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On Rotationally Symmetric Hamilton's Equation 
for Kahler-Einstein Metrics 

N orihito Koiso 

§0. Introduction 

R.S. Hamilton [4] proved that any riemannian metric g0 with posi
tive Ricci curvature on a compact 3-dimensional manifold is deformed 
to an Einstein metric along the equation 

(H) 
d l 

-gt= -rt+ -St"9t 
dt n 

(n =dimension= 3), 

where rt denotes the Ricci tensor of 9t and St the mean value of the 
scalar curvature. It is weakly generalized to higher dimensional cases 
(e.g. [8]). 

Equation (H) has good properties: if the initial riemannian metric 
go is invariant under a group action, then so is each 9ti if go is a Kahler 
metric, then so is each 9t· In fact, H.D. Cao [2] proves that any Kahler 
metric on a compact Kahler manifold with vanishing or negative first 
Chern class is deformed to a Kahler-Einstein metric along equation (H). 

This result suggests that, even on a compact Kahler manifold with 
positive first Chern class, the solution of equation (H) converges to a 
Kahler-Einstein metric if it exists. The first purpose of this paper is to 
show that it is true in some special cases given in Y. Sakane [9] and N. 
Koiso-Y. Sakane [6], [7], which contain rotationally symmetric metrics 
on the 2-dimensional sphere. On the other hand, if the manifold admits 
no Kahler-Einstein metrics, then the solution of equation (H) can not 
converge. But it is interesting to see the behaviour of the solution, which 
is the second purpose. These situations are unified as the following 

Theorem. Let (L, §o) be a Kahler manifold as in Chapter VI and 
9t be the solution of equation (H). Then there is a holomorphic vector 
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field V on L such that exp(tV)* 9t converges to a quasi-Einstein metric 
(seethe definition below). Here, V = 0 if and only if Futaki 's obstruction 
([3]) vanishes. 

§1. Hamilton's equation and quasi-Einstein metrics 

At first, we need to modify the notion of Einstein metrics in order to 
analyze the behaviour of solutions of equation (H) which do not converge 
to Einstein metrics. 

Definition 1.1. A riemannian metric g is called a quasi-Einstein 
metric if there is a vector field V such that r - (s/n)g = Lvg. 

We easily see 

Proposition 1.2. The solution of Hamilton's equation (H) whose 
initial riemannian metric g0 is a quasi-Einstein metric is given by gt = 
'Yt1*9o, where 'Yt = exptV. In particular, if go is not Einstein, then gt 
does not converge. 

From Proposition 1.2, even if a solution 9t of Hamilton's equation 
does not converge, ( exp t V) * 9t may converge for some vector field V 
on M. Remarking that the one parameter family 9t = (exptV)*gt of 
riemannian metrics satisfies the equation 

(H*) 
d 1 
dt9t =-ft+ ;;,st·9t + Lv.§t, 

where f is the Ricci tensor of g, we treat equation (H*) as a modified 
Hamilton's equation. 

On a compact complex manifold with positive first Chern class, we 
get the following 

Proposition 1.3. A Kahler metric g in the first Chern class is a 
quasi-Einstein metric if and only if r - g = Lvg for some holomorphic 
vector field V. In particular, such a Kahler metric is an Einstein metric 
if and only if Futaki 's obstruction vanishes. 

Proof. Put r - g = 88 f, where 88 denotes the complex Hessian. 
Then by the definition of V, 

where D denotes the covariant derivative. These equations imply that 
-D-Y(D-yVa - Da.V-r) = 0, and so Da.V,13 = 0, i.e., Vis holomorphic. 
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Assume that Futaki's obstruction vanishes. We know that there 
is a complex valued function TJ such that V0 = D 0 TJ, because the first 
Chern class is positive and so there are no non-trivial harmonic 1-forms. 
Substituting it into the above equation, we get D 0 D 13(TJ + r; - f) = 
0, which means that there is a real valued function v such that T/ = 
(1/2)f + Av. Combining it with the definition of the obstruction 
([3]) : JM V[f]v 9 = 0, we see that df = 0. Q.E.D. 

If we take a Kahler metric g0 in the first Chern class, then equation 
(H*) becomes 

(H*K) 
d 
dt'!J=-r+'!J+Lv'!J. 

Cao's result [2] for the case of negative first Chern class can be easily 
modified as follows (for detail, readers can refer to [5]). 

Lemma 1.4. The solution 'flt of equation (H*K) exists for all time. 
If 'flt converges uniformly to a riemannian metric 900 and is bounded in 
C 1 -topology, then 'flt converges to 900 in C 00 -topology. 

§2. Rotationally symmetric equations 

From now on we treat only Kahler manifolds (L, g) of form (6.1.1) in 
Chapter VI, and assume hypothesis A1 ) and A2 ) in Chapter VI. We will 
use the same notation as VI, unless otherwise stated. In particular, t 
denotes a space variable in VI while we will reserve t as the time variable. 
We will use the results in VI up to Lemma 6.5 and the discussion in Proof 
of Theorem 6.7. We summarize them as follows. 

Lemma 2.1. Let g be a Kahler metric of form VI (6.1.1). Then 

there are a function U: L -+ [- Dmin, Dmax] and a function cp: 
[- Dmin, Dmax] -+ R such that g( H, H) = cp o U and that H[f o U] = 
( cp-f1) o U for all functions f on [-Dmin, Dmax]- The function cp satisfies 
the following properties. 

(1) cp is C 00 -ly extended over the boundary. 
(2) cp is positive on (-Dmin, Dmax) and vanishes at the boundary. 
(3) cp'(-Dnun) = 2, cp'(Dmax) = -2. 

Conversely, for a function cp with properties above, we can construct 
a Kahler metric g of form VI (6.1.1), uniquely up to holomorphic R+ -
action. 
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Let g, cp, U be as above. Denoting by x the variable on 
[-Dmin, Dmaxl, we set for a function <p of X 

P(cp)(x) = cp'(x) + ~~:~ Q'(x) + 2x, 

where ' denotes the derivation d/ dx. If we choose a function f of x as 
VI (6.5.1), i.e., f - g = 88(! o U), then by VI Lemma 6.5 we see that 

P(cp) o U = -H[f o U]. 

From VI (6.1.3), VI Lemmas 6.2 and 6.3, we easily see that the formulae: 

(f - 9)oo = -H[P(cp) 0 U], (r - g) -/3 = (1/2)P(cp) 0 u. B -/3, 
(2.1.1) - - a a 

(LHg) 0O = 2H[cp o U], (LH9t""jj =-<po U · Bap 

hold under assumption VI (6.3.1). 
Now we define a real number Eby 

(Dmo.x 
}_ xe-E"Q(x)dx = 0. 

-Drnin 

Since Q(x) > 0 on (-Dmin, Dmax), such a real number E uniquely exists, 
and E = 0 if and only if Futaki's obstruction vanishes. If we set V = 
-(E/2)H, then from (2.1.1), we get the following formulae. 

(2.1.2) 
(f - g - Lvg) 0O = -H[P(cp) o U - Ecp o U], 

(f - g - Lvg) 0 p = (1/2)(P(cp) o U - Ecp o U) · Bap· 

Using the real number E we define a function cp0 ( x) by 

and choose a function U0 so that H[f oU 0 ] = ( cpf')oU for any function f. 
Since the function cp0 satisfies the properties (1), (2) and (3) in Lemma 

2.1, the pair (U0 , cp0 ) defines a Kahler metric g0 on L. Moreover, from 
the definition of cp0 , we see that 

(2.1.3) P( <po) = Ecpo. 

Combining it with (2.1.2), we get 
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Lemma 2.2. The pair (U 0 , rp0 ) defines a quasi-Einstein metric g0 

on L. The Kahler metric g0 is an Einstein metric if and only if E = 0. 

Remark 2.3. The Kahler metric g0 is not extremal in the sense of 
Calabi [1]. A Kahler metric is extremal if and only if the gradient of 
its scalar curvature is holomorphic. In our case, it is equivalent to that 
( rp f ')" is constant, and we get a unique solution 

rp(x) = -(1/Q(x)) /_"'D=in (C(Dmin + x)(Dmax - x) + 2x)Q(x)dx, 

where the constant C is chosen so that rp(Dmax) = 0. This function rp 
defines an extremal Kahler metric, but it is a quasi-Einstein metric if 
and only if E = 0 and C = 0, i.e., if they are Einstein metrics. 

Now we consider modified Hamilton's equation (H*K). By (2.1.2), 
equation (H*K) reduces to 

(2.3.1) 2 :t(rpt o Ut) = 'Pt o Ut · {P(rpt)' o Ut - Erp/ o Ut}· 

On the other hand, from the equality: rp o U · d/dU = H, we get 

d ( d 0) 
dt rp o U . dU U = 0. 

Combining them, we get 

and so 
d 

2 dtU = (P(rp)- Erp) o U 

modulo constant. But here both sides of this equality vanishes at the 
boundary U = -Dmin· Therefore it holds without modulo factor. We 
define a new function 0 by rp = rp0 • (1 + 0). Then from (2.1.3), P(rp) = 
Erp+ rp0 0' - 2x0. Therefore, 

(2.3.2) 2 ! U = (rp0 0') o U - 2U0 o U. 

Substituting it into (2.3.1 ), we get 

(2.3.3) 2rp0 !0 = rp0 rp011 - (rp0 0') 2 - 2xrp0 0' - 2(rp0 - x(rp0 )')(1 + 0)0. 

Remark that the function 0 vanishes on the boundary x = -Dmin, 
Dmax• 
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§3. Convergence of the solution <p 

To prove the convergence of 0, we need the following 

Lemma 3.1. cp0 (x) - x(cp0 )'(x) > 0 on [-Dmin, Dma.x]

Proof. Put 

f.(x) = xe-E"'Q(x) and 11(x) = /_~min f.(x)dx. 

Remark that (exp(-Ex)Qcp 0 )' = -2f. and cp0 = -2(exp(Ex)IQ)1J. 
Therefore, 

Since we know that cp0 - x( cp0 )' = 2Dmin (resp. 2Dma.x) > 0 at x = 
-Dmin (resp. Dma.x), it suffices to prove that e2 - 11f.' > 0 on 
(-Dmin, Dma.x)· Then <p0 > 0 and so 1J < 0. Moreover, since f.(O) = 0, 
11(0) < 0 and Q(O) = 1, we see that e2 - TJe' > 0 at x = 0. In the 
following, we consider only on the interval (0, Dma.x)· A similar proof 
holds on (-Dmin, 0). 

Since the function Q(x) is a product of polynomials of first order, 
the second derivative (log f.)" is negative on (0, Dma.x), which implies 
that the first derivative e crosses the x-axis at most once. If e does not 
cross the x-axis, then e2 - 11e' > 0 on (0, Dma.x), which completes the 
proof. Assume that e' crosses the x-axis at x = a. Then e2 - TJe' > 0 on 
(0, a] and so we may consider only on the interval (a, Dma.x)-

Thus it suffices to prove that e2 le' -11 < 0 on (a, Dma.x), because 
e' < 0. But we see that 

here, 

(e2 le' -11)' = f.. ((() 2 -f.f.")1(()2, 

o > (logf.)" = (f.C - (() 2)lf.2. 

Therefore, the function e2 le' -11 is increasing. Moreover, at x = Dma.x, 
e' < O, e2 :?: 0 and 1/ = 0. Hence e2 le' - 11 < 0 on (a, Dmax). Q.E.D. 

Lemma 3.2. The functions 0 and cp0 0' converges uniformly to 0 
in exponential order. 

Proof. From the definition of 0, we see that I + 0 > 0. There
fore (2.3.3) and Lemma 3.1 imply that the minimum of 0 is increas
ing. By Lemma 3.1 we can choose a positive number c1 smaller than 
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min{(<p0 - x(<p0 )')(1 + 0°)/<p0 }. Then by (2.3.3), we get 

2<po:!_(ec1t0) =<po<p. (ec1 t0Y, _ e-c 1t(<po. (ec1t0)')2 
dt 
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-2x<p 0 • (ec1 t0)' - 2( (<p0 - x(<p0 )')(1 + 0) - C1<p0 )ec 1 t0, 

from which we conclude that the function exp( c1 t )0 is bounded by the 
maximum principle. 

Put e = <p0 0' + c2x0, where C2 is a constant. Then we see that 

Here, 

0 dt O ( 0 d 0), (( 0 )' ) 0 d 0 2<p -c,, = <p · 2<p - - <p - C2X - 2<p - . 
dt dt dt 

2<p0 ! 0 =<p( - e - ( ((<p0 )' - c2x)0 + (<p0 )' + (c2 + 2)x )e 

- ((c2 + 2)(<p0 - x(<p0 )')(1 + 0) - c2(c2 + 2)x 2)0. 

and so, 

<po . (2<po 0')' 

=<p0 <pl" + (( term) - ((<p0 )' - c2x)e 

- {(c2 + 2)(2<p0 -X(<p 0 ) 1) - C2(C2 + 2)x 2 + <p0 (<p0 ) 11 + (0 term)}e 

+ (0 term). 

Combining these equalities, we get 

2 o!:.._c 
<p dt <,, 

=<p0 <p(1 + (( term) 

-{(c2+2)(2<p 0 -x(<p 0 )') + <p0 (<p0 ) 11 - 2x(<p0 ) 1 - ((<p0 )')
2 + (0 term)}e 

+ (0 term). 

If we remark that 2<p0 - x(<p0 )' 2:'. <p0 - x(<p0 )' > 0 and choose c2 suf
ficiently large, then we can choose a positive constant c3 so that the 
function exp(c 3t)l is bounded by a similar way to the first part. We 
know that 0 converges to O, so is <p0 0'. Q.E.D. 

Lemma 3.3. The functions (<p0 0' - 2x0)/<p and 0' are bounded 
and the function 0 / <p0 converges to O in L 1 -norm. 
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Proof. Put e = (1.p0 0' - 2x0)/<p. Remark that e is a C 00 -function 
on [-Dmin,Dmax] X [0,oo). Since f = 2(1/<p2 )·d<p/dt, 

d d 
2 dt e = -( <p0 0' - 2x0)( + 2(1/<p) a/ <p0 0' - 2x0). 

On the other hand, 

<p0 0' - 2x0 = <p1 - ((1.p0 )' + 2x)0. 

Therefore, 

2!£e = <p(1 + {-<pe + 2<p1 - ((1.p0 )' + 2x) (1 + 0)}(. 
dt 

In particular, 2de/dt = 2(Dmin + l)f at x = -Dmin and 2de/dt 
-2(Dmax + l)f at x = Dmax· Thus by the maximum principle, e is 
bounded. 

Put 'TJ = 0 / <p0 • Since 0 converges uniformly to 0, it suffices to prove 
that 'T/ is bounded on a neighbourhood of x = -Dmin, Dmax· In fact, 
then 0' is bounded by the boundedness of e and so 'TJ converges to O in 
L1-norm by Lemma 3.2. Remark that e is bounded and so is (1 + B)e. 
But 

(1 + B)e = <po'TJI + ((1.po)' - 2x)'TJ. 

Thus we can choose a positive constant c1 so that 

-C1 - ((1.p0 )' - 2x)'TJ < <p0 'T]1 < Ct - ((1.p0 )' - 2x)'TJ. 

If we choose a sufficiently small neighbourhood ( a, Dmax] of x = 
Dmax, then we can select a positive constant C2 so that ( <p0 )' - 2x < -c2 
on ( a, Dmax]. Therefore, if 'TJ > ci/ c2, then 'f/1 > 0, and if 'TJ < -ci/ c2, 
then 'f/1 < 0. On the other hand, substituting x = Dmax into the above 
inequality, we see that 

1 1 - 2ci/(Dmax + 1) < 'TJ(Dmax) < 2ci/(Dmax + 1). 

Thus l'TJI < max{c1(Dmax + l),ci/c2} on (a,Dmax], We can prove the 
boundedness of 'TJ for [-Dmin,b) by the same way. Q.E.D. 

§4. Convergence of the metric 

By (2.3.2) and Lemma 3.2, the derivative dU/dt converges uniformly 
to O in exponential order, and so the function U converges uniformly to a 
function U 00 • Since the function <p also converges to the function <p0 , the 
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function U00 satisfies the equation H[U 00 ] = cp0 o U00 , and thus the pair 
(U00 , cp0 ) defines a quasi-Einstein metric by Lemma 2.2. We replace 
U 0 by U 00 so that U converges uniformly to U 0 • Note that the pair 
(U 0 , cp0 ) corresponds to a quasi-Einstein metric [J°. Since cp o U · d/ dU = 
cp0 o U0 • d/dU 0 = H, there exists a function a(t) oft such that 

r d(y) = ro d(y) + a(t). 
lo 'PY lo 'P0 Y 

Remark that a(t) converges to 0. 

Lemma 4.1. The function cp o U/(cp0 o U 0 ) converges uniformly 
to 1 and the function ( U - U0 ) / ( cp0 o U0 ) converges uniformly to O. 

Proof. First we see that 

I r dy ro dy I 
lo 'P0 (Y) lo 'P0 (Y) 

I r dy r dy I I r dy ro 
~ lo cp0 (y) - lo cp(y) + lo cp(y) - lo 

I r 1 e(y) I 
= lo 1 + 0(y) cpo(y) dy + la(t)I, 

dy I 
cpD (y) 

and the last line converges uniformly to Oby Lemmas 3.2 and 3.3. Put 
c = max I ( cp0 )1 ( x) I and let I be the closed interval between x and x 0 • If 

Ir dy ro dy I 
lo 'P0 (Y) - lo cp0 (y) < c:, 

then 

€ > 11: cp~ry) I?: Ix - x0 l · min{cpo~y); y EI}, 

and so 

Ix - x 0 1 ~ t: · max{cp0 (y);y EI}~ c · (ip0 (x 0 ) + c·lx - x 0 1). 
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Therefore, if e is sufficiently small, then Ix - x 0 1 ::; 2ecp0 (x0 ). Thus 

I cp(x) 11 < I cpo(x) (1 + 0 x) cpo(x) I+ I cpo(x) 11 
cpo(xo) - - cpo(xo) ( ) - cpo(:z:o) cpo(:z:o) -

= IB(x)II cpo(x) I+ lcpo(x) - cpo(xo)I 
cpo(:z:o) cpo(xo) 

< IB(x)I· cpo(xo) + clx - xol + clx - xol 
- cpO(:z:O) cpO(:z:O) 

~ IB(x)l(l + 2ce) + 2ce. 

Q.E.D. 

Put g - g0 = 88u. Then 

L1°u = - trgo (g - g0 ) = -(cp OU - cp0 0 U0 )/(cp0 0 U0 ) 

converges uniformly to Oby Lemma 4.1, which implies that g converges 
to g0 • Moreover, 

~L1ou _ -~( cp o U ) 
dU0 - dU0 cp0 0 uo 

cp Ou 1 
cpO O uo cpO O uo 

{( d(cp0 oU 0 ) _ d(cp0 oU)) (d(cp0 oU) _ d(cpoU))} 
X dU0 dU + dU dU ' 

and the last line uniformly converges to O by Lemma 3.3, Lemma 4.1 
and the mean value theorem. Therefore g0 (dL1°u, dL1°u) = cp0 o U0 • 

(dL1°u/dU0 ) 2 converges to 0, which implies that 9t converges to g0 in 
C1-topology. Combining it with Lemma 1.4, we complete a proof of the 
following 

Theorem 4.2. Let go be as in section 2 and let 9t be the solution 
of original Hamilton's equation (H). Then the family -y;gt converges to 
a quasi-Einstein metric in C 00 -norm, where 'Yt = exp(-(1/2)EtH). 
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