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Abstract

Consider the setting of Linear Regression where the observed response variables, in
expectation, are linear functions of the p-dimensional covariates. Then to achieve
vanishing prediction error, the number of required samples, n, needs to scale faster
than p�

2 (i.e., n � p�
2), where �2 is a bound on the noise variance. In a high-

dimensional setting where p is large but the covariates admit a low-dimensional
representation (say r ⌧ p), then Principal Component Regression (PCR), see [36],
is an effective approach; here, the response variables are regressed with respect
to the principal components of the covariates. The resulting number of required
samples to achieve vanishing prediction error now only needs to scale faster than
r�

2(⌧ p�
2). Despite the tremendous utility of PCR, its ability to handle settings

with noisy, missing, and mixed (discrete and continuous) valued covariates is
not understood and remains an important open challenge, see [24]. As the main
contribution of this work, we address this challenge by rigorously establishing that
PCR is robust to noisy, sparse, and possibly mixed valued covariates. Specifically,
under PCR, vanishing prediction error is achieved with the number of samples
scaling as n � rmax(�2

, ⇢
�4 log5(p)), where ⇢ denotes the fraction of observed

(noisy) covariates. We establish generalization error bounds on the performance
of PCR, which provides a systematic approach in selecting the correct number
of components r in a data-driven manner. The key to our result is a simple, but
powerful equivalence between (i) PCR and (ii) Linear Regression with covariate
pre-processing via Hard Singular Value Thresholding (HSVT). From a technical
standpoint, this work advances the state-of-the-art analysis for HSVT by establish-
ing stronger guarantees with respect to the k·k2,1-error for the estimated matrix
rather than the Frobenius norm/mean-squared error (MSE) as is commonly done in
the matrix estimation / completion literature.

1 Introduction

In this paper, we are interested in developing a better understanding of a popular prediction method
known as Principal Component Regression (PCR). In a typical prediction problem setup, we are given
access to a labeled dataset {(Yi,Ai,·)} over i � 1; here, Yi 2 R represents the response variable
(also known as the label or target) we wish to predict and Ai,· 2 R1⇥p represents the associated
covariate (or feature) to be utilized in the prediction process.
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Linear Regression. In Linear Regression, the data is believed to be generated as per a latent linear
model and the goal is to learn the linear predictor. More precisely, for some �⇤ 2 Rp and each
i � 1, Yi = Ai,·�

⇤ + ✏i, where ✏i denotes independent, zero-mean idiosyncratic noise with variance
bounded by �2. Under generic noise distributions, the Ordinary Least Squares (OLS) estimator
learnt using such observations yields an in-sample (or training) prediction error that vanishes to
zero as long as the number of samples, n, scales faster than p�

2 (i.e., n � p�
2); e.g., see [51] and

references therein. The same result holds true for the generalization prediction error under reasonable
restrictions on the model class (e.g., see [51] and references therein).

Principal Component Regression. In the high-dimensional setting, the required number of samples
may be too great since it scales with the number of features p, which is large. However, this problem
can be circumvented when the covariates have a latent, low-dimensional representation. In particular,
PCR, see [36], has been precisely designed to address such a setting. Using all observed covariates,
PCR first finds an r ⌧ p dimensional representation for each feature using the method of Principal
Component Analysis (PCA); specifically, PCA projects every covariate Ai,· onto the subspace
spanned by the top r right singular vectors of the covariate matrix, the concatenation of all observed
covariates. PCR then uses the r-dimensional features to perform linear regression. If the covariate
matrix is indeed of rank r, then by the theory of Linear Regression, it follows that the number of
samples required to achieve vanishing in- and out-of-sample prediction error need to scale faster than
r�

2 (i.e. n � r�
2) , which is significantly smaller when r ⌧ p.

Noisy, missing, and mixed valued covariates. In many practical scenarios of interest (including
high-dimensional settings where p is large), the covariates are not fully observed. Specifically, a
common thread of many modern datasets is that only a small fraction of the covariates are observed,
and the observations themselves are noisy versions of the true covariates. Moreover, as is standard
in most real-world datasets, the observations may also be mixed (discrete and continuous) valued
covariates. Despite the tremendous success of PCR in a variety of applications, its ability to handle
such scenarios remains unknown, as noted in a recent survey [24].

In the context of Linear Regression, this scenario fits under the error-in-variable regression framework,
where there has been exciting recent advancement, particularly in the high dimensional setting (see
Section 1.2 for details). However, the current inventory of methods fall short in addressing the key
challenge of handling noisy, sparse, and mixed valued covariates as the proposed estimators require
detailed knowledge of the underlying noise model of the covariates.

1.1 Contributions

Summary of results. As the main contribution of this work, we argue that PCR, without any change,
is robust to noise and missing values in the observed covariates. In particular, we demonstrate that
PCR does not require any knowledge about the underlying noise model that corrupts the covariates
in order to generate predicted responses. Formally, we argue that the (training) error decays to zero
as long as the number of samples n � rmax(�2

, ⇢
�4 log5(p)), where ⇢ denotes the fraction of

observed (noisy) covariates. For a precise statement of the result, please see Theorem 4.1.

We also define an appropriate notion of generalization error for the particular setting of PCR. With
respect to this notion, we establish that the testing prediction error of PCR scales similarly to that of
the training error, i.e., the testing (or generalization) error is bounded above by the training prediction
error plus a term that scales as r2(log(np)/n)1/2; hence, the testing prediction error vanishes as long
as the number of samples, n � rmax(�2

, ⇢
�4 log5(p)). For a precise statement, see Theorem 4.2.

We extend our results for PCR’s in- and out-of-sample prediction error even when the ground-truth
covariates are not low-rank and the linear model itself may be misspecified (see Theorem 5.1 and
Corollary 5.1). This result further suggests the robustness of PCR, reinforcing the utility of applying
it in practice. Further, our result on generalization error provides a systematic way to select the
correct number of principal components in a data-driven manner, i.e., to choose the value of r that
minimizes the training error plus the generalization penalty term r

2(log(np)/n)1/2.

Finally, we describe various applications of our results, including synthetic control, privacy preserving
regression, and regression with mixed valued covariates. Please refer to Section 6 for details.

Overview of techniques. To prove our results, we establish a simple, but powerful equivalence
between (i) PCR and (ii) Linear Regression with covariate pre-processing via Hard Singular Value
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Thresholding (HSVT) (see Proposition 3.1). The HSVT algorithm is commonly analyzed in literature,
see [25], for matrix estimation / completion. In fact, there is significant literature establishing
that HSVT is a noise-model-agnostic method that recovers the ground-truth matrix from its noisy
observations. However, the current results concerning HSVT establish its estimation accuracy in
terms of the mean-squared error or expected squared Frobenius norm of the error matrix. To establish
our above mentioned results, we bound the expected squared k·k2,1 of the error matrix (see Lemma
5.1), which is a stronger guarantee than the Frobenius norm, as is standard in the literature (note
1
np

kEk2
F
= 1

np

P
n

i=1

P
p

j=1 e
2
ij

 1
n
maxj2[p]

P
n

i=1 e
2
ij

= 1
n
kEk22,1). Thus, this result for HSVT

may be of interest in its own right.

Our generalization error result utilizes the standard framework of Rademacher complexity, see [16]
and references therein. However, there are two crucial differences that we need to overcome in order
to obtain sharp, meaningful bounds. First, the notion of generalization we utilize to analyze PCR
is slightly different from the traditional setup as the noisy test covariates (but not responses) are
included in the training process, which complicates the analysis (see Section 2.3 for details); we
relate this modified notion of generalization to that of the classical notion. Second, to obtain sharp
bounds, we argue that the Rademacher complexity under PCR scales with the dimensionality of the
number of principle components utilized rather than the ambient dimension p. To achieve this bound,
we identify the Rademacher complexity of PCR with implicit `0-regularization.

1.2 Related works

We primarily focus on the literature pertaining to error-in-variable regression and PCR, but also
include a brief discussion on the literature for matrix estimation / completion in Appendix A.1.

Error-in-variable regression. There exists a rich body of work regarding high-dimensional error-in-
variable regression (see [41], [29], [45], [46], [17], [18], [26], [27], [37]). Two common threads of
these works include: (1) a sparsity assumption on �⇤; (2) error bounds with convergence rates for
estimating �⇤ under different norms, i.e., kb� � �

⇤kq where k·k
q

denotes the `q-norm. In all of these
works, the goal is to recover the underlying model, �⇤. In contrast, as discussed, the goal of PCR
is to primarily provide good prediction. Some notable works closest to our setup include [41], [29],
[46], which are described in some more detail next.

In [41], a non-convex `1-penalization algorithm is proposed based on the plug-in principle to handle
covariate measurement errors. This approach requires explicit knowledge of the unobserved noise
covariance matrix ⌃H = EHT

H and the estimator designed changes based on their assumption of
⌃H . They also require explicit knowledge of a bound on k�⇤k2, the object they aim to estimate. In
contrast, PCR does not require any such knowledge about the distribution of the noise matrix H (i.e.,
the algorithm does not explicitly use this information to make predictions).

The work of [29] builds upon [41], and propose a convex formulation of Lasso. Although the
algorithm introduced does not require knowledge of k�⇤k2, similar assumptions on Z and H (e.g.,
sub-gaussianity and access to ⌃H ) are made. This renders their algorithm to be not model agnostic.
In fact, many works (e.g., [45], [46], [17]) require either ⌃H to be known or the structure of H
is such that it admits a data-driven estimator for its covariance matrix. This is so because these
algorithms rely on correcting the bias for the matrix Z

T
Z, which PCR does not need to compute.

It is worth noting that all these works in error-in-variable regression focus only on learning �⇤, and
not explicitly de-noising the noisy covariates. Thus even with the knowledge of �⇤, it is not clear
how to use it for producing predictions of response variable when given noisy covariates.

Principal Component Regression. The formal literature providing an analysis of PCR is surprisingly
sparse, especially given its ubiquity in practice. A notable work is that of [15], which suggests a
variation of PCR to infer the direction of the principal components. However, it stops short of
providing meaningful finite sample analysis beyond what is naturally implied by that of standard
Linear Regression. The regularization property of PCR is also well known due to its ability to reduce
the variance. As a contribution, we provide rigorous finite sample guarantees of PCR: (i) under noisy,
missing covariates; (ii) when the linear model is misspecified; (iii) when the covariate matrix is not
exactly low-rank (see Theorem 5.1 and Corollary 5.1).

As a further contribution, we argue that the resulting regression model from PCR has sparse support
(this is established using the equivalence between PCR and Linear Regression with covariate pre-
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processing via HSVT); this sparsity allows for improved generalization error as the Rademacher
complexity of the resulting model class scales with this sparsity parameter (i.e., the rank of the
covariate matrix pre-processed with HSVT). Hence, PCR not only addresses the challenge of noisy
and missing covariates, but also, in effect, performs multiple implicit regularization.

2 Problem Setup

The standard formulation for regression considers the setting where the covariates are noiseless and
fully observed. In this work, our interest is in a more realistic setting where we observe a noisy and
sparse version of the covariates. In particular, our interest is in the high-dimensional framework
where the number of observations may be far fewer than the ambient dimension of the covariates.

2.1 Model

We describe the model in terms of the structural assumptions on the covariates and the generative
process for the response variables. Let N � 1 denote the total number of observations of interest.

Covariates. Let A 2 RN⇥p denote the matrix of true covariates, where the number of predictors p is
assumed to exceed N , i.e., N  p. We assume the entries of A are bounded:
Property 2.1. There exists an absolute constant � � 0 such that |Aij | � for all (i, j) 2 [N ]⇥ [p].

Additionally, we shall assume that the covariates have a lower-dimensional representation, which is
formalized as follows:
Property 2.2. The covariate matrix A 2 RN⇥p has rank r < N  p.

Response Variables. For each i 2 [N ], we let Yi denote the random response variable that is linearly
associated with the covariate Ai,· 2 R1⇥p, i.e.,

Yi = Ai,·�
⇤ + ✏i (1)

where �⇤ 2 Rp is the unknown model parameter and ✏i 2 R denotes the noise.
Property 2.3. The response noise ✏ = [✏i] 2 RN is a random vector with independent, mean zero
entries such that each of its components has variance bounded above by �2.

2.2 Observations

Rather than observing A, we are given access to its corrupted version Z, which contains noisy and
missing values. Additionally, the observed response variables are restricted to a subset of the N

observations.

Noisy covariates with missing values. We observe Z 2 RN⇥p, which is assumed to satisfy the
following property.
Property 2.4. For all (i, j) 2 [N ] ⇥ [p], the (i, j)-th entry of Z, denoted as Zij , is defined as
Aij + ⌘ij with probability ⇢ and ? with probability 1 � ⇢, for some ⇢ 2 (0, 1]; here, ? denotes a
missing value and ⌘ij denotes the noise in the (i, j)-th entry.

In words, Property 2.4 states that each entry Zij is observed with probability ⇢, independently of
other entries; however, even under observation, Zij is a noisy instantiation of the true covariate Aij .

Let H = [⌘ij ] 2 RN⇥p denote the covariate noise matrix. For ease of notation, let us define
X = A+H as the noisy perturbation of covariate matrix, without missing values. We assume the
following property about the noise matrix H (see Appendix A.2 for the definition of the following
 ↵-random variables/vectors).
Property 2.5. Let H be a matrix of independent, mean zero  ↵ -rows for some ↵ � 1, i.e., there
exists an ↵ � 1 and K↵ < 1 such that k⌘i,·k ↵

 K↵ for all i 2 [N ]. As a consequence, there
exists a �2 > 0 such that kE⌘T

i,·⌘i,·k  �
2 for all i 2 [N ] (note �2 can depend on both ↵ and p).

Response Variables. Let ⌦ ⇢ [N ] with |⌦|= n < N . We observe Yi, where i 2 ⌦.
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2.3 Objective

Given noisy observations of all N covariates {Z1,·, . . . ,ZN,·} and a subset of response variables
{Yi : i 2 ⌦}, our aim is to produce an estimate bY 2 RN so that the prediction error is minimized.
Specifically, we measure performance in terms of the training error and testing error:

(training error) MSE⌦(bY ) = (1/n) · E
hX

i2⌦

(bYi �Ai,·�
⇤)2

i
,

(testing error) MSE(bY ) = (1/N) · E
h NX

i=1

(bYi �Ai,·�
⇤)2

i
.

Transductive semi-supervised learning setting. It is worth remarking that in our definition of test
performance, the algorithm is given access to the observations associated with the covariates for
both training and testing data during the training procedure; of course, however, the algorithm does
not access the test response variables! Traditionally, the algorithm only has access to the training
covariates and response variables during the training process. The reason for this difference is a
simple consequence of the nature of the algorithm of interest, PCR. Specifically, PCR pre-processes
the covariates using PCA, which changes the training procedure if only a subset of the covariates are
utilized. Therefore, to allow for a meaningful evaluation, it is natural to allow the algorithm to have
access to all available covariate information. This is commonly referred to in the literature as the
transductive semi-supervised learning setting, where we want to infer the response variables for the
specific unlabeled data. Indeed, as discussed in Section 6, having access to all covariates is entirely
reasonable in many important real-world applications.

2.4 Notations, definitions, and a summary of assumptions.

For any matrix B 2 RN⇥p and index set ⌦ ⇢ [N ], let B⌦ denote the |⌦|⇥p submatrix of B

formed by stacking the rows of B according to ⌦, i.e., B⌦ is the concatenation of {Bi,· : i 2
⌦}. The superscript ⌦ is sometimes omitted if the matrix representation is clear from context.
poly(↵1, . . . ,↵k), denotes a function that scales at most polynomially in its arguments. Let x _ y =
max(x, y) and x ^ y = min(x, y) for any x, y 2 R. Lastly, let 1 denote the indicator function.

3 Algorithm

We recall the description of PCR, as in [36]. In particular, we suggest a minor modification of PCR
in the presence of missing data. Specifically, PCR is modified by simply rescaling the observed
covariate matrix by the inverse of the fraction of observed data. We also describe Linear Regression
with covariate pre-processing via Hard Singular Value Thresholding (HSVT). We observe that these
two algorithms produce identical estimates of the response variable. This simple, but powerful
equivalence will allow us to study the robustness property of PCR through the lens of HSVT.

3.1 Principal Component Regression

Let b⇢ denote the fraction of observed entries of Z, i.e., b⇢ = 1
Np

P
N

i=1

P
p

j=1 1(Zij 6= ?) _ 1
Np

. Let
eZ 2 RN⇥p represent the rescaled version of Z, where every unobserved value ? is replaced by 0,
i.e., for all i 2 [N ] and j 2 [p], eZij = Zij/b⇢ if Zij 6= ? and 0 otherwise.

The Singular Value Decomposition (SVD) of eZ is denoted as eZ = USV
T =

P
N

i=1 siuiv
T

i
where

U 2 RN⇥N , S 2 RN⇥p, and V 2 Rp⇥p. Without loss of generality, assume that the singular values
si’s are arranged in decreasing order, i.e., s1 � . . . � sN � 0. Note that U = [u1, . . . , uN ] and
V = [v1, . . . , vp] are orthogonal matrices, i.e., the ui’s and vj’s are orthonormal vectors.

For any k 2 [N ], let Uk = [u1, . . . , uk], Vk = [v1, . . . , vk], and Sk = diag(s1, . . . , sk). Then, the
k-dimensional representation of eZ, as per PCA, is given by Z

PCR,k = eZVk. Let �PCR,k 2 Rk be the
solution to the Linear Regression problem under ZPCR,k, i.e., �PCR,k solves minimize

P
i2⌦(Yi �

Z
PCR,k
i· w)2 over w 2 Rk. Then, the estimated response vector bY PCR,k = Z

PCR,k
�

PCR,k.
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3.2 Ordinary Least Square Linear Regression after Hard Singular Value Thresholding

Here, we describe Linear Regression with covariate pre-processing via Hard Singular Value Thresh-
olding (HSVT). To that end, given any � > 0, we define the map HSVT� : RN⇥p ! RN⇥p, which
simply shaves off the input matrix’s singular values that are below the threshold �. Precisely, given
B =

P
N

i=1 �ixiy
T

i
, let HSVT�(B) =

P
N

i=1 �i1(�i � �)xiy
T

i
.

For any k 2 [N ], given eZ as before, define Z
HSVT,k = HSVTsk( eZ). Let �HSVT,k 2 Rp

be a solution of Linear Regression under Z
HSVT,k, i.e., �HSVT,k solves minimize

P
i2⌦(Yi �

Z
HSVT,k
i· w)2 over w 2 Rp. Then, the estimated response vector bY HSVT,k = Z

HSVT,k
�

HSVT,k.

3.3 Equivalence between the Response Estimates by PCR and HSVT-OLS

We now state a key relation between the above two algorithms. Precisely, the two algorithms produce
identical estimated response vectors. Refer to Appendix C for a proof of Proposition 3.1.

Proposition 3.1. For any k  N , bY PCR,k = bY HSVT,k
.

4 PCR Prediction Error: Low-Rank Covariates

We now state our main results in terms of the training and testing error for PCR. For a review on
vector and matrix norms, see Appendix A.2.

4.1 Theorem Statements

Training prediction error. We state the following result for PCR when the covariate matrix is
low-rank, i.e., A admits a low-dimensional representation, and PCR chooses the correct number of
principal components.
Theorem 4.1 (Training Error of PCR). Let Properties 2.1, 2.2, 2.3, 2.4, and 2.5 hold and let r
denote the rank of A. Suppose PCR chooses the correct number of principal components k = r. Let
⇢ � 64 log(Np)

Np
and n = ⇥(N). Then for any given ⌦ ⇢ [N ],

MSE⌦(bY )  4�2r
n

+ C(↵)
C0 log2(np)

n⇢2
k�⇤k21·

✓
r +

(n2⇢+ np) log3(np)
⇢2⌧2

r

◆
, (2)

where C 0 = (1 + � + �+K↵)4, ⌧r is r-th singular value of true covariate matrix A, and C(↵) > 0
a constant that may depend on ↵ � 1.

The proof of Theorem 4.1 follows from general results presented in Section 5, e.g., Corollary 5.1 by
letting � = 0, k = r, Ak = A and ⌧k+1 = ⌧r+1 = 0.

Test prediction error. We now evaluate the generalization performance of PCR. As previously
mentioned, the emphasis of this work is to provide a rigorous analysis on the prediction properties of
the PCR algorithm through the lens of HSVT. Recall from Proposition 3.1, PCR with parameter r
is equivalent to Linear Regression with pre-processing of the noisy covariates using HSVT (more
specifically, retaining the top r singular values). To that end, we study candidate vectors �HSVT,r =
Vr ·�PCR,r 2 Rp. In light of this observation, we establish the following result that suggests restricting
our model class to sparse linear models only (the proof of which can be found in Appendix D).
Proposition 4.1. Let X 2 Rn⇥p and M = Xv for some v 2 Rp. If rank(X) = r, then there exists
v
⇤ 2 Rp such that M = Xv

⇤ and kv⇤k0 = r.

By Proposition 4.1, for any Z
HSVT,r and �HSVT,r = Vr · �PCR,r, there exists a �0 2 Rp such that

Z
HSVT,r · �HSVT,r = Z

HSVT,r · �0 where k�0k0  r. Thus, for analyzing the test error of PCR with
parameter r, or equivalently Linear regression with covariate pre-processing using HSVT with rank r

thresholding, it suffices to restrict our model class to linear predictors with sparsity r. Specifically,

F = {� 2 Rp : k�k2 B, k�k0 r},

where B > 0 is a positive constant (we consider candidate vectors with bounded `2-norm as is
commonly assumed in generalization error analysis).
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Refer to Appendix E for a proof of Theorem 4.2 and a more rigorous theoretical justification of our
model class of interest.

Theorem 4.2 (Test Error of PCR). Let the conditions of Theorem 4.1 hold. Further, let b� 2 F . Then,

E⌦

h
MSE(bY )

i
 E⌦

h
MSE⌦(bY )

i
+

C
0 · r3/2 · b↵2

p
n

k�⇤k1

where C
0 = CB

2� with C > 0 a universal constant; b↵2 = E[k bAk2max]; and E⌦ denotes the
expectation taken with respect to ⌦ ⇢ [N ] (of size n), which is chosen uniformly at random without
replacement.

Since Theorem 4.1 holds for any ⌦, we note that E⌦[MSE⌦(bY )] is also bounded above by the
right-hand side of (2).

Implications. The statement of Theorem 4.1 requires that the correct number of principal components
are chosen in PCR. In settings where all r singular values of A are roughly equal (see the discussion
below for such an example), i.e., ⌧1 ⇡ ⌧2 ⇡ . . . ⇡ ⌧r = ⇥(

p
Np/r), the training prediction error

vanishes as long as n � max(�2
r, ⇢

�4
r log5 p). Further, as long as r = O(log

1
4 p), the testing error

also vanishes with the same scaling of n, with n = ⇥(N).

4.2 Example

Embedded random Gaussian features. We now present a classical example that justifies algorithms
such as PCR (or PCA). Consider the setting where the matrix of interest A 2 RN⇥p is generated
by sampling its rows from a distribution on Rp, which in turn, is an embedding of some underlying
latent distribution on Rr. Specifically, consider the example in Proposition 4.2, which describes how
the rows of A are generated; this is similar in spirit to the probabilistic model for PCA, cf. [19, 48]
(refer to Appendix J.1 for its proof).

Proposition 4.2. Let A = ÃR̃ where Ã 2 RN⇥r is a random matrix whose entries are independent
standard normal random variables, i.e., Ãij ⇠ N (0, 1) and R̃ 2 Rr⇥p is another random matrix
with independent entries such that R̃ij = 1/

p
r with probability 1/2 and R̃ij = �1/

p
r with

probability 1/2. Suppose, r 
p
p

4
p
2 log p

+ 1. Then,

MSE⌦(bY )  4�2
r

n
+ C

00k�⇤k21
r log7(np)

n⇢4

where C
00
> 0 is a constant that may depend on model parameters �, ↵ � 1, and K↵.

5 PCR Prediction Error: Beyond Low-Rank Covariates, Mismatched Model
We state a bound on the prediction error for PCR in the general setting where the covariates are not
necessarily low-rank. We also consider the scenario where the response variables may satisfy the
linear model but with error, i.e., the linear model is mismatched. Precisely, rather than satisfying
(1), we assume the response variables are generated in the following manner: for each i 2 [N ], the
random response Yi is associated with the covariate Ai,· 2 R1⇥p such that

Yi = Ai,·�
⇤ + �i + ✏i, (3)

where �⇤ 2 Rp remains the unknown model parameter, ✏i 2 R again denotes the zero mean response
noise satisfying Property (2.3), and �i 2 R is the arbitrary mismatch error; for simplicity, we assume
the mismatch error is deterministic. In contrast to Property 2.2, we do not assume the covariate matrix
A is necessarily low-rank. However, as in Section 2, we assume the other properties hold, i.e., the
conditions on the observed (noisy) covariate matrix Z and training subset ⌦ 2 [N ] of size n. As
before, our interest is in bounding the prediction error of PCR, but we now do so in the general setting
where A is not necessarily low-rank and there exists a mismatch error in the linear model.
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5.1 Theorem Statements

Training Prediction Error. We first state a somewhat abstract result, Theorem 5.1 (proof in Ap-
pendix F). Next, we state a technical property of HSVT, Lemma 5.1 (proof in Appendix H). Together,
they yield a concrete result, Corollary 5.1. For definitions on vector/matrix norms, see Appendix A.2.
Theorem 5.1 (Training Error of PCR: Generic Result). Consider PCR with parameter k � 1.
Suppose Property 2.3 holds. Then, under the model described by (3),

MSE⌦(bY )  4�2k
n

+
3k�⇤k21EkA⌦ � bA⌦k22,1

n
+ 5k�k21. (4)

Interpretation. The bound in (4) has three terms on the right hand side: (a) �2
k/n represents the

standard “regression” prediction error, which scales with the model complexity k and inversely with
number of samples n; (b) k�⇤k21·EkA⌦ � bA⌦k22,1/n, which is a consequence of the corruption of
A (if A was fully observed and rank k, then this error term would vanish); (c) k�k21 represents the
(inevitable) impact of the model mismatch.

Quantification. To quantify (4), we need to evaluate E[kZHSVT,k,⌦�A
⌦k22,1] under HSVT. In effect,

HSVT produces the estimate Z
HSVT,k of A from its noisy and sparse instantiation Z. Our interest

is in evaluating the estimation error with respect to the `2,1-error. It is worth remarking that the
estimation error for HSVT is typically evaluated with respect to the Frobenius norm; hence, this
quantity is well understood, see [25]. On the other hand, the error bound with respect to `2,1-norm
is unknown. To that end, we provide a novel characterization of this error in Lemma 5.1 below.

Let the SVD of the covariate matrix be A =
P

N

i=1 ⌧iuiv
T

i
with the singular values ⌧i arranged in

descending order. Let Ak =
P

k

i=1 ⌧iuiv
T

i
denote the truncation of A obtained by retaining the top k

components. Then for C(↵) > 0, an absolute constant that depends only on ↵, we define the quantity,

� =
p

N⇢
p

⇢�2 + (1� ⇢)�2 + 2C(↵)
p
p(K↵ + �)

⇣
1 + 9 log(Np)

⌘ 1
↵
p

log(Np). (5)

Lemma 5.1 (k·k2,1 error bound for HSVT). Let Properties 2.1, 2.3, 2.4, and 2.5 hold. Let ⌧k and
⌧k+1 denote the k-th and (k+1)-st singular values of A, respectively. Suppose ⇢ � 64 log(Np)

Np
. Then,

for C > 0, a universal constant.

E[kZHSVT,k �Ak22,1]  C(K2
↵ + �2)
⇢2

⇣
k +

N�2

⇢2(⌧k � ⌧k+1)2

⌘
log

2
↵ Np+ 2kAk �Ak22,1.

Corollary 5.1 (Training Error of PCR: Generic Result). Let the conditions of Theorem 5.1 and
Lemma 5.1 hold. Let n = ⇥(N). Then, for C 0 = (1 + � + �+K↵)4 and C(↵) > 0 is a constant
that may depend on ↵ � 1, we have

MSE⌦(bY )  4�2k
n

+
C(↵)C0k�⇤k21 log

2 np

n⇢2

⇣ (n2⇢+ np) log3 np
⇢2(⌧k � ⌧k+1)2

+ k
⌘
+

6k�⇤k21
n

kAk �Ak22,1+5k�k21.

(6)
Test Prediction Error. Theorem 4.2 holds with r replaced by a general k.

How do we pick a good k in practice? The purpose of test prediction error, such as that implied by
Theorem 4.2, is to precisely resolve such a question. Specifically, Theorem 4.2 suggests that the
overall error is at most the training error plus a term that scales as k2(log(np)/n)1/2. Therefore, one
should choose the k that minimizes this bound. Naturally, as k increases, the training error is likely
to decrease, but the additional term k

2(log(Np)/n)1/2 will increase; therefore, a unique minima in
terms of the value of k exists and can be found in a data-driven manner.

5.2 Example

To explain the utility of Theorem 5.1 and Corollary 5.1, we consider a setting where A is an
approximately low-rank matrix with geometrically decaying singular values. To that end, let e·,j 2 Rp

denote the j-th canonical basis vector. Let ui, vi, and ⌧i denote the left singular vectors, right singular
vectors, and singular values of A, respectively. Let ⌧1 = C1

p
Np for some constant C1 > 0. Further,

suppose ⌧k = ⌧1✓
k�1 for all k 2 [N ] with ✓ 2 (0, 1), and let vT

i
ej = O(1/

p
p) for all i, j 2 [p].

The conditions stated above are self-explanatory with potentially one exception: vT
i
ej = O(1/

p
p).

In effect, this assumption states that the right singular vectors of A satisfy an “incoherence” condition,
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cf. [22], with the natural basis; or, equivalently, all elements of the right singular vectors are roughly
of the same magnitude, O(1/

p
p). Under this setting, we state the following (proof in Appendix J.2):

Proposition 5.1. Let A be generated as above and let conditions of Corollary 5.1 hold. Suppose PCR
chooses parameter k = C2

log log(np)
log(1/✓) for absolute constant C2 > 0. Then, for C 0 = (1+�+�+K↵)4,

C
0(↵, ✓) > 0 a constant dependent only on ↵ and ✓; and C

00
> 0, a universal constant, we have

MSE⌦(bY )  2C2�
2 log log np

n log(1/✓)
+

C0(↵, ✓)C0k�⇤k21 log
5+4C2 np

n⇢4
+

C
00
k�⇤k21

log2C2 np
+ 5k�k21, (7)

From Proposition 5.1, it follows that if the number of principal components is chosen as
⇥
⇣

log log(np)
log(1/✓)

⌘
and n = ⌦(⇢�4poly(log p)), then the training prediction error is effectively k�k21

for sufficiently large n, p. This is precisely the unavoidable model mismatch error.

Existence of such a matrix. Here, we show that there exists a matrix with exponentially decaying
singular values that also satisfies the required properties of our theorem.

We will construct an example based on the incoherence between the canonical basis and the Discrete
Fourier Transform (DFT) basis. Suppose that A = U⌃V

T , where (i) ⌃ is a diagonal matrix such
that ⌃11 = C

p
Np for some C > 0 and the diagonal entries of ⌃ satisfy 0  (⌃i+1,i+1)(⌃i,i)  ✓

for all i 2 [N ^ p � 1] and for some ✓ 2 (0, 1); (ii) U 2 RN⇥N is a DFT matrix such that
Uij = (1/

p
N) ·ei 2⇡

N (i�1)(j�1) for all i, j 2 [N ], where i denotes the imaginary unit; (iii) V 2 Rp⇥p

is a DFT matrix such that Vij = (1/
p
p) · ei

2⇡
p (i�1)(j�1) for all i, j 2 [p].

The entries of the resulting matrix A are complex numbers, but one could also construct A by
taking U and V as discrete cosine (or sine) transform matrices. Further, observe that U and V are
orthogonal matrices; hence, �i(A) = �i(⌃) for all i 2 [N ^ p]. Next, we argue that kAkmax  C

0

for some constant C 0
> 0 (the proof of which can be found in Appendix J.3).

Proposition 5.2. Let A be generated as above. Then, kAkmax  C

1�✓ . Here, C > 0 and ✓ 2 (0, 1)
are the constants that appear in the description of ⌃.

6 Applications
Given the ubiquity of PCR in practice, we describe four concrete, important applications that are
enabled (and theoretically justified) by our formulation and the associated finite sample analyses
results: (i) causal inference (synthetic control); (ii) privacy preserving learning; (iii) regression with
mixed valued covariates. We choose these examples as they showcase the broad meaning of “error”
with respect to the covariates. (i) is related to measurement error (as is commonly assumed with
temporal data); (ii) is when noise is added to the covariates by design (in this example, to ensure
differential privacy); (iii) is when the structure of the covariates restricts our observations to only
its noisy instantiations (in this example, the latent covariate of interest is a “continuous” Bernoulli
parameter, but we only observe its discrete 0/1 categorical instantiation).

Due to space constraints, we defer the detailed description of these applications to Appendix B.

7 Conclusion

In conclusion (i) our work addresses a long-standing problem of demonstrating PCR is effective
when we only have access to high-dimensional noisy, sparse, and mixed valued covariates - in
particular, we provide non-asymptotic bounds for both training and testing error (transductive semi-
supervised learning) for these settings as well as when the covariate matrix is not low-rank and and
the linear model is misspecified; (ii) we establish a simple, but powerful equivalence between PCR
and linear regression with covariate pre-processing via HSVT, and provide a novel error analysis of
matrix estimation via HSVT with respect to the k·k2,1-norm; (iii) we formally connect our results
with important applications to demonstrate the broad meaning of “noisy covariates”: (a) synthetic
control (measurement noise); (b) differentially-private regression (noise added by design); (c) mixed
covariates (“structural" noise).
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