of Nakayama’s lemma it follows that f ∈ MA and thus UA ⊆ MA. Conversely,
take f ∈MA. Since the ideal IA is generated by quadrics and due to the fact that
there exists a Markov basis of the ideal which consists of quadrics, by Nakayama’s
lemma it follows that every Markov basis of IA consists of quadrics and thus f is a
quadratic binomial. After reindexing the variables and considering −f if necessary,
we have that either f = x3x4 − x1x2, or f = x2

3 − x1x2, otherwise the ideal is not
prime. In both cases the binomial f is in the reduced Gröbner basis of IA with
respect to the lexicographic order with xm > · · · > x1. Thus, f ∈ UA and therefore
MA ⊆ UA. �

3. Quadratic robust and generalized robust toric ideals of graphs

3.1. Preliminaries. In this section we study the robustness and generalized ro-
bustness property for toric ideals of graphs which are generated by quadratic bi-
nomials. In the rest of the present section, we consider finite, simple and con-
nected graphs. Let G be a graph with vertices V (G) = {v1, . . . , vn} and edges
E(G) = {e1, . . . , em}. Let K[e1, . . . , em] be the polynomial ring in the m variables
e1, . . . , em over a field K. We associate each edge e = (vi, vj) ∈ E(G) with the ele-
ment ae = vi+vj in the free abelian group Zn with basis the set of the vertices of G,
i.e. each vertex vj ∈ V (G) is associated with the vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn,
where the nonzero component is in the j position. We denote by IG the toric ideal
IAG

in K[e1, . . . , em], where AG = {ae | e ∈ E(G)} ⊆ Nn. Toric ideals of graphs are
homogeneous prime ideals and many of their algebraic properties can be described
in terms of the underlying graph. For example, IG has height

(1) ht(IG) = |E(G)| − |V (G)|+ b(G),

where b(G) denotes the number of connected components of the graph G that are
bipartite (see, e.g., [47]). In particular, if G is connected, then b(G) = 1 if G is
bipartite and b(G) = 0 otherwise (see, e.g., [26]). Also, binomial generating sets of
IG can be described in terms of some walks in the graph. To present this result,
we first recall some basic elements from graph theory (for unexplained terminology
and basics on graphs we refer to [13]).

A walk connecting u ∈ V (G) and u′ ∈ V (G) is a finite sequence of vertices of
the graph w = (u = u0, u1, . . . , u`−1, u` = u′), with each eij = (uj−1, uj) ∈ E(G),
for j = 1, . . . , `. The length of the walk w is the number ` of its edges. An
even (respectively odd) walk is a walk of even (respectively odd) length. A walk
w = (u0, u1 . . . , u`−1, u`) is called closed if u0 = u`. A cycle is a closed walk
(u0, u1, . . . , u`−1, u`) with uk 6= uj , for every 1 ≤ k < j ≤ `.

Consider an even closed walk w = (u0, u1, u2, . . . , u2s−1, u2s = u0) of length 2s
with eij = (uj−1, uj) ∈ E(G), for j = 1, . . . , 2s. The binomial

(2) Bw = ei1ei3 · · · ei2s−1
− ei2ei4 · · · ei2s

belongs to the toric ideal IG. Actually, Villarreal proved in [46] that

(3) IG = 〈Bw | w is an even closed walk〉,

that is, the toric ideal IG is generated by the binomials corresponing to even closed
walks of the graph G.

In [33], Ohsugi and Hibi gave the following combinatorial criterion for the toric
ideal of a graph G to be generated by quadrics:
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Theorem 3.1. [33, Theorem 1.2] Let G be a finite connected simple graph. Then,
the toric ideal IG of G is generated by quadrics if and only if the following conditions
are satisfied:

i) if c is an even cycle of G of length ≥ 6, then either c has an even chord or
c has three odd chords e, e′, e′′ such that e and e′ cross in c,

ii) if c1 and c2 are odd chordless cycles of G having exactly one common vertex,
then there exists a bridge between them,

iii) if c1 and c2 are odd chordless cycles of G having no common vertex, then
there exist at least two bridges between c1 and c2.

Also, the only even closed walks of length four in a simple graph are cycles.
Hence, whenever Bw is a quadric, then w is a cycle of length four. Thus, we have
the following.

Corollary 3.2. Let G be a graph. If the toric ideal IG is generated by quadrics,
then all its minimal binomials are of the form Bw, where w is a cycle of length
four.

The Graver basis and the universal Markov basis of the toric ideal of a graph G,
which we denote by GrG andMG correspondingly, were described in [38], Theorem
3.2 and Theorem 4.13 correspondingly, while the universal Gröbner basis, which we
denote by UG, was described in [42, Theorem 3.4]. For the sake of brevity we refer
the reader to the above articles. A necessary and sufficient characterization for
generalized robust toric ideals of graphs was given in [41]:

Theorem 3.3. [41, Theorem 3.4] Let G be a graph and let IG be its corresponding
toric ideal. The ideal IG is generalized robust if and only if MG = GrG.

For general toric ideals, it may happen that the universal Markov basis is not
contained into the universal Gröbner basis (see Section 5 for an example). Nev-
ertheless, in the context of toric ideals of graphs we have that MG ⊆ UG for any
graph G (see [41, Proposition 3.3]). This fact together with Proposition 2.4 yields
that the generalized robustness property of a graph G is a hereditary property, in
the sense that it holds also for any subgraph of G.

Corollary 3.4. Let H be a subgraph of a graph G. If the ideal IG is generalized
robust, then IH is generalized robust.

3.2. Quadratic generalized robust graphs; the bipartite case. We state
some properties of a generalized robust toric ideal of a graph, which stem from
directly of the results in [38, 41, 42] and will be useful for us in the sequel. By
chordless graph we mean a graph in which every cycle has no chords.

Corollary 3.5. Let G be a bipartite graph.

α) The ideal IG is generalized robust if and only if the graph G is chordless.
β) The ideal IG is generalized robust and generated by quadrics if and only if

all the cycles of the graph G have length four.

Proof. (α) In [41, Proposition 4.3] the author proved that an even cycle in a graph
of a generalized robust toric ideal has only odd chords (if it has). Since the graph G
is bipartite it follows that it is chordless. Conversely, it is known that MG ⊆ GrG
and let Bw ∈ GrG. The graph is bipartite, thus the walk w is an even cycle, see [38,
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Theorem 3.2]. Since the graph is chordless, the cycle w is chordless and therefore
Bw ∈MG, see [38, Theorem 4.13]. The result follows from Theorem 3.3.

(β) It follows from the previous argument (α) and from Theorem 3.1.
�

We remark that in the case of non bipartite graphs, none of the two of the
implications of Corollary 3.5 (α) are true. For example in Figure 1, we present a
non bipartite graph G1 which is not chordless and whose toric ideal is generalized
robust since it is principal with IG1

= 〈ac − bd〉, see [38, Theorem 4.13]. Also,
in Figure 1, we present a chordless non bipartite graph G2 whose corresponding
toric ideal is not generalized robust. Indeed, one can verify that it not satisfies
the condition in Theorem 3.3. More precisely, the binomial Bw = acf2h− be2ig is
in the Graver basis of the ideal and is not minimal since the corresponding walk
w = (a, b, c, e, f, i, h, g, f, e) has a bridge d, see [38, Theorems 3.2 and 4.13].

G1

G2
a

b

c

d e

a

b

c

d

e f

g

h

i

Figure 1. Corollary 3.5.(α) does not hold for non bipartite graphs.

By Corollary 3.5, the bipartite graphs yielding generalized robust toric ideals of
graphs which are generated by quadrics are exactly the graphs whose cycles have
all length 4. In Theorem 3.7 we describe precisely these graphs. Before proceeding
with its statement and proof, we introduce some definitions and notation.

We denote by Kn the complete graph on n vertices and by Kr,s the complete
bipartite graph with partitions of sizes r ∈ Z+ and s ∈ Z+. In Figure 2 we see the
complete graph on four vertices K4 and the complete bipartite graph K3,3.

K4 K3,3

Figure 2. The complete graphs K4 and K3,3

A cut edge (respectively cut vertex) is an edge (respectively vertex) of the graph
whose removal increases the number of connected components of the remaining
subgraph. A graph is called biconnected if it is connected and does not contain a
cut vertex. A block is a maximal biconnected subgraph of a graph. For a given
graph G and a set S ⊆ V (G), we denote by [S] the corresponding induced subgraph
of G, that is, the graph with vertex set S and whose edge set consists of the edges
in E(G) having both endpoints in S.

We have the following combinatorial lemma.
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Lemma 3.6. The only biconnected graphs whose cycles have all length 4 are cut
edges and complete bipartite graphs K2,` with ` ≥ 2.

Proof. If the graph has no cycles, then it is biconnected if and only if it is a cut
edge. The graph K2,` has only cycles of length 4 for all ` ≥ 2. Consider now a
non-acyclic biconnected graph B whose cycles all have length 4. We have that B
is bipartite and we denote by U and V the bipartition of V (B). Take u ∈ U and
v ∈ V , since B is biconnected, there are two disjoint paths from u to v. Moreover,
B has only cycles of length four, so one of these paths has length 1 and, hence,
{u, v} is an edge of B. As a consequence B is a complete bipartite graph B = Kt,`

for some 2 ≤ t ≤ `. If t ≥ 3, then B has a 6-cycle, a contradiction. Thus, we
conclude that B = K2,` for some ` ≥ 2. �

As a consequence of this lemma and Corollary 3.5 we get the following.

Theorem 3.7. Let G be a bipartite graph. The ideal IG is generalized robust and
generated by quadrics if and only if all the blocks of G are K2,` or cut edges, for
some ` ≥ 2.

Proof. (=⇒) Let IG be a generalized robust toric ideal which is generated by qua-
dratic binomials and let B be one of the blocks of G. By Corollary 3.4 and Lemma
3.6 we have that B is a cut edge or a K2,`, for some ` ≥ 2.

(⇐=) The graph G is consists of blocks which are either K2,` or cut edges.
Therefore all the cycles of G have length four. By Corollary 3.5 (β) it follows that
the ideal is generalized robust and is generated by quadrics. �

In Figure 3 we present an example of a bipartite graph G whose corresponding
toric ideal is generalized robust and is generated by quadrics.

Figure 3. A bipartite graph G such that the ideal IG is a qua-
dratic generalized robust

3.3. Quadratic generalized robust graphs; the general case. We are moving
on to the general case of non bipartite graphs. As we can see in the next lemma,
when the toric ideal of a graph is generated by quadratic binomials, then it has at
most one non bipartite block.

Lemma 3.8. Let G be a simple connected graph such that the corresponding toric
ideal IG is generated by quadrics. Then the graph G has at most one non bipartite
block.
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Proof. Let G be a connected graph with at least two non bipartite blocks and let
them be B1 and B2. Let c1 and c2 be two chordless odd cycles of the blocks B1

and B2 correspondingly. We separate the proof in two cases: either the cycles have
(exactly) one common vertex or they are vertex disjoint.

In the first case, by Theorem 3.1.(ii) there exists a bridge between the cycles
c1, c2, but this contradicts the fact that the cycles belong to different blocks. In
the second case, Theorem 3.1.(iii) guarantees that there exist e1 = (x1, y1) and
e2 = (x2, y2) two bridges between c1, c2, where x1, x2 ∈ V (c1) and y1, y2 ∈ V (c2).
There are two cases, either x1 6= x2 and y1 6= y2 or x1 = x2 (similarly if y1 = y2).
The first case is not possible because c1, c2 are in different blocks. The second
case yields two odd cycles in different blocks with one common vertex (the vertex
x1 = x2), and we already discussed that this is not possible. �

In order to give the structural characterization of a graph G such that IG is
generalized robust and generated by quadrics, we need to introduce the notions of
the double-K2,(r,s) graph and the necklace-K2,` graph. We remind that a 2-clique
sum of the graphs G1 and G2 is obtained by identifying an edge e1 of G1 and an
edge e2 of G2.

Definition 3.9. We consider the non bipartite graph G1 = K2,r ∪ {e}, where e is
an edge connecting two vertices of K2,r and the bipartite graph G2 = K2,s, where
r, s ≥ 2. A graph G is called a double-K2,(r,s) if it is a 2-clique sum of the graphs
G1 and G2 obtained by identifying the edge e of G1 with any edge of G2.

For example, in Figure 4 we present the two non-isomorphic double-K2,(3,4)

graphs.

e e

Figure 4. The two non-isomorphic double-K2,(3,4) graphs

Proposition 3.10. If G is a double-K2,(r,s), then IG is a generalized robust toric
ideal generated by quadrics.

Proof. Let G be a double-K2,(r,s) graph and we consider the graph G′ which consists
of two connected components, the K2,r and the K2,s. We observe that IG′ ⊆ IG
since every even closed walk in G′ is in G. Since both connected components of G′

are bipartite, we have that b(G′) = 2 and, by (1):

ht(IG′) = |E(G′)| − |V (G′)|+ 2 = 2(r + s)− (r + s+ 4) + 2

= 2(r + s)− (r + s+ 2) = r + s− 2

= |E(G)| − |V (G)| = ht(IG).
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So both IG and IG′ are prime ideals of the same height and IG′ ⊆ IG, hence
IG = IG′ and the proof follows from Theorem 3.7. �

In [44] the authors define the necklace graph as a graph which comes from iden-
tifying two vertices at odd distance of a chain of bipartite blocks. Following the
same structure, we define the necklace-K2,` graphs. Let TG be the block tree of a
graph G, that is, the bipartite graph with bi-partition (B, S) where B is the set of
the blocks of G and S is the set of the cut vertices of G, such that (B, u) is an edge
if and only if u ∈ B. A chain of bipartite blocks is a graph G such that its block
tree TG is a path.

Definition 3.11. Let R be a bipartite graph consisting of a chain of (bipartite)
blocks B1, . . . , Bk where k ≥ 2 and either Bi = K2,ni for some ni ≥ 2, or Bi is
a cut edge of R, for i = 1, . . . , k. Let x1 ∈ V (B1) and x2 ∈ V (Bk) be two non-
adjacent vertices of R at odd distance which are not cut vertices of R. We define
a necklace-K2,` graph as the graph G obtained after identifying the vertices x1 and
x2. That is, the graph on the vertex set

V (G) = (V (R) \ {x1, x2}) ∪ {x}

and edges

E(G) = E(R \ {x1, x2}) ∪ {{u, x} | either {u, x1} ∈ E(R) or {u, x2} ∈ E(R)}.

=⇒x1 x2

x

Figure 5. The construction of a necklace-K2,` graph

Proposition 3.12. If G is a necklace-K2,`, then IG is a generalized robust toric
ideal generated by quadrics.

Proof. Take R as in the definition of necklace-K2,`. Since every walk in R is a
walk in G we have that IR ⊆ IG. Moreover, the graph R is bipartite and therefore
ht(IR) = |E(R)| − |V (R)|+ 1, while the graph G is not bipartite, that is ht(IG) =
|E(G)| − |V (G)|. By (1) it follows that

ht(IG) = |E(G)| − |V (G)| = |E(R)| − (|V (R)| − 1)

= |E(R)| − |V (R)|+ 1 = ht(IR).

Hence IR = IG and the proof follows from Theorem 3.7. �
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Next, we state the main result of this section in which we give a complete charac-
terization of the graphs G such that IG is a generalized robust toric ideal generated
by quadratic binomials. By Theorem 2.5, this class coincides with the graphs G
such that UG consists of quadrics.

Theorem 3.13. Let G be a non bipartite graph. The ideal is generalized robust
and is generated by quadrics if and only if all the blocks of G are bipartite except
one, which is either a K4 or a K2,` ∪ {e} or a double-K2,(r,s) or a necklace-K2,`

graph. Every bipartite block of the graph G are of type K2,` for some ` or cut edges.

In the poof of this result we repeatedly use the following lemma, which is a
consequence of [38, Corollary 3.3].

Lemma 3.14. Let G be a connected graph. If IG is generalized robust and generated
by quadrics, then:

(a) it has no even cycles of length ≥ 6,
(b) it has no two edge disjoint odd cycles.

Proof. (a) Let w be an even cycle of G. By [38, Corollary 3.3] we have that
Bw ∈ GrG. Since IG is generalized robust, by Theorem 3.3, we have that Bw ∈MG.
But since IG is generated by quadrics, then Bw is quadric and we conclude that w
is a 4-cycle.

(b) Assume that there are two edge disjoint odd cycles. By [38, Corollary 3.3],
there exists an even closed walk w (which consists of the above two odd cycles
and a walk connecting them) such that Bw ∈ GrG. Since the ideal is generalized
robust, by Theorem 3.3 we have that Bw is also minimal and has degree ≥ 3, a
contradiction due to the fact that the ideal is generated by quadrics. �

Proof of Theorem 3.13. (=⇒) Assume that IG is generalized robust and generated
by quadrics. By Lemma 3.8, the graph G has exactly one non bipartite block which
we denote by B. By Corollary 3.4 and Theorem 3.7 the rest of the blocks are of
the form K2,` or cut edges. We separate two cases: either (i) there exists an edge
e ∈ E(B) such that the graph B \ {e} is bipartite, or (ii) for every edge e ∈ E(B)
the graph B \ {e} is not bipartite; where B \ {e} denotes the graph with vertex set
V (B) and edge set E(B)− {e}.

(i) Let e ∈ E(B) such that B \ {e} is bipartite. Combining Theorem 3.7 and
Corollary 3.4, it follows that the blocks of B \ {e} are K2,` or cut edges. If B \ {e}
is still biconnected, then B is a K2,` ∪ {e}. If B \ {e} is not biconnected, then it
is a chain of blocks, where each block is either a K2,` or a cut-edge. We get thus
that B is a necklace-K2,` graph.

(ii) Assume that for every edge e ∈ E(B) the graph B \ {e} is not bipartite.
Claim 1: Every edge of B belongs to a cycle of length four of B.
Suppose not and let ε be an edge of B that does not belong to a cycle of length

four of B. Since IB is generated by quadrics and every 4-cycle of B is in B − {ε},
by Corollary 3.2, it follows that IB ⊆ IB\{ε}. Obviously we have that IB\{ε} ⊆ IB
and therefore IB\{ε} = IB . But the graph B \ {ε} is not bipartite and connected,
then

ht(IB\{ε}) = |E(B \ {ε})| − |V (B \ {ε})|
= |E(B)| − 1− |V (B)| = ht(IB)− 1,

a contradiction.
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Let G1, . . . , Gk be the maximal subgraphs (with respect to the inclusion) of type
K2,` of B. By (Claim 1) we have that every edge of the block B belongs to a K2,`,
thus we have that E(G1) ∪ . . . ∪ E(Gk) = E(B).

Claim 2: E(Gi) ∩ E(Gj) = ∅ for all 1 ≤ i < j ≤ k.
Otherwise, suppose that there exist distinct i, j ∈ {1, . . . , k} such that Gi and Gj

have at least one edge in common. Let Gi = K2,r and Gj = K2,s with r, s ≥ 2, and
denote by {v1, v2}, {w1, w2, . . . , wr} and {u1, u2}, {x1, x2, . . . , xs} their correspond-
ing bipartitions. Let e be the common edge of Gi, Gj and without loss of generality
we suppose that e = (v1, w1) = (u1, x1) (otherwise we rename the vertices). We
note that the vertex u2 /∈ V (Gi). Indeed, u2 = v2 contradicts the maximality of
Gj , and u2 = w2 implies that the odd cycle (v1, w1, u2) belongs to the bipartite
graph Gi, a contradiction. Similarly, we note that the vertex x2 /∈ V (Gi). We
conclude that we have a length 6 cycle (v1 = u1, x2, u2, w1 = x1, v2, w2, v1) in B, a
contradiction to Lemma 3.14, and (Claim 2) is proved.

We denote by [G1], . . . , [Gk] the induced subgraphs with vertices V (G1), . . . , V (Gk)
correspondingly. We split the proof in two cases: either (iia) the graphs [G1], . . . , [Gk]
are bipartite or (iib) there exists i ∈ {1, . . . , k} such that the graph [Gi] is non bi-
partite.

(iia) First of all, we remark that |V (Gi) ∩ V (Gj)| ≤ 1 for all 1 ≤ i < j ≤ k.
Otherwise, suppose that there exist distinct i, j ∈ {1, . . . , k} such that Gi and

Gj have at least two vertices in common. Let Gi = K2,r and Gj = K2,s with
r, s ≥ 2, and denote by {v1, v2}, {w1, w2, . . . , wr} and {u1, u2}, {x1, x2, . . . , xs} their
corresponding bipartitions. Since both Gi and Gj are complete bipartite graphs
and they do not share edges by (Claim 2), then the two common vertices are not
adjacent. By the maximality of Gi and Gj , the common vertices have to be xi = wi′

and xj = wj′ , for some i, j ∈ {1, . . . , r} and i′, j′ ∈ {1, . . . , s} and r, s > 2. Then a
cycle of length 6 arises; namely the cycle (xi = wi′ , u1, xj = wj′ , v1, xk, v2, xi = wi′)
with k ∈ {1, . . . , s} \ {i, j}, a contradiction to Lemma 3.6.

Consider now G1, G2 two maximal subgraphs of type K2,` with one vertex in
common (there are such subgraphs since B is biconnected) and let {x} be the
common vertex of G1, G2 (the vertex which we discussed above). Take G′ the
graph with vertex set

V (G′) = V (B \ {x}) ∪ {x1, x2}

and edge set

E(G′) = E(B \ {x}) ∪ {{x1, u} : {u, x} ∈ E(G1)} ∪ {{x2, v} : {v, x} ∈ E(B \G1)}.

By (Claim 1) and (Claim 2) we know that E(B) = E(G1) t . . . t E(Gk), then
|E(G′)| = |E(B)|. As a consequence, we have that

(4) ht(IG′) =

{
|E(B)| − (|V (B)|+ 1) + 1, if G′ is bipartite

|E(B)| − (|V (B)|+ 1), if G′ is not bipartite

while

(5) ht(IB) = |E(B)| − |V (B)|

Combining (4) and (5) we have that

(6) ht(IB)− ht(IG′) =

{
0, if G′ is bipartite

1, if G′ is not bipartite



14 IGNACIO GARCÍA-MARCO AND CHRISTOS TATAKIS

Since every walk in G′ corresponds to a walk in B, we have that IG′ ⊆ IB .
Let us prove the converse statement. We know that IB is generated by quadrics,
i.e., binomials which correspond to cycles of length four (see Corollary 3.2) . Let
c = (v1, v2, v3, v4) be a cycle of B, we are going to build a cycle c′ in G′ such that
Bc = Bc′ . If c does not pass through x, then we take c′ = c. In case that c passes
through x, then it has the form (x, v1, v2, v3, x). Since the vertices of c form a K2,2,
then there exists an i ∈ {1, . . . , k} such that {x, v1, v2, v3, x} ⊆ V (Gi). If i = 1 we
choose c′ := (x1, v1, v2, v3, x1) and, if i ≥ 2 we choose c′ := (x2, v1, v2, v3, x2). It
follows then that IG′ ⊆ IB and, therefore,

(7) ht(IB) = ht(IG′)

Combining (6) and (7) we conclude that G′ is bipartite. Since the ideal IG
is generalized robust and generated by quadrics, by Corollary 3.4 it follows that
IB = IG′ so is. Since G′ is bipartite, by Theorem 3.7 all the blocks of G′ are of
type K2,` or cut edges. By construction of the graph G′ we have that the block B
is a necklace graph of bipartite blocks each of them is of type K2,`. Note also that
every path from x1 to x2 has odd length because B is not bipartite and G is.

(iib) We assume that there exists i ∈ {1, . . . , k} such that the graph [Gi] is not
bipartite. Then [Gi] is a K2,` graph plus at least one more edge. We observe that
we can only have one more edge or [Gi] = K4, otherwise we would be in one of
the three cases shown in Figure 6. In the three cases there are two edge disjoint
triangles, which contradicts Lemma 3.14.

Figure 6. The three non-isomorphic graphs K2,4 plus two edges

As a consequence, either i) [Gi] = K4, or ii) [Gi] = K2,` ∪ {e}. In ii), by (Claim
1), there is another maximal Gj such that e ∈ E(Gj). We observe that [Gj ] is
bipartite. Otherwise, there exists a subgraph as the one shown in Figure 7, again
a contradiction to Lemma 3.14.(b).

e e e

Figure 7. The two [Gi]’s with a common edge are non bipartite

Thus, in i) we have that [Gi] = K4 and in ii) we have that the induced subgraph
with vertex set V (Gi) ∪ V (Gj) is a double-K2,(r,s) graph. We just have to prove
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that in both cases the graph has no more vertices. We denote H = K4 in i) and
H double-K2,(r,s) in ii). We observe that every two vertices in H can be joined by
two (non necessarily disjoint) paths: an odd path of length ≥ 3 and an even path.
Assume that there is another vertex v at distance one of u ∈ V (H). Since the graph
is biconnected there exists a path from v to a vertex of V (H)−{u} and we take the
shortest one. Hence, we have a path from u to another vertex of u′ ∈ V (H) that
only has its two endpoints in V (H). If this path is odd, there is an even cycle of
length ≥ 6, a contradiction to Lemma 3.14. If this path is even, then there is even
cycle of length ≥ 6 or one of the Gi’s involved is not a maximal K2,` subgraph, a
contradiction arises for both cases.

(⇐=) We have exactly one non-bipartite block. As a consequence, every element
in the Graver basis (and, hence, every minimal generator and every element in
the universal Gröbner basis) corresponds to a walk entirely contained in a block.
Thus, by Theorem 3.7 it suffices to prove that K4, K2,` ∪ {e}, a necklace-K2,`

and a double-K2(r,s) graph give rise to generalized robust toric ideals generated by
quadrics. Clearly IK4 is generalized robust and generated by quadrics (see Example
3.16) and, since IK2,`∪{e} = IK2,`

(they are both prime ideals, have the same height
and one is contained in the other, so they are equal), so is IK2,`∪{e}. The remaining
two cases follow from Propositions 3.10 and 3.12, and the proof is complete. �

In Figure 8 we see an example of a graph G whose corresponding toric ideal IG
is a generalized robust ideal and is generated by quadrics. The graph G consists of
five blocks; two cut edges, a K2,4, a K2,6 and exactly one non bipartite block which
is a K4. The existence of the K4 as a subgraph, as we show in the next section,
implies that the ideal IG is not robust.

Figure 8. A graph G such that IG is quadratic generalized robust
and not quadratic robust

3.4. Quadratic robust graphs. The goal of this section is to prove Theorem
3.17, where we characterize the graphs providing robust toric ideals generated by
quadrics. This result completes Corollary 5.2 of Boocher et al. in [12]. The main
ingredients for proving the present theorem are Theorem 3.13 and the following
property:

Theorem 3.15. [41, Theorem 5.10] Let IA be a robust toric ideal. Then IA has a
unique minimal system of generators.

From the above result it follows that a toric ideal IA with a unique minimal sys-
tem of generators (i.e., MA =MA) is robust if and only if it is a generalized robust
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([41, Corollary 5.13]). From [38] we know that IG is generated by indispensable bi-
nomials (i.e., it has a unique minimal system of generators) if and only if no closed
walk w such that Bw is a minimal generator of IG has an F4 (being the concept of
F4 rather technical, we refer to [38] for its definition). In the particular case that
IG is generated by quadrics, the existence of an F4 in a closed walk w providing a
minimal generator Bw is equivalent to the existence of a subgraph K4. Hence, the
only obstruction for a toric ideal generated by quadrics to have a unique minimal
set of generators is the existence of a subgraph K4 (or, equivalently, having clique
number ≥ 4). We work out the example of G = K4 in detail to show that IK4 is
generalized robust but not robust.

Example 3.16. Consider the complete graph on four vertices K4 on the vertex
set V (K4) = {v1, v2, v3, v4} and on the edge set E(K4) = {e1 = {v1, v2}, e2 =
{v2, v3}, e3 = {v3, v4}, e4 = {v4, v1}, f1 = {v1, v3}, f2 = {v2, v4}} (see Figure
9). It is clear that we have exactly three 4-cycles w1 = (v1, v2, v3, v4, v1), w2 =
(v1, v2, v4, v3, v1) and w3 = (v1, v4, v2, v3, v1).

The corresponding ideal IK4 is generated by the three binomials:

IK4
= 〈Bw1

= e1e3 − e2e4, Bw2
= e1e3 − f1f2, Bw3

= e2e4 − f1f2〉.

Obviously, none of Bw1 , Bw2 , Bw3 is indispensable since

Bwi
∈ 〈Bwj

, Bwk
〉, for all distinct i, j, k where i, j, k ∈ {1, 2, 3}.

Thus, the ideal has three different Markov bases;

M1 = {Bw1 , Bw2},M2 = {Bw1 , Bw3},M3 = {Bw2 , Bw3}.

The universal Markov basis of the ideal is MK4
= {Bw1

, Bw2
, Bw3

}. It is easy to
check that the universal Gröbner basis of the ideal IK4

is UK4
= {Bw1

, Bw2
, Bw3

}.
It follows that the quadratic ideal IK4

is generalized robust but not robust.

e3

e2

e1

e4

f1

v1 v2

v3v4

f2

Figure 9. The graph K4 in Example 3.16.

Putting all together we have that if IG is generated by quadrics, then IG is robust
if and only if IG is generalized robust and does not have K4 as subgraph. Thus,
from Theorem 3.17 we deduce the following structural result.

Theorem 3.17. Let G be a non bipartite graph. The ideal IG is robust and is
generated by quadrics if and only if all the blocks of G are bipartite except one
which is either a K2,` ∪ {e} or a double-K2,(r,s) or a necklace-K2,` graph. The
bipartite blocks of the graph G are of type K2,` or cut edges.
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Remark 3.18. In [40] Sullivant introduces and studies the notion of strongly robust
toric ideals. The motivation for studying strongly robust toric ideals comes from
algebraic statistics. A toric ideal is strongly robust if its Graver basis coincides with
its set of indispensable binomials, for more see [40]. From [41] one has that the
notion of strongly robust and robust coincide for toric ideals of graphs. It follows
that Theorem 3.17, also characterizes completely the strongly robust quadratic toric
ideals of graphs.

Example 3.19. In Figure 10 we consider a graph G which consists of six blocks;
two cut edges, a K2,2, a K2,4, a K2,6 and one necklace-K2,` graph. By Theorem 3.13
and Theorem 3.17 the corresponding ideal IG is both a robust and a generalized
robust toric ideal and is generated by quadrics. The graph in Figure 8 contains a
K4 as a subgraph. The corresponding ideal is a quadratic generalized robust toric
ideal, however it is not robust because of the existence of a K4.

Figure 10. A graph G such that IG is both quadratic robust and
quadratic generalized robust

4. Generalized robust ideals and numerical semigroups

4.1. Numerical semigroups having a complete intersection initial ideal.
A numerical semigroup is a submonoid S of (N,+) with finite complement. Every
numerical semigroup has a unique minimal generating set A = {a1, . . . , am} ⊆ Z+

of relatively prime integers, which is always finite. The number m of elements of A
is usually called the embedding dimension of S. The only numerical semigroup with
embedding dimension 1 is S = N, here A = {1} and IS is the zero ideal. From now
on we assume that S ( N and, as a consequence, its embedding dimension is at least
two. When we write S = 〈a1, . . . , am〉 we implicitly mean the numerical semigroup
S = {

∑m
i=1 αiai |αi ∈ N} with minimal set of generators A = {a1, . . . , am}, and we

call IS := IA the toric ideal of the corresponding semigroup.
By Krull’s dimension theorem, any set of generators of an ideal J ⊆ K[x] has at

least ht(J) elements and is a complete intersection when equality occurs. Whenever
S = 〈a1, . . . , am〉 is a numerical semigroup, then IS has height m − 1 and IS is a
complete intersection if and only if µ(IS) = m − 1 or, in other words, if it can be
generated by a set of m− 1 binomials.

Given a monomial ordering ≺, we have that ht(in≺(IS)) = ht(IS) and that
µ(in≺(IS)) ≥ µ(IS). Hence, whenever there exists a monomial ordering such that
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in≺(IS) is a complete intersection, then so is IS . In Theorem 4.7 we characterize
all numerical semigroups having a complete intersection initial ideal.

A numerical semigroup S with minimal generating set A = {a1, . . . , am} is said
to be free for the arrangement a1, . . . , am if

(8) lcm(ai, gcd(ai+1, . . . , am)) ∈ 〈ai+1, . . . , am〉, for all i ∈ {1, . . . ,m− 1}.

Equivalently, if µi := lcm(ai, gcd(ai+1, . . . , am)), the numerical semigroup S is free
for the arrangement a1, . . . , am if there exist α(i,i+1), . . . , α(i,m) ∈ N such that
µi = α(i,i+1)ai+1 + · · ·+ α(i,m)am for all i ∈ {1, . . . ,m− 1}. We say that S is free
if it is free for an arrangement of its minimal generating set.

Example 4.1. Consider the numerical semigroup S = 〈a1, a2, a3, a4〉 with a1 =
8, a2 = 9, a3 = 10, a4 = 12. We have that S is not free for the arrangement
a1, a2, a3, a4 because lcm(a1, gcd(a2, a3, a4)) = 8 /∈ 〈a2, a3, a4〉. However, S is free
for the arrangement a2 = 9, a3 = 10, a1 = 8, a4 = 12. Indeed,

• lcm(a2, gcd(a1, a3, a4)) = 18 = a1 + a3 ∈ 〈a1, a3, a4〉,
• lcm(a3, gcd(a1, a4)) = 20 = a1 + a4 ∈ 〈a1, a4〉, and
• lcm(a1, a4) = 24 = 2a4 ∈ 〈a4〉.

Thus, S is a free numerical semigroup.

Equivalently, this notion can be inductively defined as follows: a numerical
semigroup S is free if either S = 〈1〉 = N or there exists an arrangement A =
{a1, . . . , am} of its minimal generators such that da1 ∈ 〈a2, . . . , am〉 and the nu-
merical semigroup S ′ = 〈a2/d, . . . , am/d〉 is free, where d = gcd(a2, . . . , am). The
following result can be found in several places in the literature, see, e.g., [7, Lemma
2.1 and Proposition 2.3] or [32, Lemma 3.2].

Proposition 4.2. Let S = 〈a1, . . . , am〉 be a numerical semigroup and set d :=
gcd(a2, . . . , am). If da1 = α2a2 + · · ·+ αmam with α2, . . . , αm ∈ N, then

IS = IS′ ·K[x1, . . . , xm] + 〈xd1 − x
α2
2 · · ·xαm

m 〉,

where S ′ = 〈a2/d, . . . , am/d〉 and IS′ ⊆ K[x2, . . . , xm].

Applying inductively Proposition 4.2 we get the following result, which explains
how to use condition (8) to construct a minimal set of generators of IS when S is
free.

Proposition 4.3. Let S = 〈a1, . . . , am〉 be a free semigroup for the arrangement
a1, . . . , am. Consider βi := lcm(ai, gcd(ai+1, . . . , am))/ai and α(i,j) ∈ N so that

lcm(ai, gcd(ai+1, . . . , am)) =

m∑
j=i+1

α(i,j)aj for all i ∈ {1, . . . ,m− 1}.

Then, IS = 〈f1, . . . , fm−1〉, where fi = xβi

i −
∏m
j=i+1 x

α(i,j)

j for all i ∈ {1, . . . ,m−1}.

As a direct consequence of Proposition 4.3, every free semigroup has a set of
generators consisting of m − 1 binomials and, thus, it is a complete intersection.
When m = 2 every numerical semigroup is free. For m = 3, Herzog proved that S is
free if and only if IS is a complete interesection, see [27]. For m ≥ 4, there are com-
plete intersection semigroups which are not free. For example S = 〈10, 14, 15, 21〉
is not free for any arrangement of the generators and IS is a complete intersection;
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indeed, one can check that {x3
1− x2

3, x
3
2− x2

4, x
2
1x3− x2x4} is a Markov basis for IS

(and it is also the universal Markov basis of IS).
In this section we will use the following general fact about toric ideals, which

we write here only for numerical semigroups (see, e.g., [39] or [47]). Let S =
〈a1, . . . , am〉 be a numerical semigroup and consider the morphism of groups

ρ : Zm −→ Z, induced by ρ(ei) = ai, ∀i ∈ {1, . . . ,m},
being {e1, . . . , em} the canonical basis of Zm. Let u,v ∈ Zm and consider the

binomial f = xu − xv, we set f̃ := u− v ∈ Zm. We have that f ∈ IS if and only if

f̃ ∈ ker(ρ). Moreover, we have the following:

Proposition 4.4. Let {f1, . . . , fr} be a set of binomials. If IS = 〈f1, . . . , fr〉, then

ker(ρ) = 〈f̃1, . . . , f̃r〉.

From the following two propositions easily follows the proof of Theorem 4.7,
which is the main result of this subsection.

Proposition 4.5. Let S be a numerical semigroup with minimal generating set
A = {a1, . . . , am}. Then, S is free for the arrangement a1, . . . , am if and only if the
reduced Gröbner basis with respect to the lexicographic order with x1 � · · · � xm
has m− 1 elements.

Proof. (=⇒) Suppose that S = 〈a1, . . . , am〉 is free for the ordering a1, . . . , am. By
Proposition 4.3 we have that

IS = 〈f1, . . . , fm−1〉, where fi = xβi

i −
m∏

j=i+1

x
α(i,j)

j , for some βi, α(i,j) ∈ N.

Considering≺ the lexicographic order with x1 � · · · � xm we observe that in≺(fi) =

xβi

i for all i ∈ {1, . . . ,m − 1}. Since the initial forms are pairwise prime, then
G = {f1, . . . , fm−1} is a Gröbner basis of IS for ≺ and, hence, the reduced Gröbner
basis with respect to ≺ has m− 1 elements.

(⇐=) Consider ≺ the lexicographic order with x1 � · · · � xm and let G be
the corresponding reduced Gröbner basis of IS . For all i ∈ {1, . . . ,m − 1} we
have that x

ai+1

i − xaii+1 ∈ IS and, hence, x
ai+1

i ∈ in≺(IS). As a consequence,

in≺(IS) = 〈xb11 , . . . , x
bm−1

m−1 〉, with b1, . . . , bm−1 ∈ Z+ and G = {g1, . . . , gm−1} with

gi = xbii −Mi, being Mi a monomial not involving the variables x1, . . . , xi.
Our next goal is to prove that b1 = gcd(a2, . . . , am) from which we conclude that

lcm(a1, gcd(a2, . . . , am)) ∈ 〈a2, . . . , am〉.
Set B := gcd(a2, . . . , am), we observe that

ZBa1 = Za1 ∩ (

m∑
j=2

Zaj)

and, in particular,

(9) Ba1 =

m∑
i=2

γjaj for some γj ∈ Z,

Since g1 ∈ IS , it follows that

b1a1 = degA(M1) ∈ Za1 ∩ (

m∑
j=2

Zaj)
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and, then, B divides b1. Moreover, following the notation of Proposition 4.4, we
have that

ker(ρ) = 〈g̃1, . . . , g̃m−1〉 where g̃i = biei −
∑
j>i

c(i,j)ej ∈ Zm

for some c(i,j) ∈ N and, from (9), we deduce that

Be1 −
m∑
j=2

γjej ∈ ker(ρ).

Since g̃1 is the only element among g̃1, . . . , g̃m−1 with a nonzero first entry, we
conclude that b1 divides B.

We have thus already proved that

b1 = gcd(a2, . . . , am) and g1 = xb11 −M1 ∈ IS .

Then,

a1 gcd(a2, . . . , am) = degA(M1) ∈ 〈a2, . . . , am〉.
Since gcd(a1, gcd(a2, . . . , am) = 1 it follows that

a1 gcd(a2, . . . , am) = lcm(a1, gcd(a2, . . . , am)) ∈ 〈a2, . . . , am〉.

Finally, it suffices to observe that

G ∩K[x2, . . . , xm] = {g2, . . . , gm−1}

is the reduced Gröbner basis of IS ∩ K[x2, . . . , xm] = IS′ with respect to the lexi-
cographic order with x2 � · · · � xm and proceed inductively to get the result. �

Proposition 4.6. Let S be a numerical semigroup with minimal generating set
A = {a1, . . . , am}. If G = {g1, . . . , gm−1} is a Gröbner basis of IS with respect to
a monomial ordering ≺, then G is also a Gröbner basis with respect to a certain
lexicographic monomial ordering ≺lex.

Proof. Since G hasm−1 elements, then µ(in≺(IS)) = m−1. For all i, j ∈ {1, . . . ,m}
with i 6= j, we have that x

aj
i − x

ai
j ∈ IS and, hence, either x

aj
i or xaij belongs to

the initial ideal in≺(IS). As a consequence, we may assume (after reindexing the

variables if necessary) that in≺(IS) = 〈xb11 , . . . , x
bm−1

m−1 〉 for some b1, . . . , bm−1 ∈ Z+

and that gi = xbii −Mi, where Mi is a monomial not involving the variable xi, in
which i = 1, . . . ,m− 1.

Claim: there exists an ` ∈ {1, . . . ,m− 1} such that x` does not divide Mi for all
i ∈ {1, . . . ,m− 1}.

Proof of the claim: Assume by contradiction that the claim does not hold, i.e.,
for all ` ∈ {1, . . . ,m − 1} there exists i ∈ {1, . . . ,m − 1} such that x` divides Mi.
We consider the simple directed graph with vertex set {1, . . . ,m − 1} and arc set
{(j, i) | 1 ≤ i, j ≤ m − 1 and xj divides Mi}. Then, the out-degree of every vertex
is greater or equal to one and, thus, there is a directed cycle in the graph. Assume,
without loss of generality, that the cycle is (1, 2, . . . , r, 1) with r ≤ m − 1. This
implies that gi ∈ 〈xi−1, xi〉, ∀i = 1, . . . , r − 1 and x0 = xr, thus:

〈g1, . . . , gr〉 ( 〈x1, . . . , xr〉,

and so

IS ( H := 〈x1, . . . , xr, gr+1, . . . , gm−1〉,
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but this is not possible because IS is prime and

m− 1 = ht(IS) < ht(H) ≤ m− 1.

Hence, x` only appears in g`. Assume without loss of generality that ` = 1.
Proceeding as before, one can prove that there exists an `′ ∈ {2, . . . ,m} such that
x′` does not divide Mi for all i ∈ {2, . . . ,m − 1}. Iterating this idea one gets that,
after reindexing the variables if necessary, the variables x1, . . . , xi do not divide Mi.
Hence, taking ≺lex the lexicographic order with x1 �lex · · · �lex xm one has that
in≺lex

(gi) = xbii . Since they are all relatively prime, then G is also a Gröbner basis
for ≺lex. �

Now, we can prove the main result of this subsection.

Theorem 4.7. Let S be a numerical semigroup. Then, S is free if and only if it
has a Gröbner basis with m− 1 elements.

Proof. (=⇒) Follows directly from Proposition 4.5.
(⇐=) Assume that G = {g1, . . . , gm−1} is a Gröbner basis of IS with respect

to a monomial ordering ≺. By Proposition 4.6, G is also a Gröbner basis with
respect to a certain lexicographic monomial ordering ≺lex. The result follows from
Proposition 4.5. �

Let us illustrate these result with some examples.

Example 4.8. Consider the numerical semigroup S = 〈a1, a2, a3, a4〉 with a1 =
8, a2 = 9, a3 = 10, a4 = 12 of Example 4.1. Since S is not free for the arrangement
a1, a2, a3, a4, Proposition 4.5 assures that the reduced Gröbner basis with respect to
the lexicographic order with x1 � x2 � x3 � x4 has more than 3 elements. Indeed,
it has 8 elements. Nevertheless, S is free for the arrangement a2, a3, a1, a4 and,
again by Proposition 4.5, we know that the reduced Gröbner basis with respect
to the lexicographic order with x2 � x3 � x1 � x4 has 3 elements. Indeed, it is
{x2

2 − x1x3, x
2
3 − x1x4, x

3
1 − x2

4}, which also is a Markov basis of IS (and it is also
the universal Markov basis of IS).

Example 4.9. Consider the numerical semigroup S = 〈a1, a2, a3, a4〉 with a1 =
10, a2 = 14, a3 = 15, a4 = 21. We know that S is not free and IS is a complete
intersection. Thus, by Theorem 4.7, we conclude that IS cannot be minimally
generated by a Gröbner basis.

4.2. Numerical semigroups defining robust - generalized robust toric
ideals. In [24], Garćıa-Sánchez, Ojeda and Rosales studied a family of affine sub-
monoids of Nn which they called semigroups with a unique Betti element.

Definition 4.10. An affine monoid S with minimal generating set A has a unique
Betti element if and only if the A-degrees of all the binomials in a Markov basis of
IA coincide.

In [24, Theorem 6], the authors characterized semigroups with a unique Betti
element as those where CA = GrA, i.e., the set of circuits of IA coincides with the
Graver basis. Moreover, in this family of semigroups one has that every circuit is a
minimal generator of IA. As a consequence of these two facts and Proposition 2.2,
one has that all the toric bases coincide (CA =MA = UA = GrA) and one directly
derives the following result.
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Proposition 4.11. Every affine monoid with a unique Betti element defines a
generalized robust toric ideal.

The converse of this result does not hold for general toric ideals (in Section 3 one
can find examples of generalized robust toric ideals of graphs not having a unique
Betti element). Nevertheless, in the following result, which is the main one in this
section, we aim at proving that the converse of Proposition 4.11 holds for numerical
semigroups.

Theorem 4.12. A numerical semigroup defines a generalized robust toric ideal if
and only if it has a unique Betti element.

In the proof of this result, we handle with Betti divisible numerical semigroups.
This is a family of numerical semigroups studied in [23] that contains those with a
unique Betti element.

Definition 4.13. A numerical semigroup S (and more generally an affine monoid)
with minimal generating set A is Betti divisible if the A-degrees of all the binomials
in a Markov basis of IA are ordered by divisibility.

Our strategy for proving Theorem 4.12 is the following. We first study the case
m = 3 and prove that whenever S = 〈a1, a2, a3〉 satisfies that CIS ⊆ MIS , then it
is Betti divisible (Proposition 4.15). Then, we move on to the case of a numerical
semigroup S = 〈a1, . . . , am〉 defining a generalized robust toric ideal. Since IS is
generalized robust (i.e. MIS = UIS ), by Theorem 2.2 we have that CIS ⊆MIS . By
Proposition 2.4, we have that for all A′ ⊆ {a1, . . . , am}, if we take S ′ = 〈A′〉, then
CIS′ ⊆ MIS′ . In particular, if we take A′ a set of three elements, by Proposition
4.15, we have that S ′ is Betti divisible. By conveniently choosing the set A′ and
using the fact that UIS =MIS we will conclude that S has a unique Betti element.

We introduce some concepts and results that we will use in the proof. Firstly,
we have that the set of the circuits of the toric ideal of a numerical semigroup is
given by the following result (see, e.g., [39, Chapter 4] or [29, Lemma 2.8]).

Lemma 4.14. Let S = 〈a1, . . . , am〉 ⊆ N be a numerical semigroup. Then,

CIS =
{
qi,j := x

aj/ gcd(ai,aj)
i − xai/ gcd(ai,aj)

j | 1 ≤ i, j ≤ m, i 6= j
}
,

In the forthcoming we will use the concept of critical binomial, which was in-
troduced by Eliahou [22] and later studied in [2] and [29], among others. Let
S = 〈a1, . . . , am〉 be a numerical semigroup, one sets

ni = min

 b ∈ Z+ | bai ∈
∑

j∈{1,...,m}\{i}

Naj

 , for i = 1, . . . ,m.

Write
niai =

∑
j∈{1,...,m}\{i}

βjaj , with βj ∈ N,

the binomials
gi := xni

i −
∏

j∈{1,...,m}\{i}

x
βj

j and − gi

of A-degree niai are called critical binomials with respect to xi.
As we mentioned before, a key point in the proof is the case of embedding

dimension m = 3. Three-generated numerical semigroups and their toric ideals
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have been extensively studied in the literature. Here we will recall some results
concerning them that we will use later; one can find restatements of these results
and their proofs in [6, 27]. Let S = 〈a1, a2, a3〉 be a numerical semigroup, then
2 ≤ µ(IS) ≤ 3 and the A-degrees of IS are {n1a1, n2a2, n3a3}. Moreover, µ(IS) = 2
or, equivalently, IS is a complete intersection if and only if there exist 1 ≤ i < j ≤ 3
such that niai = njaj . Clearly S has a unique Betti element if and only if n1a1 =
n2a2 = n3a3.

Proposition 4.15. Let S = 〈a1, a2, a3〉 be a numerical semigroup. If CIS ⊆MIS ,
then S is Betti divisible.

Proof. Suppose that n1a1 ≤ n2a2 ≤ n3a3. We assume that CIS ⊆ MIS and let us
see that n1a1 = n2a2 and that they both divide n3a3.

Claim 1: n1a1 = n2a2.
Proof of claim 1: if n1a1 < n2a2, we write n1a1 = α2a2 + α3a3 with α2, α3 ∈ N.

Since n1a1 < n2a2 ≤ n3a3 it follows that both α2 and α3 are nonzero. Take the
critical binomial f := xn1

1 − x
α2
2 xα3

3 ∈ IS . Consider now the circuit

q1,2 = x
a2/ gcd(a1,a2)
1 − xa1/ gcd(a1,a2)

2 ∈ CIS ⊆MIS .

We have that a2/ gcd(a1, a2) > n1 (otherwise, a2/ gcd(a1, a2) = n1, then n1a1 is a
multiple of a2 and n1a1 ≥ n2a2, a contradiction). Hence,

q1,2 − xa2/ gcd(a1,a2)−m1

1 f = x2h

for some h ∈ IS . Thus, q1,2 ∈ 〈x1, . . . , xm〉 ·IS and, by Proposition 2.1, q1,2 /∈MIS ,
a contradiction.

Claim 2: n3a3 is a multiple of both a1 and a2.
Proof of claim 2: Assume n3a3 is not a multiple of a1, then n1a1 = n2a2 <

n3a3 < lcm(a1, a3). Take a critical binomial f := xn3
3 − x

γ1
1 x

γ2
2 ∈ IS with respect

to x3. We observe that n3 < a1/ gcd(a1, a3). Also, we may assume that γ1 > 0,

otherwise we have that γ2 > n2 and we consider f = xn3
3 − x

n1
1 xγ2−n2

2 ∈ IS . As a
consequence, the circuit

q3,1 = x
a1/ gcd(a1,a3)
3 − xa3/ gcd(a1,a3)

1 = x
a1/ gcd(a1,a3)−n3

3 f + x1h,

for some h ∈ IS . Thus, q3,1 ∈ 〈x1, . . . , xm〉 ·IS and, by Proposition 2.1, q3,1 /∈MIS ,
a contradiction. Hence, n3a3 is a multiple of a1. A similar argument proves that
n3a3 is also a multiple of a2.

Now, by (Claim 1), we have that n1a1 = n2a2 = lcm(a1, a2) and, by (Claim 2),
n3a3 is a multiple of lcm(a1, a2). Thus, S is Betti divisible and the result holds.

�

Now we can proceed to the proof of the main theorem of this subsection.
Proof of Theorem 4.12 (⇐=) This is a particular case of Proposition 4.11.

(=⇒) Let S = 〈a1, . . . , am〉 be a numerical semigroup defining a generalized
robust toric ideal. Let us prove that it has a unique Betti element. Assume that
n1a1 ≤ n2a2 ≤ · · · ≤ nmam.

Claim 1: n1a1 = n2a2.
Let us first see that n1a1 is a multiple of ai for some i ∈ {2, . . . ,m}. Assume,

by contradiction that this is not true. We write

n1a1 =

m∑
k=2

αkak with α2, . . . , αm ∈ N,
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consider

f := xn1
1 −

m∏
j=2

x
αj

j ∈ IS

and observe that at least two of the αi’s are nonzero. We take s ∈ {2, . . . ,m} such
that αs 6= 0, and we are going to see that the circuit

qs,1 = x
as/ gcd(a1,as)
1 − xa1/ gcd(a1,as)

s

is not a minimal binomial, which contradicts the hypothesis. We have that n1 <
as/ gcd(a1, as). We set

h := qs,1 − x
as

gcd(a1,as)
−n1

1 f ∈ IS ,

and we have that

h = x
as

gcd(a1,as)
−n1

1

m∏
j=2

x
αj

j − x
a1

gcd(a1,as)
s 6= 0

and the two monomials apprearing in h are multiples of xs. Then, we have that
h = xsh

′ for some h′ ∈ IS . We conclude that qs,1 ∈ 〈x1, . . . , xm〉 · IS and, by
Proposition 2.1, qs,1 /∈MIS , a contradiction.

So far we have seen that n1a1 is a multiple of ai for some i ∈ {2, . . . ,m}. In
particular, we have that n1a1 = lcm(a1, ai) ≥ niai. Thus, n1a1 = n2a2 = niai and
the claim follows.

Claim 2: n1a1 = nkak for all k ∈ {3, . . . ,m}.
Take k ∈ {3, . . . ,m} and let us prove that n1a1 = nkak. Assume by contradiction

that n1a1 < nkak. Set n′k = min{b ∈ Z+ | bak ∈ 〈a1, a2〉}, we have that n1a1 <
nkak ≤ n′kak. We consider the semigroup S ′ = 〈a1, a2, ak〉. Since IS is generalized
robust, then UIS ⊆ MIS and, by Proposition 2.4.(a), we have UIS′ ⊆ MIS′ . Now,
applying Proposition 4.15 we get that S ′ is Betti divisible. Since the Betti elements
of S ′ are n1a1 = n2a2 < n′kak we have that n1a1 | n′kak and, as a consequence,
n′kak = lcm(a1, ak) = b n1a1 = b n2a2 for some b ≥ 2.

Now we have that the circuit

q1,k = x
ak/ gcd(a1,ak)
1 − xa1/ gcd(a1,ak)

k = xb n1
1 − xn

′
k

k ∈ CIS ⊆ UIS =MIS .

Set p := xn1
1 x

(b−1)n2

2 − xn
′
k

k ∈ IS , the equality

p = q1,k − x(b−1)n1

1 (xn1
1 − x

n2
2 )

implies that p ∈ MIS (see Proposition 2.1). Nevertheless, xn1
1 − x

n2
2 ∈ IS and,

hence, for every monomial order ≺, either xn1
1 or xn2

2 belongs to in≺(IS). In

both cases the monomial xn1
1 x

(b−1)n2

2 ∈ in≺(IS) but is not a minimal generator
of in≺(IS). Thus, p /∈ UIS , a contradiction.

From (Claim 1) and (Claim 2) we conclude that S has a unique Betti element.
�

The shape of the generators of a numerical semigroup with a unique Betti element
is given by the following result (see [29] or [24, Example 12]):

Proposition 4.16. A numerical semigroup S = 〈a1, . . . , am〉 ⊆ N has a unique
Betti element if and only if there exist d1, . . . , dm ≥ 2 pairwise prime integers such
that ai = (

∏m
j=1 dj)/di for all i ∈ {1, . . . ,m}.
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Hence, one can easily construct examples of generalized robust toric ideals of
numerical semigroups with arbitrarily large embedding dimension. Since numer-
ical semigroups with a unique Betti element only have a unique minimal set of
generators when m = 2, we directly get the following.

Corollary 4.17. A numerical semigroup S defines a robust toric ideal if and only
if S is 2-generated.

5. Conclusions and open questions

In this paper we have described different families of robust and generalized robust
toric ideals. In the context of toric ideals of graphs generated by quadrics, the
family of generalized robust toric ideals is only slightly bigger than the family of
robust ideals. Nevertheless, for toric ideals of numerical semigroups the situation
changes: while only principal ideals are robust, there are generalized robust ideals
with arbitrarily large number of generators.

In [41], the author asks if MA = GrA for generalized robust toric ideals and
verifies it for toric ideals of graphs. As a consequence of Theorem 4.12, we provide
an affirmative answer in the case of numerical semigroups. For toric ideals of
graphs the equality MA = GrA characterizes generalized robustness (Theorem
3.3). However, this is not true for numerical semigroups. Indeed, consider the
(Betti divisible) numerical semigroup S = 〈a1, a2, a3〉 with a1 = 10 = 2 · 5, a2 =
12 = 22 · 3, a3 = 15 = 3 · 5. By Proposition 4.16 we have that S is not a semigroup
with a unique Betti element and, thus, it is not generalized robust (Theorem 4.12).
Nevertheless, the equalityMA = GrA = {x3

1−x2
3, x

5
2−x6

1, x
5
2−x3

1x
2
3, x

5
2−x4

3} holds.
The same example also shows that the containmentMA ⊆ UA, which holds for toric
ideals of graphs, does not always work for toric ideals of numerical semigroups.

By [11, Proposition 2.5], we have that robustness property is preserved under an
elimination of variables. However, we do not know if the same result is true when
we replace robustness by generalized robustness. By Proposition 2.4.(a) we know
that whenever IA is generalized robust and A′ ⊆ A, then UA′ ⊆ MA′ , but we do
not know if equality holds.

Question 5.1. Let IA be a generalized robust toric ideal and A′ ⊆ A, is IA′

generalized robust?

In the present paper we give a positive answer to this question for: (1) toric
ideals of graphs (see Corollary 3.4), and (2) toric ideals of numerical semigroups
(this follows as a consequence of Theorem 4.12 and Proposition 4.16).

In Theorem 4.7 we characterize when the toric ideal of a numerical semigroup
has a complete intersection initial ideal. It would be interesting to seek the answer
to the same question for toric ideals of graphs. Since having a complete intersection
initial ideal implies that the ideal itself is a complete intersection, the class of graphs
that we are looking for is a subfamily of the one described in [44].

Open problem 5.2. Characterize when the toric ideal IG of a graph G has a
complete intersection initial ideal.

Also, in Theorem 4.7, we proved that free numerical semigroups have an initial
ideal such that µ(IS) = µ(in≺(IS)). There are further families of numerical semi-
groups with the same property. For example when S is generated by an arithmetic
sequence of integers (see, e.g., [25]).
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Open problem 5.3. Characterize the numerical semigroups such that

µ(IS) = µ(in≺(IS))

for a monomial order ≺.

We have verified when the equalityMIS = UIS occurs for a numerical semigroup
S. It would be interesting to characterize when equality or containment of other
toric bases holds. For example, we say that a toric ideal IA is a circuit ideal if it is
generated by its set of circuits (see [10, 30] for a deeper study of circuit ideals).

Open problem 5.4. Characterize the numerical semigroups S such that IS is a
circuit ideal.

We do not know the answer to this question even if we add the hypothesis of
S being a complete intersection. Indeed, whenever S is a Betti divisible numerical
semigroup, then it is a complete intersection and IS is a circuit ideal (see [23,
Section 7]). However, there are further examples of complete intersection numerical
semigroups such that IS is generated by CIS . For example, consider the numerical
semigroup S = 〈a1, a2, a3, a4〉 with a1 = 390, a2 = 546, a3 = 770, a4 = 1155〉.
Then, IS is minimally generated by {x7

1 − x5
2, x

3
3 − x2

4, x
55
2 − x26

4 } and, thus, it
is a complete intersection and a circuit ideal. However, the Betti degrees of the
generators are β1 = 7a1 = 5a2 = 2730, β2 = 3a3 = 2a4 = 2310 and β3 = 55a2 =
26a4 = 30030 and, hence, it is not Betti divisible. Interestingly, in the context of
toric ideals of graphs, every complete intersection ideal is a circuit ideal (by [43,
Theorem 5.1]).
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[7] I. Bermejo, I. Garćıa-Marco, Complete intersections in simplicial toric varieties. J. Symbolic
Comput. 68 (2015), part 1, 265-286.

http://cocoa.dima.unige.it


ON ROBUSTNESS AND RELATED PROPERTIES ON TORIC IDEALS 27
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