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We discuss the issues encountered in the extended algebra and calculus languages for nested

relations defined by Roth, Korth, and Silberschatz [41. Their equivalence proof between algebra

and calculus fads because of the keying problems and the use of extended set operations.

Extended set operations also have unintended side effects. Furthermore, their calculus seems to

allow the generation of power sets, thus making it more powerful than their algebra.

Categories and Subject Descriptors: F.4. 1 [Mathematical Logic and Formal Languages]:

Mathematical Logic; H.2 1 [Database Manage,mentl: Logical Design– data models, normal

forms; H.2.3 [Languages]: data manipulation languages

General Terms: Languages, Theory

Additional Key Words and Phrases: Equivalence of algebra and calculus, nested relatlons,

relational algebra, relational calculus

1. INTRODUCTION

Roth, Korth, and Silberschatz (RKS) defined algebra and calculus languages

for Nested Form (NF) relations, and for Partitioned Normal Form (PNF) for a

subset of such relations [41. They extended relational algebra operations to

work within the domain of NF relations that are in PNF. They also at-

tempted to show the equivalence of the relational algebra and calculus

languages and stated that “with the assistance of these extended operators

we prove the equivalence of the NF relational calculus and NF relational

algebra” [4, p. 3901. For the reader’s convenience and for clarity, we briefly

summarize essential points of RKS’S article [41 before we provide our
comments.
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A nested relation scheme consists of zero-order names (attributes) that are

atomic, and higher order names (attributes) that are nested relation schemes.

In an instance of an NF relation, zero-order names assume atomic values

from their associated domains, and higher-order names assume nested rela-

tions that are composed of the values in their respective domains. A relation

structure is (R, r), where R is the nested relation scheme and r is its

instance. The Tuple Relational Calculus (TRC) includes the e operator and a

set-building formula ( S[ i] = (u I 4’(u))), where V’(u) is a formula, in addition

to the usual definitions given in [4, p. 3931. The Relational Algebra (RA)

includes two new operators Nest(V) and Unnest( ~): “The basic set of opera-

tors work exactly as before except the domains may be atomic or set-valued”

[4, p. 394].

RKS restricted the class of NF relations to relations that are in PNF. An

NF relation (R, r) is in PNF if Al, Az, . . . . A. ~ Xl, Xz, . . . . X~, where

AI, AZ,..., An and Xl, Xz,. , ., X~ are the zero- and higher-order attributes

of R, respectively. Recursively, the relation structure ( X,, t[ X, 1) for any

tuple tG r and any attribute name X, should be in PNF as well. Conse-

quently, a nested relation without any zero-order attributes is in PNF if and

only if it contains one single tuple, k = O [4, p. 3971.

RKS also extended RA operations to work within the class of PNF rela-

tions. These include extended union, extended intersection, extended differ-

ence, extended Cartesian product, extended natural join, and extended projec-

tion [4, sect. 6]. Let’s call this algebra Extended Relational Algebra (ERA).

As an example, the extended union, r U’ s places tl and tz into the result

when tlc r and t2 Es and tland t2disagree on their zero-order attributes. If

tl and t2agree on their zero-order attributes, then the corresponding higher-

order attributes are combined (collapsed) to form a single tuple in the

extended union. This rule is applied recursively on each higher-order at-

tribute. The other operations are similarly extended. RKS showed that PNF

relations are closed under extended algebra operations [4, Theorem 6.1, p.

402].

RKS gave two theorems on equivalence of their RA and relational calculus

languages. For proofs they provided a translation method from RA to the

relational calculus. This is followed by a translation method from relational

calculus to the ERA. They also mentioned a keying method:

In order to avoid problems where uA(~A(r)) # r, and so that the extended

operators do not interact improperly, we assume each database relation

(r, q,. ..), their nested relations, and relations created by collecting constants

into a limited domain, have an implicit keying attribute (or set of attributes)

whose values uniquely determines the values of all other attributes. We
consider this attribute to be added to each relation before it is used and

removed when the relation is projected or presented as the final result, using

appropriate algebra operations. A key can always be added to a relation by

making a side-by-side copy of the relation with itself and using one of the copies

as akey . . . . If r is a relation with arity n, then a side-by-side copy can be
made as follows:

‘l=n+l A2=n+2A... An=n+n (r x r)
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The first n attributes of this new relation then serve as the key. Note that
relations that are in partitioned normal form already satisfy these key con-
straints. [4, p. 409].

After this observation, RKS ignored the issue of keying in their inductive

translation from calculus to algebra. Yet the need for keying is subtle, and

its incorporation in this process is not straightforward, especially in the

translation of the set-building formula. In the following sections, we provide

our comments on [41.

2. ISSUES

2.1 On Keying

The keying method described by RKS does not work. The keyed relation is

only in PNF if the original relation is in PNF. Hence, the extended opera-

tions will not generate the intended result when applied to such keyed nested

relations.

Consider the relation structure (R, rl) and (R, rz) given in Figure 1.

r~ = rl U rg is given in Figure 2. r~ is calculated according to the standard

definition. This is also indicated in [4, p. 3941: “The basic set of operators

work exactly as before. . . .‘’ Now translate T-1U rz into TRC: ra = { t I te rl

v tG r2},The translation method is straightforward and is provided in [4, p.

404]: “The basis and five cases (case 1-5) for U, –, X, 7r and o are as in [6]. ”

Take this TRC expression and translate it back to an equivalent RA expres-

sion. Algorithm 1 from [4, p. 407] creates the graph shown in Figure 3. The

domain of Dt is

Dt is given in Figure 2. The relations rl and r2 are in PNF, whereas D~ is

not. Thus, Dt needs a key. By applying the keying method, we obtain D;,

which is given in Figure 4. However, rl and rz also have to be keyed for the

correct translation. Call them r; and r;. Now, we are ready to translate this

TRC formula:

terl=*Djfler~=r: (case 1 in basis, [4, p. 410] ),

t~rz=+D;fler~=rj (case 1 in basis, [4, p. 410]),

terlVt Gr2 ==r~ U’r.j (case 1 in induction, [4, p. 410] ),

7-4 = 7r3,4 (r; U’ rj).

r4 and intermediate relations are given in Figure 5. Clearly, r~ # r~. The

keying method fails because extended set operators do not take the whole key

copy. RKS mentioned that the first copy (the first n attributes) functions as a
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key. However, RKS did not show how this can be achieved by using the RA

(ERA) oeprations. One possible solution is to make the key copy as one single
attribute. This can be done by nesting the key copy into one single attribute

[21, that is, u~= ~~, ~,}(Dj). Although X provides a key for the relation D;, this

still does not work since extended set operations are based on atomic
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Fig 5. r4 and Intermediate relatlons

attributes. Redefinition of extended set operations to allow nested attributes

in the key part is one possible solution. However, it will be in conflict with

the main theme of RKS’S approach in TRC to RA translation.

Given that the keying method suggested by RKS does not work, as an

alternative try straightforward labeling of each tuple by a unique atomic

value. The labeling should be done in such a way that identical tuples of

different relations should be assigned the same key label. Considering that

all of the database relations and limited domains are keyed by this method,

the translation method of RKS for the union of the relations in Figure 1 gives

the result in Figure 2, which is correct. The keying method is simple.

However, incorporating it into the translation method of RKS requires

several modifications: All of the relations should be keyed even if only one of

them is not in PNF; the key attributes should be retained when the projec-

tion operation is used (unlike RKS’S proposition to remove them [4, p. 4091);

before applying a nest operation, the related key attributes should be re-

moved, etc. The example given in [4, p. 413] can be corrected if the relations

are keyed by the above labeling method with the mentioned modifications.

However, we have found the following example for which the translation

method of RKS from calculus to algebra does not work even if this keying

method is used:

{t”) I (t[l]= {S I SC7-, A=S[l] =’e’})v(t[l] = {x I x~r2})}

This TRC expression denotes the sets made up from all of the values in rl,

excluding ‘e’ or i-z, but not both. rl and r2 are single-column relations. rl is

(a), (~), (c), and r, is (d), (e), ( f). This expression is safe according to the
definition of safety given by RKS [4, p. 393]. Before translating this expres-
sion into the relational algebra, transform it to eliminate the A operator:

{t(l) I (t[l] = {s I ~(-serl Vs=’e’)})V(t[l] = {x \ xer2})}.
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Fig. 6. Graph for limited domains.

Algorithm 1 from [4, p. 407] creates the graph depicted in Figure 6. The

expressions for the limited domains are as follows:

D. = 7r1(r,) U {e},

~. = ~1(~2),

D, = ul={l}(~s) u ~l={l}(~x).

The relations are given in Figure 7. Note that we keyed these relations by

labeling. Now, do the translation (similar to the example given in [4, p. 4131.

D, x rl

(74=’ej(Dt x D.)

((D, x D.) -’E,) Ue E2

(D, x D.) -’E,

T,,3(u3={3}(~l,2,4 (E4)))

Dt x rg

71’3(W={3}(7K2,4( EJ))

Es U’ ET

Finally, E creates the relation { (abcdef’) ), which is not correct. The correct

result should be { ( abc), ( cie~) }. Note that, even if one were to intersect both

Es and ET with D, before the last step, the result would still be incorrect (it
seems this is necessary although RKS do not use it). In particular, this would

lead to the result, { ( abce), (clef)}. So, RKS’S translation method from calculus

to algebra is not correct.

ACM Transactions on DatabaseSystems,Vol. 17, No. 2, June 1992.
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Fig. 7 Relations in the translation

In their reply, RKS state the following:

Tansel and Garnett apply Algorithm I of RKS to this keying method even
though Algorithm I was designed for a different method. It is not at all
surprising that the algorithm fails for such an input. . . . The actual problem
with this example is that the extended algebra operators (–’, U‘ ) are interact-
ing in a bad way with the limited domains. If no keys and standard difference
and union operators are used in this example RKS’S methodology works. The
use of extended operators and not keys are most likely the main problem with
RKS’S methodology.

2.2 On the Interpretation of Calculus Objects

RKS did not give an interpretation for calculus objects explicitly. However,

the overall approach of their article implies that they are using the standard

interpretation given by Unman for calculus objects [6]. In translating TRC

formulas, RKS followed Unman’s method of intersecting interpretation of

formulas by the domains of free variables involved. Again, they used ex-

tended set interaction in place of set intersection. To translate { t I ~(t)} they

used

Dtn’{t I y(t)}

and stated “since ~ is safe, intersection with D~ does not change the relation

denoted, so we shall have proved the theorem” [4, p. 409]. This is not true

unless the interpretation of calculus objects and D~ are keyed. Consider

again the TRC formula for the set union and the relations rl and rz of
Figure 1. D, is given in Figure 2. Translation of the subformula t e T-1 does

not give rl because

Dtne{t I terl}

produces (1{ a}) in addition to the original tuple of rl. Again, keying is

needed to avoid the affect of extended set intersection. The keying method

used by RKS does not work. A unique key, such as labeling of tuples, works.

Both Dt and the interpretation of { t Ite i-l} should be keyed. In this case,

the result of the above expression becomes rl. However, keying interpreta-

tion of calculus objects is not obvious and may involve serious complications.

2.3 On the Extended Difference Operation

Extended set difference (extended set intersection) creates an unintended

side effect that leads to the creation of empty results. RKS stated that “since

our model does not include null values or empty sets, the operations are well

ACM Transactions on Database Systems, Vol 17, No, 2, June 1992
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Fig. 8. Possible instance for relation R

defined” [4, p. 399]. Furthermore definitions of extended difference and

extended intersection do not allow empty components in tuples; such tuples

are eliminated from the result. In the translation from TRC to ERA, some

tuple components may be identical, which causes extended set difference to

eliminate such tuples because these components become empty. Such cases

occur because the Cartesian product of relations are taken to make the

operand relations compatible. Consider the example given by RKS in [4, p.

413] and a possible instance for the relation R, depicted in Figure 8. Domains

D,, D,, and DU are given in the same figure. Now, look at the expression EA

[4, p. 4131. The first two subexpressions of El, (D, x D,) -e EI and (D, x Ds)
–e Ez, return an empty set, as expected. On the other hand, the third

subexpression, (Dt x D,) –e E3, does not create the expected tuple, but in-

stead returns the empty set because the D. components of both relations are

identical. Therefore, E4 returns the entire set Dt x D,, contrary to what RKS

expected. Finally, E gives the first two columns of E4, that is, Dt, as the

result, which is not correct. Note that this problem occurs independent of

keying. So, we do not bother to key as we trace the example.

2.4 On the Expressibility of Extended Set Operations in RA

RKS gave a method for expressing the extended union of ERA in terms of the

basic relational algebra operators:

Briefly, this can be done by unnesting the operands, decomposing relations into
several projections. . . [3, 4]. . . . This procedure works for relations that are in
PNF. If they are not in PNF, the appropriate algebra operators can be used to
add a key to each relation or nested relation so that the relations are PNF (see
Section 7, the above procedure applied. . . . [4, p. 400].

The second part is not correct. Regardless of the keying method used, this

procedure does not correctly convert extended set operations that involve
relations that are not in PNF since keying does not allow tuples to be

considered even if they agree on the atomic attributes. Keying only ensures

interaction of the identical tuples. This is contrary to the logic of extended
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operations. A procedure for expressing extended set operations involving any

nested relation can be found in [51.

2.5 On the Expressive Power of TRC

RKS sought to avoid uncontrolled creation of power sets [4, p. 3931. Consider

the following TRC expression and the relation r with one attribute:

{t l~u(t[l] = u[l]At[l] = {s I SC U[1]ASC7-})}.

This TRC expression generates the power set of the relation r. It does not

seem to violate any of the safety rules given in [4, p. 3941. The definition of

the set-building formula [4, p. 3921, S[ i] = { u I 4’(u)}, implies that 4’ is

allowed to have other free variables in addition to u [4, p. 3931. The definition

of safety does not explicitly put constraints on the set-building formula.

Given the example in RKS’S article, in particular, that used to translate the

nest operation [4, p. 4051, it seems reasonable to assume that the above

expression is also safe. However, it is known that the power set of a relation

cannot be expressed in the RA. Obviously, the method proposed by RKS

cannot translate the above TRC expression into RA. The translation will not

produce an ERA expression that gives the power set of r. So, the TRC defined

by RKS is more powerful in expressive power than the RA they defined.

In their reply, to avoid creation of power sets, RKS proposed augmenting

constraint 4C [4, p. 394], as u may not be the free variable s in the formula

4(s) of the expression {s I ~(s)}. However, we do not think this completely

solves the problem, since a counterexample can easily be formulated. If the

generation of power sets is not eliminated, this leads to a discussion of

recursive queries and the type of calculus language needed to cope with

them.

3. CONCLUSION

We have provided our observations on Roth, Korth, and Silberschatz’s article

[41. We have found the article useful in understanding the nested relational
model, and algebra and calculus languages for nested relations. RKS claimed

that they proved the equivalence of algebra and calculus languages for

nested relations. However, there are theoretical as well as technical ques-

tions on the validity of this claim for relations in PNF and relations not in

PNF, as is demonstrated by the above observations. An equivalence proof for

algebra (including a looping construct) and calculus languages for nested
relations can be found in [1].
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