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1 Introduction
The Pawlak’s rough set theory is a classical tool for assessing the problems and decision problems in many
�elds with respect to informations and technology. This theory was introduced by Pawlak [1] in 1982. He
proposed the concept of Pawlak’s rough sets in universal sets based on equivalence classes induced by equiv-
alence relations. For an equivalence relation on a universal set and a non-empty subset of the universal set,
thePawlak’s rough set of thenon-empty subset is givenbymeanof apair of thePawlak’s upper approximation
and the Pawlak’s lower approximation where the di�erence between the Pawlak’s upper approximation and
the Pawlak’s lower approximation (The Pawlak’s boundary region) is a non-empty set. The Pawlak’s upper
approximation is the union of all the equivalence classes which have a non-empty intersection with the non-
empty subset. The Pawlak’s lower approximation is the union of all the equivalence classes which are subset
of the non-empty subset. As mentioned above, the Pawlak’s rough set model is de�ned as a mathematical
tool with respect to assessments of decisions. This assessment model is an important tool for dealing with
algebraic systems [2–14], information sciences [15] and computer sciences [16] etc.

From Pawlak’s rough sets induced by equivalence relations, the generalized Pawlak’s rough sets using
arbitrary binary relations (brie�y, binary relations) were introduced by many researchers. In 1998, Yao [17]
introduced roughness models using successor neighborhoods induced by binary relations [SNθ(u) := {u′ ∈
U : (u, u′) ∈ θ} denotes a successor neighborhood of u induced by a binary relation θ on a universal
set U where u is an element in U]. In 2016, Mareay [18] introduced rough sets using cores of successor
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neighborhoods induced by binary relations [CSNθ(u) := {u′ ∈ U : SNθ(u) = SNθ(u′)} denotes a core of a
successor neighborhood of u induced by a binary relation θ on a universal set U where u is an element in U].
If a binary relation on a universal set is an equivalence relation, then the Yao’s rough set and the Mareay’s
rough set are generalizations of the Pawlak’s rough set.

The classical fuzzy set theory was introduced by Zadeh [19] in 1965. Based on this point, Zadeh [20, 21]
introduced the concept of fuzzy relations in 1971 which it is researched by many researchers in several �elds,
such as information sciences [22] and decision systems [23] etc.

The semigroup structure (see [24]) is an algebraic systemwith respect towide applications, especially the,
notions of Pawlak’s rough sets in semigroups. For combinations of Pawlak’s rough set theory and semigroup
theory, Kuroki [4] proposed the notion of rough ideals in semigroups based on congruence classes induced by
congruence relations (equivalence relations and compatible relations) in 1997. Thereafter, Xiao and Zhang [7]
proposed the notion of rough completely prime ideals in semigroups based on congruence classes induced
by congruence relations in 2006. For the combination of Pawlak’s rough set theory, fuzzy set theory and
semigroup theory, Wang and Zhan [13] introduced the concept of rough semigroups based on congruence
relations with respect to fuzzy ideals of semigroups in 2016.

From an interesting idea about generalized rough set models in the sense of Mareay [18], and after
providing some preliminaries about some important de�nitions of fuzzy relations and semigroups in Section
2, we introduce a rough set in a universal set based on cores of successor classes with respect to level in a
closed unit interval under a fuzzy relation, and we verify some interesting properties in Section 3. In Section
4, we introduce a rough completely prime ideal in a semigroup structure under a compatible preorder fuzzy
relation, including the rough semigroup and rough ideal. Then we provide su�cient conditions for them. In
Section 5, we investigate the relationships between rough completely prime ideals (rough semigroups and
rough ideals) and their homomorphic images. Finally, we give a conclusion of the work in Section 6.

2 Preliminaries
In this section, we review some important de�nitions which will be necessary in the subsequent sections.
Throughout this paper, U and V denote two non-empty universal sets.

De�nition 2.1. [19] A fuzzy set of U is de�ned as a function from U to the closed unit interval [0, 1].

De�nition 2.2. [22] LetF(U ×V) be a family of all fuzzy sets of U ×V. An element inF(U ×V) is referred to as a
fuzzy relation from U to V. An element in F(U × V) is called a fuzzy relation on U if U = V. For a fuzzy relation
Θ ∈ F(U × V) and elements u ∈ U, v ∈ V, the value of Θ(u, v) in [0, 1] representing themembership grade of
relation between u and v under Θ. IfΘ ∈ F(U×V)whereU := {u1, u2, u3, ..., um} andV := {v1, v2, v3, ..., vn},
then the fuzzy relation Θ is represented by the matrix as

Θ(u1, v1) Θ(u1, v2) Θ(u1, v3) · · · Θ(u1, vn)
Θ(u2, v1) Θ(u2, v2) Θ(u2, v3) · · · Θ(u2, vn)
Θ(u3, v1) Θ(u3, v2) Θ(u3, v3) · · · Θ(u3, vn)

...
...

... · · ·
...

Θ(um , v1) Θ(um , v2) Θ(um , v3) · · · Θ(um , vn)

 .

De�nition 2.3. [22] Let Θ be a fuzzy relation from U to V. Θ is called serial if for all u ∈ U, there exists v ∈ V
such that Θ(u, v) = 1.

De�nition 2.4. [22] Let Θ be a fuzzy relation on U.
(1) Θ is called re�exive if for all u ∈ U, Θ(u, u) = 1,
(2) Θ is called symmetric if for all u1, u2 ∈ U, Θ(u1, u2) = Θ(u2, u1),
(3) Θ is called transitive if for all u1, u2 ∈ U, Θ(u1, u2) ≥ ∨u3∈U(Θ(u1, u3) ∧ Θ(u3, u2)),
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(4) Θ is called a similarity fuzzy relation if it is re�exive, symmetric and transitive.

A semigroup [24] (S, *) is de�ned as an algebraic system where S is a non-empty set and * is an associative
binary operation on S. Throughout this paper, S denotes a semigroup. A non-empty subset X of S is called a
subsemigroup [25] of S if XX ⊆ X. A non-empty subset X of S is called a left (right) ideal [25] of S if SX ⊆ X
(XS ⊆ X), and if it is both a left ideal and a right ideal of S, then it is called an ideal [25]. An ideal X of S is
called a completely prime ideal [25] of S if for all s1, s2 ∈ S, s1s2 ∈ X implies s1 ∈ X or s2 ∈ X.

De�nition 2.5. [25] Let Θ be a fuzzy relations on S. Θ is called compatible if for all s1, s2, s3 ∈ S,

Θ(s1s3, s2s3) ≥ Θ(s1, s2) and Θ(s3s1, s3s2) ≥ Θ(s1, s2).

3 Rough sets induced by fuzzy relations
In this section, we construct rough sets induced by fuzzy relations. Then we give the real-world example and
some interesting properties.

De�nition 3.1. Let ι ∈ [0, 1] and let Θ be a fuzzy relation from U to V. For an element u ∈ U,

SΘ(u; ι) := {v ∈ V : Θ(u, v) ≥ ι}

is called a successor class of u with respect to ι-level under Θ.

Remark 3.2. Let ι ∈ [0, 1]. If Θ is a serial fuzzy relation from U to V, then SΘ(u; ι) ≠ ∅ for all u ∈ U.

De�nition 3.3. Let ι ∈ [0, 1] and let Θ be a fuzzy relation from U to V. For an element u1 ∈ U,

CSΘ(u1; ι) := {u2 ∈ U : SΘ(u1; ι) = SΘ(u2; ι)}

is called a core of the successor class of u1 with respect to ι-level under Θ.
We denote by CSΘ(U; ι) the collection of CSΘ(u; ι) for all u ∈ U.

Directly from De�nition 3.3, we can obtain the following Proposition 3.4 below.

Proposition 3.4. Let ι ∈ [0, 1] and let Θ be a fuzzy relation from U to V. Then the following statements hold.
(1) For all u ∈ U, u ∈ CSΘ(u; ι).
(2) For all u1, u2 ∈ U, u2 ∈ CSΘ(u1; ι) if and only if CSΘ(u1; ι) = CSΘ(u2; ι).

The following remark is an immediate consequence of Proposition 3.4.

Remark 3.5. Let ι ∈ [0, 1] and let Θ be a fuzzy relation from U to V. Then CSΘ(U; ι) is the partition of U.

Proposition 3.6. Let ι ∈ [0, 1] and let Θ be a fuzzy relation on U. Then we have the following statements.
(1) If Θ is re�exive, then CSΘ(u; ι) ⊆ SΘ(u; ι) for all u ∈ U.
(2) If Θ is a similarity fuzzy relation, then SΘ(u; ι) and CSΘ(u; ι) are identical classes for all u ∈ U.

Proof. The proof is straightforward, so we omit it.

In the following, we give the concept of rough sets induced by fuzzy relations.

De�nition 3.7. Let ι ∈ [0, 1] and let Θ be a fuzzy relation from U to V. A triple (U, V , CSΘ(U; ι)) is
called an approximation space based on CSΘ(U; ι) (brie�y, CSΘ(U; ι)-approximation space). If U = V, then
(U, V , CSΘ(U; ι)) is replaced by a pair (U, CSΘ(U; ι)).
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De�nition 3.8. Let (U, V , CSΘ(U; ι)) be an CSΘ(U; ι)-approximation space. For a non-empty subset X of U,
we de�ne three sets as follows:

Θ(X; ι) :=
⋃
u∈U{CSΘ(u; ι) : CSΘ(u; ι) ∩ X ≠ ∅},

Θ(X; ι) :=
⋃
u∈U{CSΘ(u; ι) : CSΘ(u; ι) ⊆ X} and

Θbnd(X; ι) := Θ(X; ι) − Θ(X; ι).
Then
(1) Θ(X; ι) is called an upper approximation of X in (U, V , CSΘ(U; ι))

(brie�y, CSΘ(U; ι)-upper approximation of X).
(2) Θ(X; ι) is called a lower approximation of X in (U, V , CSΘ(U; ι))

(brie�y, CSΘ(U; ι)-lower approximation of X).
(3) Θbnd(X; ι) is called a boundary region of X in (U, V , CSΘ(U; ι))

(brie�y, CSΘ(U; ι)-boundary region of X).
(4) If Θbnd(X; ι) ≠ ∅, then ΘR, (X; ι) := (Θ(X; ι), Θ(X; ι)) is called a rough set of X in (U, V , CSΘ(U; ι))

(brie�y, CSΘ(U; ι)-rough set of X).
(5) If Θbnd(X; ι) = ∅, then X is called a de�nable set in (U, V , CSΘ(U; ι))

(brie�y, CSΘ(U; ι)-de�nable set).

According to De�nition 3.8, it is easy to prove that
Θ(X; ι) := {u ∈ U : CSΘ(u; ι) ∩ X ≠ ∅} and
Θ(X; ι) := {u ∈ U : CSΘ(u; ι) ⊆ X}.
Here we present an example as the following.

Example 3.9. LetU = {u1, u2, u3, u4, u5}be a set of doctoral students in amathematical business classroom
of a university and let V = {v1, v2, v3, v4} be a set of subjects where

v1 is business,
v2 is economics,
v3 is computer sciences and
v4 is mathematics.
For a fuzzy relation Θ ∈ F(U × V) and elements u ∈ U, v ∈ V, the number Θ(u, v) in the closed unit

interval [0, 1] is de�ned as the score of the doctoral student u with respect to the subject v under Θ. The
scores of all doctoral students in U with respect to subjects in V under Θ are given as the following matrix.

0.7 0.9 0.8 0.9
0.8 0.9 0.7 0.9
0.9 0.8 0.8 0.9
0.5 0.5 0.9 0.9
0.9 0.9 0.6 0.9


Let ι = 0.9 be a minimal score level. If an educational measurement committee assign X := {u2, u3, u5}
which is a set of excellent doctoral students under the global evaluation, then the assessment of X in an
CSΘ(U; 0.9)-approximation space (U, V , CSΘ(U; 0.9)) is derived by the process as the following.
According to De�nition 3.1, it follows that

SΘ(u1; 0.9) := {v2, v4},
SΘ(u2; 0.9) := {v2, v4},
SΘ(u3; 0.9) := {v1, v4},
SΘ(u4; 0.9) := {v3, v4} and
SΘ(u5; 0.9) := {v1, v2, v4}.
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According to De�nition 3.3, it follows that
CSΘ(u1; 0.9) := {u1, u2},
CSΘ(u2; 0.9) := {u1, u2},
CSΘ(u3; 0.9) := {u3},
CSΘ(u4; 0.9) := {u4} and
CSΘ(u5; 0.9) := {u5}.

According to De�nition 3.8, it follows that
Θ(X; 0.9) := {u1, u2, u3, u5},
Θ(X; 0.9) := {u3, u5} and
Θbnd(X; 0.9) := {u1, u2}.

Therefore ΘR, (X; 0.9) := ({u1, u2, u3, u5}, {u3, u5}) is a CSΘ(U; 0.9)-rough set of X. Consequently,
(1) u1, u2, u3 and u5 are possibly excellent doctoral students,
(2) u3 and u5 are certainly excellent doctoral students and
(3) for u1 and u2 it cannot be determined whether two students are excellent doctoral students or not.

In what follows, De�nition 3.10 follows from the example as the union of upper and lower approximations.

De�nition 3.10. Let (U, V , CSΘ(U; ι)) be an CSΘ(U; ι)-approximation space and let X be a non-empty subset
of U. Θ(X; ι) is called a non-empty CSΘ(U; ι)-upper approximation of X in (U, V , CSΘ(U; ι)) if Θ(X; ι) is a
non-empty subset of U. Similarly, we can de�ne a non-empty CSΘ(U; ι)-lower approximation. ΘR, (X; ι) is
referred to as a non-empty CSΘ(U; ι)-rough set in (U, V , CSΘ(U; ι)) if Θ(X; ι) is a non-empty CSΘ(U; ι)-upper
approximation and Θ(X; ι) is a non-empty CSΘ(U; ι)-lower approximation.

Proposition 3.11. Let (U, V , CSΘ(U; ι)) be an CSΘ(U; ι)-approximation space. If X and Y are non-empty
subsets of U, then we have the following statements.
(1) Θ(U; ι) = U and

Θ(U; ι) = U.
(2) Θ(∅; ι) = ∅ and

Θ(∅; ι) = ∅.
(3) X ⊆ Θ(X; ι) and

Θ(X; ι) ⊆ X.
(4) Θ(X ∪ Y; ι) = Θ(X; ι) ∪ Θ(Y; ι) and

Θ(X ∩ Y; ι) = Θ(X; ι) ∩ Θ(Y; ι).
(5) Θ(X ∩ Y; ι) ⊆ Θ(X; ι) ∩ Θ(Y; ι) and

Θ(X ∪ Y; ι) ⊇ Θ(X; ι) ∪ Θ(Y; ι).
(6) Θ(Xc; ι) = (Θ(X; ι))c, where Xc and (Θ(X; ι))c are complements of X and Θ(X; ι), respectively.
(7) Θ(Θ(X; ι); ι) = Θ(X; ι) and

Θ(Θ(X; ι); ι) = Θ(X; ι).
(8) Θ((Θ(X; ι))c; ι) = (Θ(X; ι))c, where (Θ(X; ι))c is a complement of Θ(X; ι) and

Θ((Θ(X; ι))c; ι) = (Θ(X; ι))c, where (Θ(X; ι))c is a complement of Θ(X; ι).
(9) If X ⊆ Y, then Θ(X; ι) ⊆ Θ(Y; ι) and Θ(X; ι) ⊆ Θ(Y; ι).

Proof. The proof is straightforward, so we omit it.

De�nition 3.12. Let (U, V , CSΘ(U; ι)) be an CSΘ(U; ι)-approximation space and let X be a non-empty subset
of U. If Θ(X; ι) is a non-empty CSΘ(U; ι)-lower approximation of X in (U, V , CSΘ(U; ι)) and Θ(X; ι) is a proper
subset of X, then X is called a set over a non-empty interior set.

Proposition 3.13. Let (U, V , CSΘ(U; ι)) be an CSΘ(U; ι)-approximation space and let X be a non-empty subset
of U. If X is a set over non-empty interior set, then ΘR, (X; ι) is a non-empty CSΘ(U; ι)-rough set of X in
(U, V , CSΘ(U; ι)).
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Proof. Suppose that X is a set over a non-empty interior set. Then we have that Θ(X; ι) is a non-empty
CSΘ(U; ι)-lower approximation and Θ(X; ι) ⊂ X. By Proposition 3.11 (3), we obtain that ∅ ≠ X ⊆ Θ(X; ι). Thus
we get Θ(X; ι) is a non-empty CSΘ(U; ι)-upper approximation. We shall verify that Θbnd(X; ι) ≠ ∅. Suppose
that Θbnd(X; ι) = ∅. Then we have Θ(X; ι) = Θ(X; ι). From Proposition 3.11 (3), once again, it follows that
Θ(X; ι) = X, a contradiction. Therefore Θbnd(X; ι) ≠ ∅. Consequently, Θ(X; ι) is a non-empty CSΘ(U; ι)-rough
set of X.

Example 3.14. Let U := {u1 = 3, u2 = 1, u3 = 1
3 , u4 =

1
9 , u5 =

1
27} and V := {v1 = 2, v2 = 2

√
3, v3 = 6, v4 =

6
√
3}. De�ne a fuzzy relation Θ ∈ F(U × V) by

Θ(u, v) =
{
cos uv if u ≥ v
1 − sin uv if u < v

for all (u, v) ∈ U × V. Then we have the following ranges of Θ.
0.99452 0.81961 0.69098 0.48232
0.96510 0.93958 0.89547 0.81961
0.98836 0.97985 0.96510 0.93958
0.99612 0.99328 0.98836 0.97985
0.99871 0.99776 0.99612 0.99328


Let ι = 0.95 and let X := {u2, u3} be a non-empty subset of U. According to De�nition 3.1, it follows that

SΘ(u1; 0.95) := {v1},
SΘ(u2; 0.95) := {v1},
SΘ(u3; 0.95) := {v1, v2, v3},
SΘ(u4; 0.95) := {v1, v2, v3, v4} and
SΘ(u5; 0.95) := {v1, v2, v3, v4}.

According to De�nition 3.3, it follows that
CSΘ(u1; 0.95) := {u1, u2},
CSΘ(u2; 0.95) := {u1, u2},
CSΘ(u3; 0.95) := {u3},
CSΘ(u4; 0.95) := {u4, u5} and
CSΘ(u5; 0.95) := {u4, u5}.

Here it is easy to check that Θ(X; 0.95) is a non-empty CSΘ(U; 95)-lower approximation of X, and also
Θ(X; 0.95) ⊂ X. Note that X ⊆ Θ(X; 0.95). Thus we get Θ(X; 0.95) ≠ ∅ and Θ(X; 0.95) ≠ Θ(X; 0.95). It
follows that ΘR, (X; 0.95) is a non-empty CSΘ(U; 0.95)-rough set of X.

Proposition 3.15. Let (U, CSΘ(U; ι)) be an CSΘ(U; ι)-approximation space and let (U, CSΨ (U; κ)) be an
CSΨ (U; κ)-approximation space. If ι ≥ κ and Θ ⊆ Ψ where Θ is re�exive and Ψ is transitive, then we have
Θ(X; ι) ⊆ Ψ(X; κ) for every non-empty subset X of U.

Proof. Let X be a non-empty subset of U. Then we prove that Θ(X; ι) ⊆ Ψ(X; κ). In fact, let u1 ∈ Θ(X; ι). Then
CSΘ(u1; ι)∩ X ≠ ∅. Thus there exists u2 ∈ CSΘ(u1; ι)∩ X, and so SΘ(u1; ι) = SΘ(u2; ι). Since Θ is re�exive, we
have Θ(u2, u2) = 1 ≥ ι. Whence u2 ∈ SΘ(u2; ι) = SΘ(u1; ι). Thus we have Θ(u1, u2) ≥ ι. Since ι ≥ κ and Θ ⊆ Ψ ,
we have Ψ(u1, u2) ≥ Θ(u1, u2) ≥ κ, and so Ψ(u1, u2) ≥ κ. Similary, we have Ψ(u2, u1) ≥ κ. We shall verify that
SΨ (u1; κ) = SΨ (u2; κ). Now, let u3 ∈ SΨ (u2; κ). Then Ψ(u2, u3) ≥ κ. Since Ψ is transitive, we have

Ψ(u1, u3) ≥ ∨u4∈U (Ψ(u1, u4) ∧ Ψ(u4, u3))
≥ Ψ(u1, u2) ∧ Ψ(u2, u3)
≥ κ ∧ κ
= κ.

Hence Ψ(u1, u3) ≥ κ. Thus u3 ∈ SΨ (u1; κ), which yields SΨ (u2; κ) ⊆ SΨ (u1; κ). Similary, we can prove that
SΨ (u1; κ) ⊆ SΨ (u2; κ). Whence we get SΨ (u1; κ) = SΨ (u2; κ), and so u2 ∈ CSΨ (u1; κ). Thus we have that
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u2 ∈ CSΨ (u1; κ) ∩ X. Hence CSΨ (u1; κ) ∩ X ≠ ∅, which yields u1 ∈ Ψ(X; κ). Therefore we get that Θ(X; ι) ⊆
Ψ(X; κ).

Proposition 3.16. Let (U, CSΘ(U; ι)) be an CSΘ(U; ι)-approximation space and let (U, CSΨ (U; κ)) be an
CSΨ (U; κ)-approximation space. If ι ≥ κ and Θ ⊆ Ψ where Θ is re�exive and Ψ is transitive, then we have
Ψ(X; κ) ⊆ Θ(X; ι) for every non-empty subset X of U.

Proof. Let X be a non-empty subset ofU. Thenwe prove thatΨ(X; κ) ⊆ Θ(X; ι). Indeed, let u1 ∈ Ψ(X; κ). Then
CSΨ (u1; ι) ⊆ X. We shall show that CSΘ(u1; ι) ⊆ CSΨ (u1; κ). Let u2 ∈ CSΘ(u1; ι). Then we have SΘ(u1; ι) =
SΘ(u2; ι). Since Θ is re�exive, we have that Θ(u1, u1) = 1 ≥ ι. Hence u1 ∈ SΘ(u1; ι), and so u1 ∈ SΘ(u2; ι).
Thus Θ(u2, u1) ≥ ι. By the assumption, we have Ψ(u2, u1) ≥ Θ(u2, u1) ≥ κ, and so Ψ(u2, u1) ≥ κ. Similary,
we get that Ψ(u1, u2) ≥ κ. We shall prove that SΨ (u1; κ) = SΨ (u2; κ). Let u3 ∈ SΨ (u2; κ). Then Ψ(u2, u3) ≥ κ.
Since Ψ is transitive, we have

Ψ(u1, u3) ≥ ∨u4∈U (Ψ(u1, u4) ∧ Ψ(u4, u3))
≥ Ψ(u1, u2) ∧ Ψ(u2, u3)
≥ κ ∧ κ
= κ.

Thus Ψ(u1, u3) ≥ κ, and so u3 ∈ SΨ (u1; κ). Hence SΨ (u2; κ) ⊆ SΨ (u1; κ). Similary, we can prove that
SΨ (u1; κ) ⊆ SΨ (u2; κ), which yields SΨ (u1; κ) = SΨ (u2; κ). Thuswehave u2 ∈ CSΨ (u1; κ), and so CSΘ(u1; ι) ⊆
CSΨ (u1; κ) ⊆ X. Therefore u1 ∈ Θ(X; ι). This means that Ψ(X; κ) ⊆ Θ(X; ι).

4 Roughness in semigroups
In this section, we propose the de�nition of compatible preorder fuzzy relations on semigroups. Then we
introduce the roughness in semigroups induced by compatible preorder fuzzy relations.We provide su�cient
conditions for them and give some interesting properties and examples.

De�nition 4.1. Let Θ be a fuzzy relation on S. Θ is called a compatible preorder fuzzy relation if Θ is
re�exive, transitive and compatible. An CSΘ(S; ι)-approximation space (S, CSΘ(S; ι)) is called an CSΘ(S; ι)-
approximation space type CPF if Θ is a compatible preorder fuzzy relation.

Proposition 4.2. If (S, CSΘ(S; ι)) is an CSΘ(S; ι)-approximation space type CPF, then

(CSΘ(s1; ι))(CSΘ(s2; ι)) ⊆ CSΘ(s1s2; ι)

for all s1, s2 ∈ S.

Proof. Let s1, s2 be two elements in S and let s3 ∈ (CSΘ(s1; ι))(CSΘ(s2; ι)). Then there exist s4 ∈ CSΘ(s1; ι)
and s5 ∈ CSΘ(s2; ι) such that s3 = s4s5. Thus SΘ(s1; ι) = SΘ(s4; ι) and SΘ(s2; ι) = SΘ(s5; ι). Hence we get that
SΘ(s1s2; ι) = SΘ(s4s5; ι). Indeed, we suppose that s6 ∈ SΘ(s4s5; ι). Then we have Θ(s4s5, s6) ≥ ι. Since Θ is
re�exive, we haveΘ(s4, s4) = Θ(s5, s5) = 1 ≥ ι, and so s4 ∈ SΘ(s4; ι) and s5 ∈ SΘ(s5; ι).Whence s4 ∈ SΘ(s1; ι)
and s5 ∈ SΘ(s2; ι). Thus Θ(s1, s4) ≥ ι and Θ(s2, s5) ≥ ι. Since Θ is transitive and compatible, we have

Θ(s1s2, s4s5) ≥ ∨s7∈S (Θ(s1s2, s7) ∧ Θ(s7, s4s5))
≥ Θ(s1s2, s4s2) ∧ Θ(s4s2, s4s5)
≥ Θ(s1, s4) ∧ Θ(s2, s5)
≥ ι ∧ ι
= ι.
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Hence Θ(s1s2, s4s5) ≥ ι. Since Θ is transitive, we have

Θ(s1s2, s6) ≥ ∨s8∈S (Θ(s1s2, s8) ∧ Θ(s8, s6))
≥ Θ(s1s2, s4s5) ∧ Θ(s4s5, s6)
≥ ι ∧ ι
= ι.

Thus Θ(s1s2, s6) ≥ ι, and so s6 ∈ SΘ(s1s2; ι). Hence SΘ(s4s5; ι) ⊆ SΘ(s1s2; ι). Similarly, we can show that
SΘ(s1s2; ι) ⊆ SΘ(s4s5; ι). Thus SΘ(s1s2; ι) = SΘ(s4s5; ι), which yields s3 ∈ CSΘ(s1s2; ι). This implies that
(CSΘ(s1; ι))(CSΘ(s2; ι)) ⊆ CSΘ(s1s2; ι).

In the following, we give an example to illustrate that the property in Proposition 4.2 is indispensable.

Example 4.3. Let S := {s1, s2, s3, s4, s5} be a semigroup with multiplication rules de�ned by Table 1.

Table 1: The multiplication table on S

· s1 s2 s3 s4 s5
s1 s1 s1 s1 s1 s1
s2 s1 s2 s3 s3 s5
s3 s1 s3 s3 s3 s5
s4 s1 s3 s3 s3 s5
s5 s1 s5 s5 s5 s5

De�ne the membership grades of relationship between any two elements in S under the fuzzy relation Θ
on S as the following. 

1 0 1 0 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 1 0 1


Then it is easy to check that Θ is a compatible preorder fuzzy relation. For ι = 0.9, successor classes of each
elements in S with respect to 0.9-level under Θ are

SΘ(s1; 0.9) := {s1, s3, s5},
SΘ(s2; 0.9) := {s2},
SΘ(s3; 0.9) := {s3, s5},
SΘ(s4; 0.9) := {s4} and
SΘ(s5; 0.9) := {s3, s5}.

Hence cores of successor classes of each elements in S with respect to 0.9-level under Θ are
CSΘ(s1; 0.9) := {s1},
CSΘ(s2; 0.9) := {s2},
CSΘ(s3; 0.9) := {s3, s5},
CSΘ(s4; 0.9) := {s4} and
CSΘ(s5; 0.9) := {s3, s5}.

Here it is straightforward to verify that (CSΘ(s; 0.9))(CSΘ(s′; 0.9)) ⊆ CSΘ(ss′; 0.9) for all s, s′ ∈ S.

Observe that, in Example 4.3, it does not hold in general for the equality case. Now, we consider the following
example.
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Example 4.4. Let S := {s1, s2, s3, s4, s5} be a semigroup with multiplication rules de�ned by Table 2.

Table 2: The multiplication table on S

· s1 s2 s3 s4 s5
s1 s1 s1 s1 s1 s1
s2 s1 s2 s2 s2 s5
s3 s1 s2 s3 s2 s5
s4 s1 s2 s2 s4 s5
s5 s1 s5 s5 s5 s5

De�ne the membership grades of relationship between any two elements in S under the fuzzy relation Θ
on S as the following. 

1 0 0 0 1
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 1


Then it is easy to check that Θ is a compatible preorder fuzzy relation. For ι = 0.9, successor classes of each
elements in S with respect to 0.9-level under Θ are

SΘ(s1; 0.9) := {s1, s5},
SΘ(s2; 0.9) := {s2, s3, s4},
SΘ(s3; 0.9) := {s2, s3, s4},
SΘ(s4; 0.9) := {s2, s3, s4} and
SΘ(s5; 0.9) := {s5}.

Hence cores of successor classes of each elements in S with respect to 0.9-level under Θ are
CSΘ(s1; 0.9) := {s1},
CSΘ(s2; 0.9) := {s2, s3, s4},
CSΘ(s3; 0.9) := {s2, s3, s4},
CSΘ(s4; 0.9) := {s2, s3, s4} and
CSΘ(s5; 0.9) := {s5}.

Here it is straightforward to check that (CSΘ(s; 0.9))(CSΘ(s′; 0.9)) = CSΘ(ss′; 0.9) for all s, s′ ∈ S. Based
on this point, the property can be considered as a special case of Proposition 4.2. This example leads to the
following de�nition.

De�nition 4.5. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CPF. The collection CSΘ(S; ι) is
called complete induced by Θ (brie�y, Θ-complete) if for all s1, s2 ∈ S,

(CSΘ(s1; ι))(CSΘ(s2; ι)) = CSΘ(s1s2; ι).

De�nition 4.6. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CPF. If CSΘ(S; ι) is complete
induced by Θ, then Θ is called a complete fuzzy relation. (S, CSΘ(S; ι)) is called an CSΘ(S; ι)-approximation
space type CF if Θ is complete.

Proposition 4.7. If (S, CSΘ(S; ι)) is an CSΘ(S; ι)-approximation space type CPF, then

(Θ(X; ι))(Θ(Y; ι)) ⊆ Θ(XY; ι),

for every non-empty subsets X, Y of S.
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Proof. Let X and Y be two non-empty subsets of S. Suppose that s1 ∈ (Θ(X; ι))(Θ(Y; ι)). Then there exist
s2 ∈ Θ(X; ι) and s3 ∈ Θ(Y; ι) such that s1 = s2s3. Thus we have that CSΘ(s2; ι)∩ X ≠ ∅ and CSΘ(s3; ι)∩ Y ≠ ∅.
Then there exist s4, s5 ∈ S such that s4 ∈ CSΘ(s2; ι) ∩ X and s5 ∈ CSΘ(s3; ι) ∩ Y. From Proposition 4.2, it
follows that s4s5 ∈ (CSΘ(s2; ι))(CSΘ(s3; ι)) ⊆ CSΘ(s2s3; ι) and s4s5 ∈ XY. Thus CSΘ(s2s3; ι)∩ XY ≠ ∅, which
yields s1 = s2s3 ∈ Θ(XY; ι). Therefore (Θ(X; ι))(Θ(Y; ι)) ⊆ Θ(XY; ι).

Proposition 4.8. If (S, CSΘ(S; ι)) is an CSΘ(S; ι)-approximation space type CF, then

(Θ(X; ι))(Θ(Y; ι)) ⊆ Θ(XY; ι),

for every non-empty subsets X, Y of S.

Proof. Let X and Y be two non-empty subsets of S and let s1 ∈ (Θ(X; ι))(Θ(Y; ι)). Then there exist s2 ∈ Θ(X; ι)
and s3 ∈ Θ(Y; ι) such that s1 = s2s3, and so CSΘ(s2; ι) ⊆ X and CSΘ(s3; ι) ⊆ Y. Since Θ is complete, we get
CSΘ(s2s3; ι) = CSΘ(s2; ι)CSΘ(s3; ι) ⊆ XY. Thus CSΘ(s2s3; ι) ⊆ XY. Hence s1 = s2s3 ∈ Θ(XY; ι). Therefore
(Θ(X; ι))(Θ(Y; ι)) ⊆ Θ(XY; ι).

We consider the following example.

Example 4.9. According to Example 4.4, suppose that X := {s1, s4, s5} is a subset of S. Then we have
Θ(X; ι) = S and Θ(X; ι) := {s1, s5}. Here it is easy to verify that Θ(X; ι) and Θ(X; ι) are subsemigroups, ideals
and completely prime ideals of S. Moreover, we also have Θbnd(X; ι) is a non-empty set. For the existence of
subsemigroups, ideals and completely prime ideals of S under compatible preorder fuzzy relations in this
example, we give the following de�nition.

De�nition 4.10. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CPF and let X be a non-empty
subset of S. A non-empty CSΘ(S; ι)-upper approximation Θ(X; ι) of X in (S, CSΘ(S; ι)) is called an CSΘ(S; ι)-
upper approximation semigroup if it is a subsemigroup of S. A non-empty CSΘ(S; ι)-lower approximation
Θ(X; ι) of X in (S, CSΘ(S; ι)) is called a CSΘ(S; ι)-lower approximation semigroup if it is a subsemigroup of S. A
non-empty CSΘ(S; ι)-rough set ΘR, (X; ι) of X in (S, CSΘ(S; ι)) is called a CSΘ(S; ι)-rough semigroup if Θ(X; ι) is
an CSΘ(S; ι)-upper approximation semigroup and Θ(X; ι) is a CSΘ(S; ι)-lower approximation semigroup.

Similarly, we can de�ne CSΘ(S; ι)-rough (completely prime) ideals.

Theorem 4.11. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CPF. If X is a subsemigroup of S,
then Θ(X; ι) is an CSΘ(S; ι)-upper approximation semigroup.

Proof. Suppose that X is a subsemigroup of S. Then XX ⊆ X. By Proposition 3.11 (3), we obtain that ∅ ≠ X ⊆
Θ(X; ι). Hence Θ(X; ι) is a non-empty CSΘ(S; ι)-upper approximation. FromProposition 3.11 (9), it follows that
Θ(XX; ι) ⊆ Θ(X; ι). By Proposition 4.7, we obtain that

(Θ(X; ι))(Θ(X; ι)) ⊆ Θ(XX; ι) ⊆ Θ(X; ι).

Hence Θ(X; ι) is a subsemigroup of S. Thus Θ(X; ι) is an CSΘ(S; ι)-upper approximation semigroup.

Theorem 4.12. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CF. If X is a subsemigroup of S with
Θ(X; ι) ≠ ∅, then Θ(X; ι) is a CSΘ(S; ι)-lower approximation semigroup.

Proof. Suppose that X is a subsemigroup of S. Then XX ⊆ X. Obviously,Θ(X; ι) is a non-emptyCSΘ(S; ι)-lower
approximation. FromProposition 3.11 (9), it follows thatΘ(XX; ι) ⊆ Θ(X; ι). By Proposition 4.8, we obtain that

(Θ(X; ι))(Θ(X; ι)) ⊆ Θ(XX; ι) ⊆ Θ(X; ι).

Thus Θ(X; ι) is a subsemigroup of S. Therefore Θ(X; ι) is a CSΘ(S; ι)-lower approximation semigroup.

The following corollary is an immediate consequence of Proposition 3.13, Theorem 4.11 and Theorem 4.12.
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Corollary 4.13. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CF. If X is a subsemigroup of S over
a non-empty interior set, then ΘR, (X; ι) is a CSΘ(S; ι)-rough semigroup.

Observe that, in Corollary 4.13, the converse is not true in general. We present an example as the following.

Example 4.14. According to Example 4.4, suppose that X := {s3, s4, s5} is a subset of S, then we have
Θ(X; 0.9) := {s2, s3, s4, s5} and Θ(X; 0.9) := {s5}. Thus we see that Θbnd(X; 0.9) ≠ ∅. Hence it is
straightforward to check that Θ(X; 0.9) is an CSΘ(S; 0.9)-upper approximation semigroup and Θ(X; 0.9)
is a CSΘ(S; 0.9)-lower approximation semigroup. However, X is not a subsemigroup of S. Consequently,
ΘR, (X; 0.9) is a CSΘ(S; 0.9)-rough semigroup, but X is not a subsemigroup of S.

Theorem 4.15. Let (S, CSΘ(S; ι))beanCSΘ(S; ι)-approximation space typeCPF. If X is an ideal of S, thenΘ(X; ι)
is an CSΘ(S; ι)-upper approximation ideal.

Proof. Suppose that X is an ideal of S. Then SX ⊆ X. From Proposition 3.11 (9), it follows that Θ(SX; ι) ⊆
Θ(X; ι). By Proposition 3.11 (1), we obtain that Θ(S; ι) = S. From Proposition 4.7, it follows that

S(Θ(X; ι)) = (Θ(S; ι))(Θ(X; ι)) ⊆ Θ(SX; ι) ⊆ Θ(X; ι).

Hence Θ(X; ι) is a left ideal of S.
Similarly, we can prove that Θ(X; ι) is a right ideal of S. Therefore we have Θ(X; ι) is an CSΘ(S; ι)-upper

approximation ideal.

Theorem 4.16. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CF. If X is an ideal of S with
Θ(X; ι) ≠ ∅, then Θ(X; ι) is a CSΘ(S; ι)-lower approximation ideal.

Proof. Suppose that X is an ideal of S. Then SX ⊆ X. From Proposition 3.11 (9), it follows that Θ(SX; ι) ⊆
Θ(X; ι). By Proposition 3.11 (1), we obtain that Θ(S; ι) = S. From Proposition 4.8, it follows that

S(Θ(X; ι)) = (Θ(S; ι))(Θ(X; ι)) ⊆ Θ(SX; ι) ⊆ Θ(X; ι).

Thus Θ(X; ι) is a left ideal of S.
Similarly, we can prove that Θ(X; ι) is a right ideal of S. Thus Θ(X; ι) is a CSΘ(S; ι)-lower approximation

ideal.

The following corollary is an immediate consequence of Proposition 3.13, Theorem 4.15 and Theorem 4.16.

Corollary 4.17. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CF. If X is an ideal of S over a non-
empty interior set, then ΘR, (X; ι) is a CSΘ(S; ι)-rough ideal.

Observe that, in Corollary 4.17, the converse is not true in general. We present an example as the following.

Example 4.18. According to Example 4.4, if X := {s1, s3, s5} is a subset of S, then we have Θ(X; 0.9) = S
and Θ(X; 0.9) := {s1, s5}. Thus we see that Θbnd(X; 0.9) ≠ ∅. Obviously, Θ(X; 0.9) is an CSΘ(S; 0.9)-upper
approximation ideal, and it is straightforward to check that Θ(X; 0.9) is a CSΘ(S; 0.9)-lower approximation
ideal. However, X is not an ideal of S. Consequently, ΘR, (X; 0.9) is a CSΘ(S; 0.9)-rough ideal, but X is not an
ideal of S.

Theorem 4.19. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CF. If X is a completely prime ideal
of S, then Θ(X; ι) is an CSΘ(S; ι)-upper approximation completely prime ideal.

Proof. We prove that Θ(X; ι) is an CSΘ(S; ι)-upper approximation completely prime ideal. In fact, since X is
an ideal of S, by Theorem 4.15, we have that Θ(X; ι) is an CSΘ(S; ι)-upper approximation ideal. Let s1, s2 ∈ S
such that s1s2 ∈ Θ(X; ι). Then by the Θ-complete property of CSΘ(S; ι), we get

(CSΘ(s1; ι))(CSΘ(s2; ι)) ∩ X = CSΘ(s1s2; ι) ∩ X ≠ ∅.
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Thus there exist s3 ∈ CSΘ(s1; ι) and s4 ∈ CSΘ(s2; ι) such that s3s4 ∈ X. Since X is a completely prime ideal,
we have s3 ∈ X or s4 ∈ X. Hence we have CSΘ(s1; ι) ∩ X ≠ ∅ or CSΘ(s2; ι) ∩ X ≠ ∅, and so s1 ∈ Θ(X; ι) or
s2 ∈ Θ(X; ι). ThereforeΘ(X; ι) is a completely prime ideal of S. As a consequence,Θ(X; ι) is anCSΘ(S; ι)-upper
approximation completely prime ideal.

Theorem 4.20. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CF. If X is a completely prime ideal
of S with Θ(X; ι) ≠ ∅, then Θ(X; ι) is a CSΘ(S; ι)-lower approximation completely prime ideal.

Proof. Since X is an ideal of S, by Theorem4.16,Θ(X; ι) is aCSΘ(S; ι)-lower approximation ideal. Let s1, s2 ∈ S
such that s1s2 ∈ Θ(X; ι). Since Θ is complete, we have

(CSΘ(s1; ι))(CSΘ(s2; ι)) = CSΘ(s1s2; ι) ⊆ X.

Now, we suppose that s1 /∈ Θ(X; ι). Then CSΘ(s1; ι) is not a subset of X. Thus there exists s3 ∈ CSΘ(s1; ι) but
s3 /∈ X. For each s4 ∈ CSΘ(s2; ι),

s3s4 ∈ (CSΘ(s1; ι))(CSΘ(s2; ι)) ⊆ X.

Whence s3s4 ∈ X. Since X is a completely prime ideal and s3 /∈ X, we have s4 ∈ X. Thus CSΘ(s2; ι) ⊆ X, which
yields s2 ∈ Θ(X; ι). Hence we get Θ(X; ι) is a completely prime ideal of S. Therefore Θ(X; ι) is a CSΘ(S; ι)-lower
approximation completely prime ideal.

The following corollary is an immediate consequence of Proposition 3.13, Theorem 4.19 and Theorem 4.20.

Corollary 4.21. Let (S, CSΘ(S; ι)) be an CSΘ(S; ι)-approximation space type CF. If X is a completely prime ideal
of S over a non-empty interior set, then ΘR, (X; ι) is a CSΘ(S; ι)-rough completely prime.

Observe that, in Corollary 4.21, the converse is not true in general. We present an example as the following.

Example 4.22. According to Example 4.4, if X := {s1, s2, s5} is a subset of S, then we have Θ(X; 0.9) = S
and Θ(X; 0.9) := {s1, s5}. Thus we see that Θbnd(X; 0.9) ≠ ∅. Obviously, Θ(X; 0.9) is an CSΘ(S; 0.9)-upper
approximation completely prime ideal, and it is straightforward to check thatΘ(X; 0.9) is aCSΘ(S; 0.9)-lower
approximation completely prime ideal. Here we can verify that X is an ideal of S, but it is not a completely
prime ideal of S since s3s4 = s2 ∈ X but s3 /∈ X and s4 /∈ X. As a consequence, ΘR, (X; 0.9) is a CSΘ(S; 0.9)-
rough completely prime ideal, but X is not a completely prime ideal of S.

5 Homomorphic images of roughness in semigroups
In this section, we investigate the relationships between rough semigroups (resp. rough ideals, rough

completely prime ideals) and their homomorphic images. Throughout this section, T denotes a semigroup.

Proposition 5.1. Let f be an epimorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)), where Θ is de�ned by
for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). Then the following statements hold.
(1) For all s1, s2 ∈ S, s1 ∈ CSΘ(s2; ι) if and only if f (s1) ∈ CSΨ (f (s2); ι).
(2) f (Θ(X; ι)) = Ψ(f (X); ι) for every non-empty subset X of S.
(3) f (Θ(X; ι)) ⊆ Ψ(f (X); ι) for every non-empty subset X of S.
(4) If f is injective, then f (Θ(X; ι)) = Ψ(f (X); ι) for every non-empty subset X of S.
(5) If Ψ is a compatible preorder fuzzy relation, then Θ is a compatible preorder fuzzy relation.

Proof. (1) Let s1, s2 ∈ S be such that s1 ∈ CSΘ(s2; ι). Then f (s1), f (s2) ∈ T and SΘ(s1; ι) = SΘ(s2; ι). In the
following, we shall prove that SΨ (f (s1); ι) = SΨ (f (s2); ι). Let t1 ∈ SΨ (f (s1); ι). Then Ψ(f (s1), t1) ≥ ι. Since f
is surjective, there exists s3 ∈ S such that f (s3) = t1. Whence Ψ(f (s1), f (s3)) ≥ ι, and so Θ(s1, s3) ≥ ι. Thus
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s3 ∈ SΘ(s1; ι).Whencewe have s3 ∈ SΘ(s2; ι). HenceΘ(s2, s3) ≥ ι, and soΨ(f (s2), f (s3)) ≥ ι. Thus t1 = f (s3) ∈
SΨ (f (s2); ι). Then we have SΨ (f (s1); ι) ⊆ SΨ (f (s2); ι). Similarly, we can show that SΨ (f (s2); ι) ⊆ SΨ (f (s1); ι).
Therefore SΨ (f (s1); ι) = SΨ (f (s2); ι). As a consequence, f (s1) ∈ CSΨ (f (s2); ι).

Conversely, it is easy to verify that s1 ∈ CSΘ(s2; ι) whenever f (s1) ∈ CSΨ (f (s2); ι) for all s1, s2 ∈ S.
(2) Let X be a non-empty subset of S. We verify �rstly that f (Θ(X; ι)) = Ψ(f (X); ι). Suppose that t1 ∈

f (Θ(X; ι)). Then there exists s1 ∈ Θ(X; ι) such that f (s1) = t1. Therefore we have CSΘ(s1; ι)∩X ≠ ∅. Thus there
exists s2 ∈ S such that s2 ∈ CSΘ(s1; ι) and s2 ∈ X. By the argument (1), we obtain that f (s2) ∈ CSΨ (f (s1); ι)
and f (s2) ∈ f (X). Then we have CSΨ (f (s1); ι) ∩ f (X) ≠ ∅, and so t1 = f (s1) ∈ Ψ(f (X); ι). Thus we have
f (Θ(X; ι)) ⊆ Ψ(f (X); ι).

On the other hand, let t2 ∈ Ψ(f (X); ι). Then there exists s3 ∈ S such that f (s3) = t2, and so CSΨ (f (s3); ι)∩
f (X) ≠ ∅. Thus there exists s4 ∈ X such that f (s4) ∈ f (X) and f (s4) ∈ CSΨ (f (s3); ι). By the argument (1), we
get that s4 ∈ CSΘ(s3; ι), and so we have CSΘ(s3; ι) ∩ X ≠ ∅. Hence s3 ∈ Θ(X; ι), and so t2 = f (s3) ∈ f (Θ(X; ι)).
Thus we get Ψ(f (X); ι) ⊆ f (Θ(X; ι)). This implies that f (Θ(X; ι)) = Ψ(f (X); ι).

(3) Let X be a non-empty subset of S. Let t1 ∈ f (Θ(X; ι)). Then there exists s1 ∈ Θ(X; ι) such that f (s1) = t1.
Thus we get CSΘ(s1; ι) ⊆ X. We shall prove that CSΨ (t1; ι) ⊆ f (X). Let t2 ∈ CSΨ (t1; ι). Then there exist s2 ∈ S
such that f (s2) = t2. Thus we have f (s2) ∈ CSΨ (f (s1); ι). By the argument (1), we obtain that s2 ∈ CSΘ(s1; ι),
and so s2 ∈ X. Hencewehave t2 = f (s2) ∈ f (X), and Thus CSΨ (t1; ι) ⊆ f (X). Thereforewehave t1 ∈ Ψ(f (X); ι).
As a consequence, f (Θ(X; ι)) ⊆ Ψ(f (X); ι).

(4) Let X be a non-empty subset of S. We only need to prove that Ψ(f (X); ι) ⊆ f (Θ(X; ι)). Suppose that
t1 ∈ Ψ(f (X); ι). Then there exists s1 ∈ S such that f (s1) = t1. Thus we have CSΨ (f (s1); ι) ⊆ f (X). We shall
show that CSΘ(s1; ι) ⊆ X. Let s2 ∈ CSΘ(s1; ι). Then by the argument (1), we have f (s2) ∈ CSΨ (f (s1); ι). Hence
f (s2) ∈ f (X). Thus there exists s3 ∈ X such that f (s3) = f (s2). By the assumption, we have s2 ∈ X, and so
CSΘ(s1; ι) ⊆ X. Hence s1 ∈ Θ(X; ι), and so t1 = f (s1) ∈ f (Θ(X; ι)). Thus Ψ(f (X); ι) ⊆ f (Θ(X; ι)).

By the argument (3), we get f (Θ(X; ι)) ⊆ Ψ(f (X); ι). Consequently, f (Θ(X; ι)) = Ψ(f (X); ι).
(5) The proof is straightforward, so we omit it.

Proposition 5.2. Let f be an isomorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)), where Θ is de�ned by
for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If Ψ is complete, then Θ is complete.

Proof. Let s1, s2 be two elements in S and let s3 ∈ CSΘ(s1s2; ι). Then by Proposition 5.1 (1), we get that
f (s3) ∈ CSΨ (f (s1s2); ι). Since f is a homomorphism and Ψ is complete, we have

f (s3) ∈ CSΨ (f (s1s2); ι) = CSΨ (f (s1)f (s2); ι) = (CSΨ (f (s1); ι))(CSΨ (f (s2); ι)).

Thus there exist t1 ∈ CSΨ (f (s1); ι) and t2 ∈ CSΨ (f (s2); ι) such that f (s3) = t1t2. Since f is surjective, there
exist s4, s5 ∈ S such that f (s4) = t1 and f (s5) = t2. From

f (s4)f (s5) = f (s3) ∈ (CSΨ (f (s1); ι))(CSΨ (f (s2); ι)),

it follows that f (s4) ∈ CSΨ (f (s1); ι) and f (s5) ∈ CSΨ (f (s2); ι). By Proposition 5.1 (1), we obtain that s4 ∈
CSΘ(s1; ι) and s5 ∈ CSΘ(s2; ι). Since f is a homomorphism, we have f (s3) = f (s4)f (s5) = f (s4s5). Since f
is injective, we get s3 = s4s5. Thus we get that s3 ∈ CSΘ(s1; ι)CSΘ(s2; ι). Therefore we have CSΘ(s1s2; ι) ⊆
CSΘ(s1; ι)CSΘ(s2; ι).

On the other hand, by Proposition 4.2 and Proposition 5.1 (5), CSΘ(s1; ι)CSΘ(s2; ι) ⊆ CSΘ(s1s2; ι). Thus
CSΘ(s1; ι)CSΘ(s2; ι) = CSΘ(s1s2; ι). Hence CSΘ(S; ι) is Θ-complete. Therefore Θ is complete.

Theorem 5.3. Let f be an epimorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CPF,where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then Θ(X; ι) is anCSΘ(S; ι)-upper
approximation semigroup if and only if Ψ(f (X); ι) is an CSΨ (T; ι)-upper approximation semigroup.

Proof. Suppose that Θ(X; ι) is an CSΘ(S; ι)-upper approximation semigroup. Then by Proposition 5.1 (2),

(Ψ(f (X); ι))(Ψ(f (X); ι)) =(f (Θ(X; ι)))(f (Θ(X; ι)))
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=f ((Θ(X; ι))(Θ(X; ι)))
⊆f (Θ(X; ι))
=Ψ(f (X); ι).

Hence Ψ(f (X); ι) is a subsemigroup of T. Thus Ψ(f (X); ι) is an CSΨ (T; ι)-upper approximation semigroup.
Conversely, let s1 ∈ (Θ(X; ι))(Θ(X; ι)). From Proposition 5.1 (2), it follows that

f (s1) ∈f ((Θ(X; ι))(Θ(X; ι)))
=(f (Θ(X; ι)))(f (Θ(X; ι)))
=(Ψ(f (X); ι))(Ψ(f (X); ι))
⊆Ψ(f (X); ι)
=f (Θ(X; ι)).

Thus there exists s2 ∈ Θ(X; ι) such that f (s1) = f (s2). Hence we have CSΘ(s2; ι) ∩ X ≠ ∅. From Proposition 3.4
(1), it follows that f (s1) ∈ CSΨ (f (s2); ι). By Proposition 5.1 (1), we obtain that s1 ∈ CSΘ(s2; ι). FromProposition
3.4 (2), it follows that CSΘ(s1; ι) = CSΘ(s2; ι). Thus we have CSΘ(s1; ι) ∩ X ≠ ∅, and so s1 ∈ Θ(X; ι). Hence we
have that (Θ(X; ι))(Θ(X; ι)) ⊆ Θ(X; ι). Thus Θ(X; ι) is a subsemigroup of S. Therefore Θ(X; ι) is an CSΘ(S; ι)-
upper approximation semigroup.

Theorem 5.4. Let f be an isomorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CPF,where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then Θ(X; ι) is a CSΘ(S; ι)-lower
approximation semigroup if and only if Ψ(f (X); ι) is a CSΨ (T; ι)-lower approximation semigroup.

Proof. By Proposition 5.1 (4) and using the similar method in the proof of Theorem 5.3, we can prove that the
statement holds.

The following corollary is an immediate consequence of Theorems 5.3 and 5.4.

Corollary 5.5. Let f be an isomorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CPF,where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then ΘR, (X; ι) is a CSΘ(S; ι)-
rough semigroup if and only if ΨR, (f (X); ι) is a CSΨ (T; ι)-rough semigroup.

Theorem 5.6. Let f be an epimorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CPF,where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then Θ(X; ι) is anCSΘ(S; ι)-upper
approximation ideal if and only if Ψ(f (X); ι) is an CSΨ (T; ι)-upper approximation ideal.

Proof. Suppose that Θ(X; ι) is an CSΘ(S; ι)-upper approximation ideal. Then we have SΘ(X; ι) ⊆ Θ(X; ι).
Whence we have f (SΘ(X; ι)) ⊆ f (Θ(X; ι)). By Proposition 5.1 (2), we obtain that

TΨ(f (X); ι) = f (SΘ(X; ι)) ⊆ f (Θ(X; ι)) = Ψ(f (X); ι).

Hence Ψ(f (X); ι) is a left ideal of T. Similarly, we can prove that Ψ(f (X); ι) is a right ideal of T. Thus Ψ(f (X); ι)
is an CSΨ (T; ι)-upper approximation ideal.

Conversely, we suppose that Ψ(f (X); ι) is an CSΨ (T; ι)-upper approximation ideal. Then we have
TΨ(f (X); ι) ⊆ Ψ(f (X); ι). Now, let s1 ∈ SΘ(X; ι). From Proposition 5.1 (2), it follows that

f (s1) ∈ f (SΘ(X; ι)) = TΨ(f (X); ι) ⊆ Ψ(f (X); ι) = f (Θ(X; ι)).

Thus there exists s2 ∈ Θ(X; ι) such that f (s1) = f (s2), and so CSΘ(s2; ι)∩X ≠ ∅. ByProposition 3.4 (1),weobtain
that f (s1) ∈ CSΨ (f (s2); ι). By Proposition 5.1 (1), we obtain s1 ∈ CSΘ(s2; ι). From Proposition 3.4 (2), it follows
that CSΘ(s1; ι) = CSΘ(s2; ι). Hence we have CSΘ(s1; ι) ∩ X ≠ ∅, and so s1 ∈ Θ(X; ι). Thus SΘ(X; ι) ⊆ Θ(X; ι).
Whence Θ(X; ι) is a left ideal of S. Similarly, we can prove that Θ(X; ι) is a right ideal of S. Therefore Θ(X; ι) is
an CSΘ(S; ι)-upper approximation ideal.
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Theorem 5.7. Let f be an isomorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CPF, where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then Θ(X; ι) is a CSΘ(S; ι)-lower
approximation ideal if and only if Ψ(f (X); ι) is a CSΨ (T; ι)-lower approximation ideal.

Proof. By Proposition 5.1 (4) and using the similar method in the proof of Theorem 5.6, we can prove that the
statement holds.

The following corollary is an immediate consequence of Theorems 5.6 and 5.7.

Corollary 5.8. Let f be an isomorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CPF, where Θ is
de�ned by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then ΘR, (X; ι) is a
CSΘ(S; ι)-rough ideal if and only if ΨR, (f (X); ι) is a CSΨ (T; ι)-rough ideal.

Theorem 5.9. Let f be an epimorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CF, where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then Θ(X; ι) is anCSΘ(S; ι)-upper
approximation completely prime ideal if and only if Ψ(f (X); ι) is an CSΨ (T; ι)-upper approximation completely
prime ideal.

Proof. Assume that Θ(X; ι) is an CSΘ(S; ι)-upper approximation completely prime ideal. Let t1, t2 ∈ T be
such that t1t2 ∈ Ψ(f (X); ι). Thus there exist s1, s2 ∈ S such that f (s1) = t1 and f (s2) = t2. Hence we have
CSΨ (f (s1)f (s2); ι) ∩ f (X) ≠ ∅. Since Ψ is complete, we have

(CSΨ (f (s1); ι))(CSΨ (f (s2); ι)) ∩ f (X) = CSΨ (f (s1)f (s2); ι) ∩ f (X) ≠ ∅.

Then there exist f (s3) ∈ CSΨ (f (s1); ι) and f (s4) ∈ CSΨ (f (s2); ι) such that f (s3)f (s4) ∈ f (X), and so f (s3s4) ∈
f (X). Then there exists s5 ∈ X such that f (s3s4) = f (s5). By Proposition 5.1 (1), we obtain that s3 ∈ CSΘ(s1; ι)
and s4 ∈ CSΘ(s2; ι). From Propositions 4.2 and 5.1 (5), we get that s3s4 ∈ CSΘ(s1s2; ι). By Proposition 3.4 (2),
we obtain that CSΘ(s1s2; ι) = CSΘ(s3s4; ι). Note that f (s3s4) ∈ CSΨ (f (s3s4); ι). Then f (s5) ∈ CSΨ (f (s3s4); ι).
By Proposition 5.1 (1), once again, we get that s5 ∈ CSΘ(s3s4; ι) = CSΘ(s1s2; ι). Thus CSΘ(s1s2; ι) ∩ X ≠ ∅,
and so s1s2 ∈ Θ(X; ι). Since Θ(X; ι) is a completely prime ideal of S, we have s1 ∈ Θ(X; ι) or s2 ∈ Θ(X; ι).
Hence we have f (s1) ∈ f (Θ(X; ι)) or f (s2) ∈ f (Θ(X; ι)). From Proposition 5.1 (2), we get f (s1) ∈ Ψ(f (X); ι) or
f (s2) ∈ Ψ(f (X); ι), which yields t1 ∈ Ψ(f (X); ι) or t2 ∈ Ψ(f (X); ι). Thus Ψ(f (X); ι) is a completely prime ideal
of T. Therefore Ψ(f (X); ι) is an CSΨ (T; ι)-upper approximation completely prime ideal.

Conversely, we suppose thatΨ(f (X); ι) is an CSΘ(S; ι)-upper approximation completely prime ideal. Now,
let s6, s7 be elements in S such that s6s7 ∈ Θ(X; ι). Then f (s6s7) ∈ f (Θ(X; ι)). By Proposition 5.1 (2), we obtain
that

f (s6)f (s7) = f (s6s7) ∈ f (Θ(X; ι)) = Ψ(f (X); ι).

Thus f (s6) ∈ Ψ(f (X); ι) or f (s7) ∈ Ψ(f (X); ι). Now, we consider the following two cases.
Case 1. If f (s6) ∈ Ψ(f (X); ι), then we have f (s6) ∈ f (Θ(X; ι)) since Proposition 5.1 (2). Thus there exists

s8 ∈ Θ(X; ι) such that f (s6) = f (s8). Whence CSΘ(s8; ι) ∩ X ≠ ∅. By Proposition 3.4 (1), we obtain that f (s8) ∈
CSΨ (f (s8); ι). Thus f (s6) ∈ CSΨ (f (s8); ι). By Proposition 5.1 (1), we have s6 ∈ CSΘ(s8; ι). From Proposition 3.4
(2), it follows that CSΘ(s6; ι) = CSΘ(s8; ι). Thus we have CSΘ(s6; ι) ∩ X ≠ ∅, and so s6 ∈ Θ(X; ι).

Case 2. If f (s7) ∈ Ψ(f (X); ι), then s7 ∈ Θ(X; ι) since the proof is similar to that the case above.
As a consequence, Θ(X; ι) is an CSΘ(S; ι)-upper approximation completely prime ideal.

Theorem 5.10. Let f be an isomorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CF, where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then Θ(X; ι) is a CSΘ(S; ι)-lower
approximation completely prime ideal if and only if Ψ(f (X); ι) is a CSΨ (T; ι)-lower approximation completely
prime ideal.

Proof. By Proposition 5.1 (4) and using the similar method as in the proof of Theorem 5.9, we can prove that
the statement holds.
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The following corollary is an immediate consequence of Theorems 5.9 and 5.10.

Corollary 5.11. Let f be an isomorphism from S in (S, CSΘ(S; ι)) to T in (T, CSΨ (T; ι)) type CF, where Θ is de�ned
by for all s1, s2 ∈ S, Θ(s1, s2) = Ψ(f (s1), f (s2)). If X is a non-empty subset of S, then ΘR, (X; ι) is a CSΘ(S; ι)-
rough completely prime ideal if and only if ΨR, (f (X); ι) is a CSΨ (T; ι)-rough completely prime ideal.

6 Conclusions
In the present paper, we proposed rough sets in universal sets based on cores of successor classes with

respect to level in closedunit intervals under fuzzy relations. Thenwegave the realworld example andproved
some interesting properties. Based on this point, we gave a de�nition of a non-empty rough set in a universal
set. Thenwederiveda su�cient conditionof the such set.We introduced concepts of rough semigroups, rough
ideals and rough completely prime ideals in semigroups under compatible preorder fuzzy relations. Then we
derived su�cient conditions for them. We proved the relationships between rough semigroups (resp. rough
ideals and rough completely prime ideals) and their homomorphic images.

Finally, we hope that the de�nitions and results of rough sets in universal sets and semigroup structures
using fuzzy relations undermathematical principles in this papermay provide a powerful tool for assessment
problems and decision problems in several �elds with respect to informations and technology.
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