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Abstract: In this paper, we introduce a rough set in a universal set based on cores of successor classes
with respect to level in a closed unit interval under a fuzzy relation, and some interesting properties are
investigated. Based on this point, we propose a rough completely prime ideal in a semigroup structure under
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1 Introduction

The Pawlak’s rough set theory is a classical tool for assessing the problems and decision problems in many
fields with respect to informations and technology. This theory was introduced by Pawlak [1] in 1982. He
proposed the concept of Pawlak’s rough sets in universal sets based on equivalence classes induced by equiv-
alence relations. For an equivalence relation on a universal set and a non-empty subset of the universal set,
the Pawlak’s rough set of the non-empty subset is given by mean of a pair of the Pawlak’s upper approximation
and the Pawlak’s lower approximation where the difference between the Pawlak’s upper approximation and
the Pawlak’s lower approximation (The Pawlak’s boundary region) is a non-empty set. The Pawlak’s upper
approximation is the union of all the equivalence classes which have a non-empty intersection with the non-
empty subset. The Pawlak’s lower approximation is the union of all the equivalence classes which are subset
of the non-empty subset. As mentioned above, the Pawlak’s rough set model is defined as a mathematical
tool with respect to assessments of decisions. This assessment model is an important tool for dealing with
algebraic systems [2-14], information sciences [15] and computer sciences [16] etc.

From Pawlak’s rough sets induced by equivalence relations, the generalized Pawlak’s rough sets using
arbitrary binary relations (briefly, binary relations) were introduced by many researchers. In 1998, Yao [17]
introduced roughness models using successor neighborhoods induced by binary relations [SNg(u) := {u’ ¢
U : (u,u’) € 6} denotes a successor neighborhood of u induced by a binary relation 6 on a universal
set U where u is an element in U]. In 2016, Mareay [18] introduced rough sets using cores of successor
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neighborhoods induced by binary relations [CSNg(u) := {u’ € U : SNg(u) = SNg(u’)} denotes a core of a
successor neighborhood of u induced by a binary relation 6 on a universal set U where u is an element in U].
If a binary relation on a universal set is an equivalence relation, then the Yao’s rough set and the Mareay’s
rough set are generalizations of the Pawlak’s rough set.

The classical fuzzy set theory was introduced by Zadeh [19] in 1965. Based on this point, Zadeh [20, 21]
introduced the concept of fuzzy relations in 1971 which it is researched by many researchers in several fields,
such as information sciences [22] and decision systems [23] etc.

The semigroup structure (see [24]) is an algebraic system with respect to wide applications, especially the,
notions of Pawlak’s rough sets in semigroups. For combinations of Pawlak’s rough set theory and semigroup
theory, Kuroki [4] proposed the notion of rough ideals in semigroups based on congruence classes induced by
congruence relations (equivalence relations and compatible relations) in 1997. Thereafter, Xiao and Zhang [7]
proposed the notion of rough completely prime ideals in semigroups based on congruence classes induced
by congruence relations in 2006. For the combination of Pawlak’s rough set theory, fuzzy set theory and
semigroup theory, Wang and Zhan [13] introduced the concept of rough semigroups based on congruence
relations with respect to fuzzy ideals of semigroups in 2016.

From an interesting idea about generalized rough set models in the sense of Mareay [18], and after
providing some preliminaries about some important definitions of fuzzy relations and semigroups in Section
2, we introduce a rough set in a universal set based on cores of successor classes with respect to level in a
closed unit interval under a fuzzy relation, and we verify some interesting properties in Section 3. In Section
4, we introduce a rough completely prime ideal in a semigroup structure under a compatible preorder fuzzy
relation, including the rough semigroup and rough ideal. Then we provide sufficient conditions for them. In
Section 5, we investigate the relationships between rough completely prime ideals (rough semigroups and
rough ideals) and their homomorphic images. Finally, we give a conclusion of the work in Section 6.

2 Preliminaries

In this section, we review some important definitions which will be necessary in the subsequent sections.
Throughout this paper, U and V denote two non-empty universal sets.

Definition 2.1. [19] A fuzzy set of U is defined as a function from U to the closed unit interval [0, 1].

Definition 2.2. [22] Let F(U x V) be a family of all fuzzy sets of Ux V. An element in F(U x V) is referred to as a
fuzzy relation from U to V. An element in F(U x V) is called a fuzzy relation on U if U = V. For a fuzzy relation
O ¢ F(U x V) and elements u € U, v € V, the value of ©(u, v) in [0, 1] representing the membership grade of
relation betweenu andv under 0.1f © € F(UxV)where U := {uy, us, U3, ..., umpand V := {vq, v2, V3, ..., Vn},
then the fuzzy relation 0 is represented by the matrix as

O(u1,v1) 6(us,vy) O(ug,vs) -+ O(ug, vn)
O(uz,v1) O(uz,va) Ouz,vs) «-+ O(uz, vn)
O(us, v1) O(us3,va) O(usz,v3) --+ O(usz, vn)

O(um, v1) O(um, v2) O(um,vs3) - -+ O(um, va)

Definition 2.3. [22] Let © be a fuzzy relation from U to V. © is called serial if for all u € U, there exists v € V
such that O(u, v) = 1.

Definition 2.4. [22] Let © be a fuzzy relation on U.

(1) Oiscalled reflexiveif forallu € U, O(u, u) =1,

(2) Ois called symmetric if for all uy, u, € U, O(uy, uy) = 0(us, uy),

(3) Ois called transitive if for all u1, u; € U, O(u1, up) = Vy,ey(0(us, us) A 0(us, uz)),
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(4) O is called a similarity fuzzy relation if it is reflexive, symmetric and transitive.

A semigroup [24] (S, *) is defined as an algebraic system where S is a non-empty set and * is an associative
binary operation on S. Throughout this paper, S denotes a semigroup. A non-empty subset X of S is called a
subsemigroup [25] of S if XX C X. A non-empty subset X of S is called a left (right) ideal [25] of S if SX C X
(XS C X), and if it is both a left ideal and a right ideal of S, then it is called an ideal [25]. An ideal X of S is
called a completely prime ideal [25] of S if for all 51,5, € S, s15, € X impliess; € Xors; € X.

Definition 2.5. [25] Let O be a fuzzy relations on S. O is called compatible if for all s4, s5, 53 € S,

0(s153, 5253) = O(s1, 52) and O(s351, 535,) = O(51, 52).

3 Rough sets induced by fuzzy relations

In this section, we construct rough sets induced by fuzzy relations. Then we give the real-world example and
some interesting properties.

Definition 3.1. Let: € [0, 1] and let O be a fuzzy relation from U to V. For an element u € U,
Sow; ) :={veV:0u,v) =1}
is called a successor class of u with respect to t-level under 6.
Remark 3.2. Let € [0, 1]. If O is a serial fuzzy relation from U to V, then Sg(u; () # 0 forallu € U.
Definition 3.3. Let( € [0, 1] and let O be a fuzzy relation from U to V. For an element u; € U,
CSe(u1;0) :={uz € U: Spus; 1) = Se(uz; 1)}

is called a core of the successor class of u, with respect to t-level under .
We denote by C8g(U; () the collection of CSg(u; ¢) forallu ¢ U.

Directly from Definition 3.3, we can obtain the following Proposition 3.4 below.

Proposition 3.4. Let( € [0, 1] and let © be a fuzzy relation from U to V. Then the following statements hold.
(1) Forallu € U,u € CSg(u;0).
(2) Foralluy,u; € U, uy € CSg(uy;t) ifand only if CSg(uy; 1) = CSe(uy; o).

The following remark is an immediate consequence of Proposition 3.4.

Remark 3.5. Lett € [0, 1] and let O be a fuzzy relation from U to V. Then €8¢ (U; 1) is the partition of U.
Proposition 3.6. Let ( € [0, 1] and let O be a fuzzy relation on U. Then we have the following statements.

(1) If ©is reflexive, then CSg(u; 1) C Sg(u; 1) forallu € U.

(2) If O is a similarity fuzzy relation, then Sg(u; 1) and CSg(u; 1) are identical classes for allu ¢ U.

Proof. The proof is straightforward, so we omit it. O
In the following, we give the concept of rough sets induced by fuzzy relations.

Definition3.7. Let 1 € [0, 1] and let © be a fuzzy relation from U to V. A triple (U, V, C8g(U; 1)) is

called an approximation space based on C8g(U; 1) (briefly, €Sg(U; 1)-approximation space). If U = V, then
(U, V, C8g(U; 1)) is replaced by a pair (U, CSg(U; 1)).
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Definition 3.8. Let (U, V, C8g(U; 1)) be an C8¢(U; 1)-approximation space. For a non-empty subset X of U,
we define three sets as follows:
OX; 1) == Uyey{CSeu; ) : CSo(u; ) N X # 0},
OX;0) := Uyey{CSe(us 1) : CSe(u; 1) C X} and
Opna(X; 1) := 0(X; 1) - O(X; 0).
Then
(1) O(X; ) is called an upper approximation of X in (U, V, C8¢(U; 1))
(briefly, C8¢(U; t)-upper approximation of X).
(2) O(X; 1) is called a lower approximation of X in (U, V, C8¢(U; 1))
(briefly, C8¢(U; 1)-lower approximation of X).
(3) Opna(X;1)is called a boundary region of X in (U, V, €8¢(U; 1))
(briefly, €8¢ (U; 1)-boundary region of X).
(4) If Oppqa(X; 1) # 0, then OR(X; 1) := (O(X; 1), O(X; 1)) is called a rough set of X in (U, V, €8¢ (U; 1))
(briefly, C8¢(U; t)-rough set of X).
(5) If Opnq(X; 1) = 0, then X is called a definable set in (U, V, C8¢(U; 1))
(briefly, C8¢(U; 1)-definable set).

According to Definition 3.8, it is easy to prove that
OX;0):={ucU:CSe(u;1)NX # 0} and
OX;0):={ueU:CSeu;1) C X}.

Here we present an example as the following.

Example 3.9. Let U = {uy, u,, us, uy, us } beaset of doctoral students in a mathematical business classroom
of a university and let V = {vy, v,, v3, v4} be a set of subjects where

v, is business,

v, is economics,

v3 is computer sciences and

v, is mathematics.

For a fuzzy relation ® € F(U x V) and elements u € U, v € V, the number O(u, v) in the closed unit
interval [0, 1] is defined as the score of the doctoral student u with respect to the subject v under 6. The
scores of all doctoral students in U with respect to subjects in V under O are given as the following matrix.

0.70.90.8 0.9
0.8 0.9 0.7 0.9
0.90.80.8 0.9
0.50.50.9 0.9
0.9 0.9 0.6 0.9

Let 1 = 0.9 be a minimal score level. If an educational measurement committee assign X := {u, us, us}
which is a set of excellent doctoral students under the global evaluation, then the assessment of X in an
C8(U; 0.9)-approximation space (U, V, €8g(U; 0.9)) is derived by the process as the following.
According to Definition 3.1, it follows that

S@(ul; 0.9) = {Vz, V4},

Se(u2;0.9) := {v2, v4},

S@(u3; 09) = {Vl, V4},

Se(uy30.9) := {v3,v4} and

S@(u5; 09) = {Vl, Vo, V4}.
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According to Definition 3.3, it follows that
CSe(u1;0.9) := {us, uz},
CSe(u2;0.9) := {u, uz},
CSe(u3;0.9) := {us},
CSe(uy;0.9) := {uy} and
CS@(u5; 0.9) := {u5}.
According to Definition 3.8, it follows that
6(X;0.9) := {uy, us, u3, us},
0(X;0.9) := {u3, us} and
Opna(X;0.9) := {ug, us}.
Therefore OR(X; 0.9) := ({u1, uz, us, us}, {us, us}) is a C84(U; 0.9)-rough set of X. Consequently,
(1) uq,uy, us and us are possibly excellent doctoral students,
(2) us3 and us are certainly excellent doctoral students and
(3) for u; and u; it cannot be determined whether two students are excellent doctoral students or not.

In what follows, Definition 3.10 follows from the example as the union of upper and lower approximations.

Definition 3.10. Let (U, V, C8g(U; 1)) be an C8g(U; 1)-approximation space and let X be a non-empty subset
of U. 6(X;1) is called a non-empty CSq(U; 1)-upper approximation of X in (U, V, CSe(U; 1)) if O(X;1) is a
non-empty subset of U. Similarly, we can define a non-empty CS8¢(U; ¢)-lower approximation. OR(X; ) is
referred to as a non-empty C8g(U; 1)-rough set in (U, V, C8o(U; 1)) if O(X; 1) is a non-empty CSg(U; t)-upper
approximation and O(X; () is a non-empty CSg(U; t)-lower approximation.

Proposition 3.11. Let (U, V, C8g(U; 1)) be an C8g(U; 1)-approximation space. If X and Y are non-empty
subsets of U, then we have the following statements.
(1) O(U;1) =Uand
o(U; 1) =U.
() 6(0;1) =0 and
O0;1) = 0.
(3) X C 6(X;1) and
0(X;1) C X.
(4) 6(XUY;1)=0(X;0)uU0O(Y;)and
0XnY;0)=0X;0n0(Y;0).
(5) 6(XNY;1) COX;0)Nn6O(Y;1) and
O(XUY;)20X;)ue(Y;.
(6) B(X;1) = (6(X; 1)), where X¢ and (O(X; 1)) are complements of X and O(X; 1), respectively.
(7) 0(0(X;0);1) = 6(X;1) and
0(0(X; ;1) = 8(X; 0).
(8) O((6(X;0)%;1) = (O(X; 1), where (O(X; 1))€ is a complement of ©(X; 1) and
O((OX; 0); 1) = (B(X; )¢, where (O(X; 1))€ is a complement of O(X;; 1).
(9) If X C Y, then ©(X;1) C 6(Y; 1) and O(X; 1) C O(Y;1).

Proof. The proof is straightforward, so we omit it. O

Definition 3.12. Let (U, V, C8g(U; 1)) be an C8¢(U; 1)-approximation space and let X be a non-empty subset
of U. If O(X; 1) is a non-empty CSg(U; 1)-lower approximation of X in (U, V, C8¢(U; 1)) and O(X; 1) is a proper
subset of X, then X is called a set over a non-empty interior set.

Proposition 3.13. Let (U, V, C8¢(U; 1)) be an €8 g(U; 1)-approximation space and let X be a non-empty subset
of U. If X is a set over non-empty interior set, then OR(X; () is a non-empty CSg(U; 1)-rough set of X in
(U, V, C8g(U; 1))
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Proof. Suppose that X is a set over a non-empty interior set. Then we have that O(X; () is a non-empty
C8(U; 1)-lower approximation and @(X; 1) C X. By Proposition 3.11 (3), we obtain that § # X C 6(X; 1). Thus
we get O(X; 1) is a non-empty CSg(U; 1)-upper approximation. We shall verify that 0,,;(X;1) # 0. Suppose
that 0,,4(X;1) = 0. Then we have 6(X;1) = O(X;1). From Proposition 3.11 (3), once again, it follows that
O(X; 1) = X, a contradiction. Therefore 8,,4(X; 1) # 0. Consequently, O(X; () is a non-empty CSg(U; )-rough
set of X. O

Example3.14. LetU:={u; =3, u =1L, us = S,us = §,us = Lland V= {v1 = 2,v, = 2V3,v3 = 6,v4 =
6+/3}. Define a fuzzy relation © € F(U x V) by

cosuv ifu=v
O(u,v) = ) ]
1-sinuv ifu<v

for all (u, v) € U x V. Then we have the following ranges of 6.

0.99452 0.81961 0.69098 0.48232
0.96510 0.93958 0.89547 0.81961
0.98836 0.97985 0.96510 0.93958
0.99612 0.99328 0.98836 0.97985
0.99871 0.99776 0.99612 0.99328

Let:=0.95 and let X := {u,, u3} be a non-empty subset of U. According to Definition 3.1, it follows that
S@(u1;0.95) = {Vl},
S@(u2;0.95) = {Vl},
Se(u3;0.95) := {v1,v,,v3},
Se(uy30.95) := {v1,Vv2,v3,v,} and
S@(u5; 095) = {Vl, Vy,V3, V4}.
According to Definition 3.3, it follows that
CSe(u1;0.95) := {us, u},
CS@(le; 0.95) = {ul, le},
CSe(u3;0.95) := {us},
CS(.)(UL,; 095) = {U4, lls} and
CS@(MS; 095) = {U4, u5}.
Here it is easy to check that (X;0.95) is a non-empty €Sg(U; 95)-lower approximation of X, and also
0(X;0.95) c X. Note that X C O(X;0.95). Thus we get 6(X;0.95) # 0 and ©(X;0.95) # O(X;0.95). It
follows that OR(X; 0.95) is a non-empty €8g(U; 0.95)-rough set of X.

Proposition 3.15. Let (U, CSg(U;1)) be an CSg(U;1)-approximation space and let (U, CSw(U;k)) be an
C8w(U; k)-approximation space. If t > x and © C W where 0 is reflexive and W is transitive, then we have
O(X; 1) C W(X; k) for every non-empty subset X of U.

Proof. Let X be a non-empty subset of U. Then we prove that 8(X; 1) C ¥(X; x). In fact, let u; € 6(X;1). Then
CSe(u1; 1) N X # 0. Thus there exists u, € CSg(u1;1) N X, and so Sg(u1; 1) = Se(uy; 1). Since O is reflexive, we
have ©(u,, u,) = 1 > 1. Whence u, € Sg(us; 1) = Sg(uy; ). Thus we have O(uq, u,) > 1. Sincet > xand 6 C V¥,
we have W(uq, u;) = O(uq, u) = x, and so ¥(uy, u,) = k. Similary, we have ¥(u», u1) > k. We shall verify that
Sy(uq;x) = Sy(uy; k). Now, let us € Sy(uy; k). Then ¥(u,, us) = k. Since ¥ is transitive, we have
Ylug, u3) 2 Vy,ev (Plug, us) A ¥Plug, uz))

= Y(ug, up) A ¥luy, us)

>KAK

=K.
Hence ¥(uy, u3) = k. Thus us € Sy(uy; k), which yields Sy(uz; x) C Sy(uq; k). Similary, we can prove that
Syw(u1;x) C Sw(uy; x). Whence we get Sy(uq;x) = Sy(ur;x), and so u, € CSy(uq; k). Thus we have that
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u; € CSy(uq;x) N X. Hence CSy(uq;x) N X # 0, which yields u; € W(X; x). Therefore we get that O(X; 1) C
Y(X;x). O

Proposition 3.16. Let (U, C84(U; 1)) be an C8g(U; 1)-approximation space and let (U, C8w(U;x)) be an
C8w(U; x)-approximation space. If 1 > x and © C ¥ where O is reflexive and V¥ is transitive, then we have
Y(X; k) C O(X;1) for every non-empty subset X of U.

Proof. Let X be anon-empty subset of U. Then we prove that ¥(X; x) C O(X; 1). Indeed, letu; € ¥(X; x). Then
CSw(uy; 1) C X. We shall show that CSg(uq;1) € CSy(uyg;x). Let u, € CSg(uy;t). Then we have Sg(uq;1) =
So(uy; 1). Since O is reflexive, we have that ©(uq, u;) = 1 > 1. Hence uy € Sg(uq;1), and so u; € Sg(u; ).
Thus O(u,, u1) = 1. By the assumption, we have ¥(u,, u;) = 0(u;, u;) = kx, and so ¥(u,, u;) = k. Similary,
we get that ¥(u,, u») > k. We shall prove that Sy(u; k) = Sp(us; k). Let us € Sy(uy; x). Then ¥(uy, us) = k.
Since YV is transitive, we have

Y(uq, us) 2 Vy,cu (Plug, ug) A Y(ug, us))
> Y(ug, uz) A Puz, us)
2 KANK

=K.

Thus ¥Y(uqi,u3) = k, and so us € Sy(ug;x). Hence Sy(ur; k) C Sw(uq; k). Similary, we can prove that

Sw(uq; x) C Sy(uy; k), which yields Sy(uq; k) = Sy(us; k). Thus we have u, € CSy(uq;x),andso CSg(uq;t) C
CSy(uq;x) C X. Therefore u; € O(X;1). This means that ¥(X; k) C O(X; 0). O

4 Roughness in semigroups

In this section, we propose the definition of compatible preorder fuzzy relations on semigroups. Then we
introduce the roughness in semigroups induced by compatible preorder fuzzy relations. We provide sufficient
conditions for them and give some interesting properties and examples.

Definition 4.1. Let © be a fuzzy relation on S. © is called a compatible preorder fuzzy relation if © is
reflexive, transitive and compatible. An C8¢(S; 1)-approximation space (S, C8g(S; 1)) is called an C8g(S; 1)-
approximation space type CPF if © is a compatible preorder fuzzy relation.

Proposition 4.2. If (S, C8¢(S; 1)) is an C8¢(S; 1)-approximation space type CPF, then
(CSe(s1; 0)(CSe(s2; 1) € CSe(s15251)
forallsq, s, € S.

Proof. Let sq, s, be two elements in S and let s3 € (CSg(s1;1))(CSg(s2;1)). Then there exist s, € CSg(s1;1)
and s5 € CSg(sy; 1) such that s3 = s455. Thus Sg(s1;1) = Sg(s4; 1) and Sg(s»; 1) = Sg(ss; 1). Hence we get that
So(s152;1) = Sg(s4ss; 1). Indeed, we suppose that s € Sg(s4S5;1). Then we have O(s4Ss, Sg) > 1. Since 0 is
reflexive, we have O(sy, s4) = O(ss5,S5) =12 (,andso s, € Sg(s,; 1) and s5 € Sg(ss5; ). Whence s, € Sg(s1;1)
and s5 € Sg(sy;1). Thus O(sq, s4) 2 t and O(s,, s5) 2 (. Since O is transitive and compatible, we have

0(s152, S455) 2 Vg, e5 (0(5152, 57) A O(S7, 5455))
> O(s1S2, 5452) A O(54S2, 5455)
2 O(s1, 54) A O(s3, S5)
2 INL

=1
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Hence O(s1s>, S4S5) = 1. Since O is transitive, we have

(5152, S¢) = Vses (O(s152, 58) A O(ss, S6))
> 0(s152, 5455) A O(s4S5, Se)
>IN

=1l.

Thus O(s1s>,S6) > 1, and so sg € Sg(s1S2;1). Hence Sg(s4S5;1) C Seo(s1S2;1). Similarly, we can show that
So(s1S2;1) C Sg(s4Ss5;1). Thus Sg(s182;51) = Sg(s4S5; 1), which yields s3 € CSg(s1S3;t). This implies that
(CSe(s1; D)(CSe(s2; 1) C CSe(s152;0). O

In the following, we give an example to illustrate that the property in Proposition 4.2 is indispensable.

Example 4.3. Let S := {s1, S2, 53, S4, S5 } be a semigroup with multiplication rules defined by Table 1.

Table 1: The multiplication table on S

S1 S» S3 S4 S5
S1 S1 S1 S1 S1 S
S S1 S S3 S3 Sj
S3 51 S3 S3 S3 S5
S4 S1 S3 S3 S3 Sp
S5 81 S5 S5 S5 S5

Define the membership grades of relationship between any two elements in S under the fuzzy relation 6
on S as the following.
10101
01000
00101
00010
00101

Then it is easy to check that O is a compatible preorder fuzzy relation. For ( = 0.9, successor classes of each
elements in S with respect to 0.9-level under O are
S@(Sl; 0.9) = {51, S3, 55},
59(52;0.9) = {Sz},
59(83; 0.9) = {Sg, S5},
Se(s4;0.9) := {s,;} and
Se(s5;0.9) := {s3, s5}.
Hence cores of successor classes of each elements in S with respect to 0.9-level under 6 are
CS@(Sl; 0.9) = {31},
CS@(32;0.9) = {Sz},
CSp(s3;0.9) := {s3, 55},
CSe(s4;0.9) := {s4} and
CS@(S5; 09) = {S3, SS}-
Here it is straightforward to verify that (CSg(s;0.9))(CSg(s’;0.9)) C CSe(ss’;0.9) foralls,s’ € S.

Observe that, in Example 4.3, it does not hold in general for the equality case. Now, we consider the following
example.
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Example 4.4. Let S := {s1, 52, S3, S4, S5} be a semigroup with multiplication rules defined by Table 2.

Table 2: The multiplication table on S

S1 S2 S3 S4 S5
S1 S1 S1 S1 S1 S1
S S1 S S» S Sp
S3 S1 S S3 S Sp
S4 S1 S2 S» S4 Sp
S S1 S; S; S5 Sp

Define the membership grades of relationship between any two elements in S under the fuzzy relation 6

on S as the following.

10001
01110
01110
01110
00001

Then it is easy to check that @ is a compatible preorder fuzzy relation. For ¢ = 0.9, successor classes of each
elements in S with respect to 0.9-level under O are

Se(s150.9) := {s1, 55},
So(52;0.9) := {s2, 53, 54},
59(53; 09) = {Sz, S3, 54},
So(5430.9) := {s2, 53,54} and
Se(s5;0.9) := {s5}.

Hence cores of successor classes of each elements in S with respect to 0.9-level under O are

CS@(51;0.9) = {51},
CSp(s2;0.9) := {s2, 53,54},
CSp(s3;0.9) := {s2, 53,54},
CSg(s4;0.9) := {s2, 53,54} and
CS@(55;0.9) = {55}.

Here it is straightforward to check that (CSg(s;0.9))(CSg(s’;0.9)) = CSe(ss’;0.9) for all s, s’ € S. Based
on this point, the property can be considered as a special case of Proposition 4.2. This example leads to the

following definition.

Definition 4.5. Let (S, C8g(S; 1)) be an C8g(S; 1)-approximation space type CPF. The collection €Sg(S; () is

called complete induced by O (briefly, ©-complete) if for all s1, s, € S,

(CSe(s1;))(CSe(s2;0) = CSe(s152; 0).

Definition 4.6. Let (S, CSg(S; 1)) be an C8¢(S; 1)-approximation space type CPF. If CSg(S; () is complete
induced by O, then 6 is called a complete fuzzy relation. (S, C8¢(S; 1)) is called an €S8g(S; 1)-approximation

space type CF if © is complete.

Proposition 4.7. If (S, C8¢(S; 1)) is an CS¢(S; 1)-approximation space type CPF, then

(O(X; ))(6(Y; 1) C O(XY;0),

for every non-empty subsets X, Y of S.
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Proof. Let X and Y be two non-empty subsets of S. Suppose that s; € (O(X;1))(6(Y;1)). Then there exist
s, € O(X;1) and s3 € O(Y; 1) such that s; = s,53. Thus we have that CSg(sy; 1) N X # 0 and CSg(s3; )NY # 0.
Then there exist s,, s5 € S such that s, € CSg(s,;1) N X and s5 € CSg(s3; ) N Y. From Proposition 4.2, it
follows that s4s5 € (CSg(s2;1))(CSg(s3;1)) C CSg(sas3; 1) and s,4s5 € XY. Thus CSg(s,s3;1) N XY # @, which
yields s, = 5,53 € O(XY;1). Therefore (O(X; 1))(0(Y; 1)) C O(XY;1). O

Proposition 4.8. If (S, C8¢(S; 1)) is an C8¢(S; 1)-approximation space type CF, then
OX; 0)e(Y; 1) C 6(XY;0),
for every non-empty subsets X, Y of S.

Proof. Let X and Y be two non-empty subsets of S and let s; € (O(X; 1))(O(Y; 1)). Then there exist s, ¢ O(X; 1)
and s3 € O(Y; 1) such that s; = 5,53, and so CSg(s>;1) C X and CSg(s3;1) C Y. Since O is complete, we get
CSo(sys3;1) = CSe(s2;1)CSg(s3;1) C XY. Thus CSg(srs3;1) C XY. Hence s; = sps3 € O(XY;1). Therefore
O(X; 0)(O(Y;1) C O(XY; ). O

We consider the following example.

Example 4.9. According to Example 4.4, suppose that X := {si1, 54, S5} is a subset of S. Then we have
O(X;1) = Sand O(X; 1) := {s1, S5}. Here it is easy to verify that ©(X; 1) and O(X; 1) are subsemigroups, ideals
and completely prime ideals of S. Moreover, we also have 0y,,4(X; 1) is a non-empty set. For the existence of
subsemigroups, ideals and completely prime ideals of S under compatible preorder fuzzy relations in this
example, we give the following definition.

Definition 4.10. Let (S, CSg(S; 1)) be an C8g(S; 1)-approximation space type CPF and let X be a non-empty

subset of S. A non-empty CS(S; 1)-upper approximation 6(X; 1) of X in (S, C84(S; 1) is called an CSg(S; 1)-

upper approximation semigroup if it is a subsemigroup of S. A non-empty CS8g(S; 1)-lower approximation

O(X; 1) of Xin (S, C8(S; 1)) is called a CS¢(S; 1)-lower approximation semigroup if it is a subsemigroup of S. A

non-empty C8¢(S; t)-rough set OR(X; 1) of X in (S, C8(S; 1)) is called a CSg(S; 1)-rough semigroup if O(X; 1) is

an C8¢(S; 1)-upper approximation semigroup and O(X; () is a CS(S; 1)-lower approximation semigroup.
Similarly, we can define C8¢(S; t)-rough (completely prime) ideals.

Theorem 4.11. Let (S, CSg(S; 1)) be an CSg(S; 1)-approximation space type CPF. If X is a subsemigroup of S,
then B(X; 1) is an CS8(S; 1)-upper approximation semigroup.

Proof. Suppose that X is a subsemigroup of S. Then XX C X. By Proposition 3.11 (3), we obtain that § # X C
O(X; 1). Hence 6(X; 1) is a non-empty CS(S; 1)-upper approximation. From Proposition 3.11 (9), it follows that
O(XX; 1) C 6(X; 1). By Proposition 4.7, we obtain that

(O(X; 0)(O(X; 1)) C B(XX; 1) € O(X;0).
Hence O(X; 1) is a subsemigroup of S. Thus 6(X; 1) is an CS¢(S; 1)-upper approximation semigroup. O

Theorem 4.12. Let (S, C8¢(S; 1)) be an C8¢(S; 1)-approximation space type CF. If X is a subsemigroup of S with
O(X; 1) # 0, then O(X; 1) is a CS(S; 1)-lower approximation semigroup.

Proof. Suppose that X is a subsemigroup of S. Then XX C X. Obviously, O(X; 1) is a non-empty CS(S; 1)-lower
approximation. From Proposition 3.11 (9), it follows that O(XX; () C O(X; 1). By Proposition 4.8, we obtain that

OX; 0)(OX; 1) € 8(XX;1) C O(X; ).

Thus O(X; 1) is a subsemigroup of S. Therefore O(X; 1) is a C8¢(S; 1)-lower approximation semigroup. O

The following corollary is an immediate consequence of Proposition 3.13, Theorem 4.11 and Theorem 4.12.
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Corollary 4.13. Let (S, C84(S; 1)) be an C8¢(S; 1)-approximation space type CF. If X is a subsemigroup of S over
a non-empty interior set, then OR(X; 1) is a C8¢(S; t)-rough semigroup.

Observe that, in Corollary 4.13, the converse is not true in general. We present an example as the following.

Example 4.14. According to Example 4.4, suppose that X := {s3, S4, Ss} is a subset of S, then we have
0(X;0.9) := {s1,S3,54,55} and O(X;0.9) := {ss}. Thus we see that 0,,4(X;0.9) # 0. Hence it is
straightforward to check that ©(X;0.9) is an C8¢(S;0.9)-upper approximation semigroup and 0(X;0.9)
is a C8g(S;0.9)-lower approximation semigroup. However, X is not a subsemigroup of S. Consequently,
OR(X;0.9) is a C8g(S; 0.9)-rough semigroup, but X is not a subsemigroup of S.

Theorem 4.15. Let (S, C8¢(S; 1)) be an CSo(S; 1)-approximation space type CPE.If X is anideal of S, then O(X; 1)
is an C8o(S; 1)-upper approximation ideal.

Proof. Suppose that X is an ideal of S. Then SX C X. From Proposition 3.1 (9), it follows that 6(SX;1) C
O(X; 1). By Proposition 3.11 (1), we obtain that 6(S; 1) = S. From Proposition 4.7, it follows that

S(O(X; ) = (8(S; D)(O(X; 1) € B(SX; 1) C O(X; 0).

Hence O(X; 1) is a left ideal of S.
Similarly, we can prove that G(X; ) is a right ideal of S. Therefore we have O(X; 1) is an C8¢(S; 1)-upper
approximation ideal. |

Theorem 4.16. Let (S, CSg(S;1)) be an CSg(S; 1)-approximation space type CF. If X is an ideal of S with
O(X;1) # 0, then O(X; 1) is a C8g(S; 1)-lower approximation ideal.

Proof. Suppose that X is an ideal of S. Then SX C X. From Proposition 3.11 (9), it follows that @(SX;1) C
O(X; 1). By Proposition 3.11 (1), we obtain that O(S; 1) = S. From Proposition 4.8, it follows that

S@X; 1) = (6(S; D)(O(X; ) € O(SX; 1) C O(X; ).

Thus O(X; 1) is a left ideal of S.
Similarly, we can prove that ©(X; 1) is a right ideal of S. Thus O(X; 1) is a CSg(S; 1)-lower approximation
ideal. O

The following corollary is an immediate consequence of Proposition 3.13, Theorem 4.15 and Theorem 4.16.

Corollary 4.17. Let (S, C8¢(S; 1)) be an CSg(S; 1)-approximation space type CF. If X is an ideal of S over a non-
empty interior set, then OR(X; 1) is a C8g(S; 1)-rough ideal.

Observe that, in Corollary 4.17, the converse is not true in general. We present an example as the following.

Example 4.18. According to Example 4.4, if X := {s1, s3, S5} is a subset of S, then we have 6(X;0.9) = S
and 6(X;0.9) := {s1, s5}. Thus we see that 0,,4,(X;0.9) # (. Obviously, 6(X;0.9) is an C8g(S; 0.9)-upper
approximation ideal, and it is straightforward to check that 8(X; 0.9) is a CS¢(S; 0.9)-lower approximation
ideal. However, X is not an ideal of S. Consequently, OR(X; 0.9) is a C8¢(S; 0.9)-rough ideal, but X is not an
ideal of S.

Theorem 4.19. Let (S, CSg(S; 1)) be an CS¢(S; 1)-approximation space type CF. If X is a completely prime ideal
of S, then O(X; 1) is an CSg(S; 1)-upper approximation completely prime ideal.

Proof. We prove that O(X; 1) is an CS(S; 1)-upper approximation completely prime ideal. In fact, since X is
an ideal of S, by Theorem 4.15, we have that O(X; ¢) is an CS(S; 1)-upper approximation ideal. Let 51,5, € S
such that 515, € O(X; 1). Then by the O-complete property of CS(S; 1), we get

(CSe(s1;0)(CSp(s2;0)NX = CSe(s1s2; )N X # 0.
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Thus there exist s3 € CSg(s1; 1) and s4 € CSg(s2; 1) such that s3s,4 € X. Since X is a completely prime ideal,
we have s3 € X or s, € X. Hence we have CSg(s1;1) N X # 0 or CSe(s2;1) N X # 0, and so s; € O(X; 1) or
s, € O(X; 1). Therefore O(X; 1) is a completely prime ideal of S. As a consequence, O(X; 1) is an CS(S; 1)-upper
approximation completely prime ideal. O

Theorem 4.20. Let (S, C8g(S; 1)) be an C8(S; 1)-approximation space type CF. If X is a completely prime ideal
of S with O(X; 1) # 0, then O(X; 1) is a C8¢(S; 1)-lower approximation completely prime ideal.

Proof. Since Xisanideal of S, by Theorem 4.16, ©(X; 1) is a C85(S; 1)-lower approximation ideal. Let s{, s, € S
such that s1s, € O(X; ). Since 0 is complete, we have

(CSe(s1;))(CSp(s2; 1) = CSe(s15250) C X.

Now, we suppose that s; ¢ @(X; (). Then CSg(s1; 1) is not a subset of X. Thus there exists s3 € CSg(s1; 1) but
s3 ¢ X. Foreach s, € CSg(sy;0),

5354 € (CSg(s1; D)(CSp(s2; 1) C X.

Whence s3s, € X. Since X is a completely prime ideal and s3 ¢ X, wehave s, € X. Thus CSg(s»; 1) C X, which
yields s, € O(X; (). Hence we get O(X; () is a completely prime ideal of S. Therefore O(X; () is a €Sg(S; 1)-lower
approximation completely prime ideal. O

The following corollary is an immediate consequence of Proposition 3.13, Theorem 4.19 and Theorem 4.20.

Corollary 4.21. Let (S, CSg(S; 1)) be an C8o(S; 1)-approximation space type CF. If X is a completely prime ideal
of S over a non-empty interior set, then OR(X; 1) is a C8¢(S; 1)-rough completely prime.

Observe that, in Corollary 4.21, the converse is not true in general. We present an example as the following.

Example 4.22. According to Example 4.4, if X := {51, S2, S5} is a subset of S, then we have 0(X;0.9 =S
and ©(X;0.9) := {s1, s5}. Thus we see that 8,,4(X;0.9) # 0. Obviously, ©(X;0.9) is an C8¢(S; 0.9)-upper
approximation completely prime ideal, and it is straightforward to check that O(X; 0.9) is a CSg(S; 0.9)-lower
approximation completely prime ideal. Here we can verify that X is an ideal of S, but it is not a completely
prime ideal of S since s3s, = s, € X buts; ¢ X and s, ¢ X. As a consequence, OR(X; 0.9) is a C8g(S; 0.9)-
rough completely prime ideal, but X is not a completely prime ideal of S.

5 Homomorphic images of roughness in semigroups

In this section, we investigate the relationships between rough semigroups (resp. rough ideals, rough
completely prime ideals) and their homomorphic images. Throughout this section, T denotes a semigroup.

Proposition 5.1. Let f be an epimorphism from S in (S, C8¢(S; 1)) to T in (T, CSw(T; 1)), where O is defined by
forallsy, s, €S, (s, s2) = Y(f(s1), f(s2)). Then the following statements hold.

(1) Forallsy,s, € S,s1 € CSg(sy; 1) ifandonly if f(s1) € CSw(f(s2);1).

(2) f(6(X; 1) = P(f(X); 1) for every non-empty subset X of S.

3) fO(X; 1) C Y(f(X); 1) for every non-empty subset X of S.

(4) Iffisinjective, then f(O(X; 1)) = ¥(f(X); 1) for every non-empty subset X of S.

(5) If ¥ is a compatible preorder fuzzy relation, then © is a compatible preorder fuzzy relation.

Proof. (1) Let s1,s> € Sbe such that s; € CSg(s>;1). Then f(s1), f(s2) € Tand Sg(s1;1) = Sg(sy;1). In the
following, we shall prove that Sy(f(s1);1) = Syp(f(s2);1). Let t; € Sw(f(s1);1). Then ¥(f(s1), t1) > t. Since f
is surjective, there exists s3 € S such that f(s3) = t;. Whence ¥(f(s1), f(s3)) = 1, and so (s, s3) = t. Thus
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s3 € Sg(s1;1). Whence we have s3 € Sg(s»; 1). Hence O(s,, s3) 2 t,and so ¥(f(s,), f(s3)) 2 t. Thus t; = f(s3) €
Sw(f(s2); ). Then we have Sy (f(s1); 1) € Sy(f(s2); 1). Similarly, we can show that Sy(f(s2); 1) C Sw(f(s1); 0.
Therefore Sy (f(s1); 1) = Sw(f(s2); 1). As a consequence, f(s1) € CSw(f(s2); ).

Conversely, it is easy to verify that s; € CSg(s»; ) whenever f(s;) € CS¢(f(s>); 1) forall s1,s, € S.

(2) Let X be a non-empty subset of S. We verify firstly that f(O(X; 1)) = Y(f(X);1). Suppose that t; €
f(O(X; 1)). Then there exists s; € O(X; 1) such that f(s1) = t;. Therefore we have CSg(s1; t)NX # 0. Thus there
exists s, € Ssuch thats, € CSg(s1;1) and s, € X. By the argument (1), we obtain that f(s;) € CSy(f(s1);1)
and f(s,) € f(X). Then we have CSy(f(s1);1) N f(X) # 0, and so t; = f(s1) € W(f(X);1). Thus we have
f(O6(X; 1) C P(F(X); 0.

On the other hand, let t, € Y(f(X); ). Then there exists s3 € S such that f(s3) = t;, and so CSw(f(s3); )N
f(X) # 0. Thus there exists s, € X such that f(s4) € f(X) and f(s4) € CSy(f(s3);1). By the argument (1), we
get that s, € CSg(s3;1), and so we have CSg(s3; 1) N X # 0. Hence s3 € O(X; 1), and so t, = f(s3) € f(O(X;1)).
Thus we get P(f(X); 1) C f(O(X; 1)). This implies that f(O(X; 1)) = P(f(X); 1.

(3) Let X be anon-empty subset of S. Let t; € f(O(X;1)). Then there exists s; € O(X; () such that f(sq) = t;.
Thus we get CSg(s1; 1) C X. We shall prove that CSy(t1;1) C f(X). Let t, € CSy(ty;1). Then there exists, € S
such that f(s,) = t,. Thus we have f(s,) € CSy(f(s1); t). By the argument (1), we obtain that s, € CSg(s1; 1),
andsos; € X.Hencewehave t, = f(s,) € f(X),and Thus CSy(t1;1) C f(X). Therefore we have t; € Y(f(X); 1).
As a consequence, f(O(X; 1)) C Y(f(X); ).

(4) Let X be a non-empty subset of S. We only need to prove that ¥(f(X); 1) C f(O(X;1)). Suppose that
t1 € ¥Y(f(X);1). Then there exists s; € S such that f(s{) = t;. Thus we have CSy(f(s1);1) C f(X). We shall
show that CSg(s1;1) C X. Lets, € CSg(sy;¢). Then by the argument (1), we have f(s,) € CSy(f(s1); (). Hence
f(s2) € f(X). Thus there exists s3 € X such that f(s3) = f(s;). By the assumption, we have s, € X, and so
CSe(s1;1) C X. Hence s; € O(X;1), and so t; = f(s1) € f(O(X; ). Thus Y(f(X); 1) C f(O(X;1)).

By the argument (3), we get f(O(X; 1)) C ¥(f(X); 1). Consequently, f(O(X; 1)) = P(f(X); 0).

(5) The proof is straightforward, so we omit it. O

Proposition 5.2. Let f be an isomorphism from S in (S, C8¢(S; 1)) to T in (T, CSw(T; 1)), where O is defined by
forallsi, s, € S, O(sq, s3) = Y(f(s1), f(s2)). If ¥ is complete, then O is complete.

Proof. Let sy, s, be two elements in S and let s3 € CSg(s1S;;t). Then by Proposition 5.1 (1), we get that
f(s3) € CSw(f(s153);1). Since f is a homomorphism and ¥ is complete, we have

f(s3) € CSw(f(s152); 1) = CSw(f(s1)f(52)5 1) = (CSw(f(51); DNCSw(f(s2); 1)).

Thus there exist t; € CSy(f(s1); 1) and t, € CSy(f(sy); 1) such that f(s3) = t1t,. Since f is surjective, there
exist sy, S5 € S such that f(s4) = t; and f(s5) = t,. From

f(s4)f(ss) = f(s3) € (CSw(f(s1); DNCSw(f(s2); 1)),

it follows that f(s;) € CSy(f(s1); ) and f(s5) € CSy(f(s>); 1). By Proposition 5.1 (1), we obtain that s, ¢
CSp(s1;1) and s5 € CSg(sy;1). Since f is a homomorphism, we have f(s3) = f(s4)f(s5) = f(s4Ss). Since f
is injective, we get s3 = $4S5. Thus we get that s3 € CSg(s1;1)CSg(s2;1). Therefore we have CSg(s1s,;1) C
CSe(s1;)CSe(s2;1).

On the other hand, by Proposition 4.2 and Proposition 5.1 (5), CSg(s1;1)CSg(s2;1) C CSg(s1s;1). Thus
CSg(s1;1)CSe(s2;1) = CSe(s152;1). Hence CSg(S; 1) is ©-complete. Therefore © is complete. O

Theorem 5.3. Let fbe an epimorphism from Sin (S, CSg(S; 1)) to Tin (T, CSw(T; 1)) type CPF, where @ is defined
byforallsq, s, € S, 0(s1, 52) = Y(f(s1), f(s2)). If X is a non-empty subset of S, then O(X; 1) is an C8(S; 1)-upper
approximation semigroup if and only if ¥(f(X); 1) is an CSw(T; 1)-upper approximation semigroup.

Proof. Suppose that O(X; 1) is an CSg(S; 1)-upper approximation semigroup. Then by Proposition 5.1 (2),

(PFX); DPFX); 1) =(f(OX; DN(F(O(X; 1))
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=f(8(X; D)(O(X; 1))
cf(e(x;0)
=¥(f(X); 0.

Hence ¥(f(X); 1) is a subsemigroup of T. Thus ¥Y(f(X); 1) is an CSw(T; 1)-upper approximation semigroup.
Conversely, let s; € (O(X; 1))(6(X; 1)). From Proposition 5.1 (2), it follows that

f(s1) ef(B(X; 0)(O(X; 1))
=(f(6(X; D)(F(O(X; 1))
=(P(F(X); D)(P(f(X); 1)
CY(FX);0
=f(6(X; 0)).

Thus there exists s, € O(X; 1) such that f(s1) = f(s,). Hence we have CSg(s; 1) N X # (. From Proposition 3.4
(1), it follows that f(s1) € CSw(f(s>); t). By Proposition 5.1 (1), we obtain that s; € CSg(s»; t). From Proposition
3.4 (2), it follows that CSg(s1; 1) = CSg(s2; 1). Thus we have CSg(sq;1) N X # 0, and so s; € O(X; 1). Hence we
have that (0(X; 1))(6(X; 1)) C O(X;1). Thus O(X;1) is a subsemigroup of S. Therefore 6(X; 1) is an CSg(S; 1)-
upper approximation semigroup. O

Theorem 5.4. Let fbe anisomorphism from Sin (S, C8¢(S; 1)) to Tin (T, CSy(T; 1)) type CPF, where O is defined
by forallsq,s, € S, O(s1, S2) = Y(f(s1), f(s2)). If X is a non-empty subset of S, then 8(X; 1) is a CS¢(S; 1)-lower
approximation semigroup if and only if ¥(f(X); 1) is a CSy(T; 1)-lower approximation semigroup.

Proof. By Proposition 5.1 (4) and using the similar method in the proof of Theorem 5.3, we can prove that the
statement holds. O

The following corollary is an immediate consequence of Theorems 5.3 and 5.4.

Corollary 5.5. Letfbe anisomorphism fromSin (S, C8¢(S; 1)) to Tin (T, CSy(T; 1)) type CPF, where O is defined
by for all s1,s, € S, O(s1, S2) = Y(f(s1), f(s2)). If X is a non-empty subset of S, then OR(X; 1) is a C8g(S; 1)-
rough semigroup if and only if WR(f(X); 1) is a CS8¢(T; 1)-rough semigroup.

Theorem 5.6. Let fbe an epimorphism from Sin (S, C8g(S; 1)) to Tin (T, C8w(T; 1)) type CPF, where O is defined
byforallsq, s, € S, 0(s1, 52) = Y(f(s1), f(s2)). If X is anon-empty subset of S, then O(X; 1) is an C8¢(S; 1)-upper
approximation ideal if and only if ¥(f(X); 1) is an CSw(T; 1)-upper approximation ideal.

Proof. Suppose that O(X; 1) is an €S(S; 1)-upper approximation ideal. Then we have SO(X;1) C O(X;1).
Whence we have f(SO(X; 1)) C f(6(X; 1)). By Proposition 5.1 (2), we obtain that

TP(F(X); 1) = f(SO(X; 1) C f(O(X; 1) = P(F(X); ).

Hence ¥(f(X); 1) is a left ideal of T. Similarly, we can prove that ¥(f(X); ¢) is a right ideal of T. Thus ¥(f(X); 1)
is an CSw(T; 1)-upper approximation ideal.

Conversely, we suppose that ¥(f(X);1) is an CSw(T;1)-upper approximation ideal. Then we have
TE(f(X); 1) C P(f(X); ). Now, let s; € SO(X; 1). From Proposition 5.1 (2), it follows that

f(s1) € f(SOX; 1)) = TF(F(X); ) € P(F(X);0) = F(O(X; 0)).

Thus there exists s, € O(X; 1) such that f(s1) = f(s»), and so CSg(s»; )NX # 0. By Proposition 3.4 (1), we obtain
that f(s1) € CSw(f(s3); 1). By Proposition 5.1 (1), we obtain s; € CSg(s>; 1). From Proposition 3.4 (2), it follows
that CSg(s1;1) = CSg(s2;1). Hence we have CSg(s1;1) N X # 0, and so s; € O(X; 1). Thus SO(X; 1) C O(X;1).
Whence 6(X; 1) is a left ideal of S. Similarly, we can prove that ©(X; 1) is a right ideal of S. Therefore 8(X; ) is
an C8¢(S; 1)-upper approximation ideal. O
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Theorem 5.7. Letfbe anisomorphism fromSin(S, CSg(S; 1)) to Tin (T, C8w(T; 1)) type CPF, where O is defined
byforalls,, s, € S, O(s1, s2) = Y(f(s1), f(s2)). If X is a non-empty subset of S, then O(X; 1) is a C8¢(S; 1)-lower
approximation ideal if and only if ¥(f(X); 1) is a CSw(T; 1)-lower approximation ideal.

Proof. By Proposition 5.1 (4) and using the similar method in the proof of Theorem 5.6, we can prove that the
statement holds. O

The following corollary is an immediate consequence of Theorems 5.6 and 5.7.

Corollary 5.8. Let f be an isomorphism from S in (S, C8¢(S; 1)) to T in (T, C8y(T; 1)) type CPF, where O is
defined by for all s1,s; € S, O(s1,52) = W(f(s1), f(s2)). If X is a non-empty subset of S, then OR(X; 1) is a
C8g(S; t)-rough ideal if and only if YR(f(X); 1) is a C8w(T; 1)-rough ideal.

Theorem 5.9. Let f be an epimorphism from Sin (S, C8¢(S; 1)) to T in (T, CSw(T; 1)) type CF, where O is defined
byforallsy, s, € S, 0(s1, s3) = Y(f(s1), f(s2)). If X is anon-empty subset of S, then O(X; 1) is an C8(S; 1)-upper
approximation completely prime ideal if and only if ¥(f(X); 1) is an CS(T; 1)-upper approximation completely
prime ideal.

Proof. Assume that O(X;1) is an CSg(S; 1)-upper approximation completely prime ideal. Let t1,¢t, € T be
such that t1£; € P(f(X); (). Thus there exist s1,5, € S such that f(s;) = t; and f(s;) = t,. Hence we have
CSy(f(s1)f(s2); 1) N f(X) # (. Since ¥ is complete, we have

(CSw(f(s1); D(CSw(f(s2); D) N fX) = CSw(f(s1)f(s2); ) N F(X) # 0.

Then there exist f(s3) € CSy(f(s1); 1) and f(s4) € CSw(f(s3); 1) such that f(s3)f(s4) € f(X), and so f(s3s4) €
f(X). Then there exists s5 € X such that f(s3s4) = f(ss5). By Proposition 5.1 (1), we obtain that s3 € CSg(s1;1)
and s, € CSg(sy;1). From Propositions 4.2 and 5.1 (5), we get that s3s4, € CSg(s1S2;t). By Proposition 3.4 (2),
we obtain that CSg(s152; 1) = CSg(s354; 1). Note that f(s354) € CSy(f(s354); ). Then f(s5) € CSy(f(s354); 0).
By Proposition 5.1 (1), once again, we get that s5 € CSg(s3s4;1) = CSg(s152;1). Thus CSg(s1s2;0) N X # 0,
and so s15, € O(X;1). Since O(X; 1) is a completely prime ideal of S, we have s; € O(X;1) or s, € O(X;1).
Hence we have f(s1) € f(O(X; 1) or f(s,) € f(O(X;1)). From Proposition 5.1 (2), we get f(s1) € P(f(X); 1) or
f(s2) € Y(f(X); 1), which yields t; € Y(f(X); 1) or t, € P(f(X); 1). Thus ¥(f(X); 1) is a completely prime ideal
of T. Therefore ¥(f(X); 1) is an CSw(T; 1)-upper approximation completely prime ideal.

Conversely, we suppose that ¥(f(X); 1) is an C8¢(S; 1)-upper approximation completely prime ideal. Now,
let s¢, s7 be elements in S such that s¢s7 € O(X; 1). Then f(s¢s7) € f(O(X; 1)). By Proposition 5.1 (2), we obtain
that

f(se)f(s7) = f(se57) € f(O(X; D) = P(F(X); 1)

Thus f(s¢) € P(f(X); 1) or f(s7) € P(f(X); 1). Now, we consider the following two cases.

Case 1. If f(s¢) € P(f(X); 1), then we have f(s¢) € f(O(X; 1)) since Proposition 5.1 (2). Thus there exists
sg € O(X; 1) such that f(s¢) = f(sg). Whence CSg(sg; 1) N X # (). By Proposition 3.4 (1), we obtain that f(sg) €
CSw(f(sg); 1). Thus f(sg) € CSw(f(sg); ). By Proposition 5.1 (1), we have s¢ € CSg(sg; t). From Proposition 3.4
(2), it follows that CSg(sg; 1) = CSg(sg; 1). Thus we have CSg(sg; 1) N X # 0, and so s € O(X; 1).

Case 2. If f(s7) € Y(f(X); 1), then s; € O(X; 1) since the proof is similar to that the case above.

As a consequence, O(X; 1) is an C8¢(S; 1)-upper approximation completely prime ideal. O

Theorem 5.10. Letfbe anisomorphism from Sin (S, CSg(S; 1)) to Tin (T, C8y(T; 1)) type CF, where O is defined
byforallsq,s, € S, O(s1, s2) = ¥(f(s1), f(s2)). If X is a non-empty subset of S, then O(X; 1) is a C8¢(S; 1)-lower
approximation completely prime ideal if and only if ¥(f(X); 1) is a CSw(T; 1)-lower approximation completely
prime ideal.

Proof. By Proposition 5.1 (4) and using the similar method as in the proof of Theorem 5.9, we can prove that
the statement holds. O
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The following corollary is an immediate consequence of Theorems 5.9 and 5.10.

Corollary 5.11. Let fbe anisomorphism from Sin (S, C8g(S; 1)) to T in (T, CSw(T; 1)) type CF, where O is defined
by for all s1,s, € S, O(s1, s2) = Y(f(s1), f(s2)). If X is a non-empty subset of S, then OR(X; 1) is a C8g(S; 1)-
rough completely prime ideal if and only if YR(f(X); 1) is a €Sy (T; 1)-rough completely prime ideal.

6 Conclusions

In the present paper, we proposed rough sets in universal sets based on cores of successor classes with
respect to level in closed unit intervals under fuzzy relations. Then we gave the real world example and proved
some interesting properties. Based on this point, we gave a definition of a non-empty rough set in a universal
set. Then we derived a sufficient condition of the such set. We introduced concepts of rough semigroups, rough
ideals and rough completely prime ideals in semigroups under compatible preorder fuzzy relations. Then we
derived sufficient conditions for them. We proved the relationships between rough semigroups (resp. rough
ideals and rough completely prime ideals) and their homomorphic images.

Finally, we hope that the definitions and results of rough sets in universal sets and semigroup structures
using fuzzy relations under mathematical principles in this paper may provide a powerful tool for assessment
problems and decision problems in several fields with respect to informations and technology.
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