On Routine mplementation of Virtual Evolvable Devices Using COMBOG6

Luka3 Sekanina and Stépan Fried|
Faculty of Information Technology, Brno University of Technology
BoZetéchova 2, 612 66 Brno, Czech Republic

sekanina@fit.vutbr.cz

Abstract

This paper introduces an approach showing that a com-
plete implementation of a digital evolvable hardware sys-
tem can automatically be created from a high-level spec-
ification. The approach generates the implementation of
a virtual reconfigurable circuit and evolutionary algorithm
independently of a target platform, i.e. as a soft IP core.
The method is evaluated on the development of two high-
performance evolvable systems that are utilized for fast evo-
lutionary design of small combinational circuits, such as
3x3-bit multipliers. The COMBOS6 card is employed for
these experiments.

1. Introduction

Various strategies have been developed in the recent
years in order to implement adaptive and evolvable hard-
ware [10, 20]. It seems that an interesting path leads to the
idea of evolvable hardware at the Intellectual Property (IP)
level that has been introduced by Stoica et al. [14]. Sekanina
has shown how the evolvable IP core can be implemented in
an ordinary FPGA [11]. The realization is based on creating
a virtual reconfigurable circuit (VRC) and an evolutionary
algorithm in the ordinary FPGA.

Contemporary digital evolvable systems are built either
as ASICs or as boards containing FPGAs combined with
a powerful PC where the evolution is carried out. From
this perspective, the approach utilizing a VRC offers many
benefits, including: (1) It is relatively inexpensive, because
the whole evolvable system is realized using an ordinary
FPGA. (2) The architecture of the (virtual) reconfigurable
device can be designed exactly according the needs of a
given problem. (3) Because the whole evolvable system
is available at the level of HDL source code, it can eas-
ily be modified and synthesized for various target platforms
(FPGA families). (4) The evolvable (hardware) system can
be offered and reused as software (i.e. as a soft IP core).

The objective of this paper is to demonstrate that (1) a

friedl@liberouter.org

complete implementation of a class of digital evolvable sys-
tems (which are based on the virtual reconfigurable circuits)
can automatically be generated from a high-level specifica-
tion and (2) non-trivial circuits can effectively be evolved
using the implementation.

An approach is presented allowing designers to rapidly
describe, simulate, synthesize and realize a domain-specific
virtual reconfigurable circuit. In connection with the hard-
ware implementation of the evolutionary algorithm, the
whole evolvable system can routinely be realized in an or-
dinary FPGA (placed on a general-purpose board) in a rea-
sonably short time. It will be shown that non-trivial combi-
national circuits (e.g. multipliers) can be evolved in a few
seconds on this kind of evolvable machine. The result is
similar to the evolution of analog circuits in a second on the
FPTA [15]. The COMBOG card developed in the Liberouter
project is employed as a target platform [5].

The rest of this paper is organized as follows. Section 2
summarizes the approaches utilized to realize the evolv-
able systems on FPGAs, including virtual reconfigurable
circuits. In Section 3, the proposed method for routine de-
signing of evolvable digital systems is presented. Section 4
deals with the target platform utilized to verify the method.
Section 5 describes experiments performed and their re-
sults. While the obtained results are discussed in Section 6,
conclusions are given in Section 7.

2. Evolvable Systemsin FPGAs

If we need to realize continually evolving systems, the
evolutionary algorithm has to be placed in the target sys-
tems. The evolution algorithm is responsible for adaptation
to the changing environment, which is reflected via chang-
ing fitness function.

2.1. Common Approaches
Although various (digital) evolvable systems have been

implemented as ASICs (typical examples are given in [2]),
this solution is relatively expensive. Hence a great effort

is invested to designing evolvable systems at the level of
FPGAs. These solutions can be divided into two groups:

(1) FPGA is used for evaluation of circuits produced by
evolutionary algorithm, which is executed in software (run-
ning on PC or DSP). Initial experiments were carried out
by Thompson who has evolved interesting circuits and dis-
covered that evolution can exploit physical properties of the
electronic platform to build a solution [16].

(2) The whole evolvable system is implemented in the
FPGA(s). This type of implementation integrates a hard-
ware realization of evolutionary algorithm and a reconfig-
urable device. As an example, we can mention Tufte’s
and Haddow’s research in which they introduced Complete
Hardware Evolution approach where the evolutionary algo-
rithm is implemented on the same FPGA as the evolving de-
sign [17]. The evolvable system is considered as a pipeline
and demonstrated on adaptive 1D signal filtering [18]. In
their approach only coefficients of the FIR filter (no circuits)
were evolved. Perkins et al. presented a self-contained
FPGA-based implementation of a spatially structured evo-
lutionary algorithm that provided significant speedup over
conventional serial processing for non-linear filtering [9]. In
another approach, Martin implemented a set of processors
on an FPGA that evaluated (in parallel) programs gener-
ated on the same FPGA [6]. These implementations require
a hardware realization of the evolutionary algorithm—this
area is relatively independent of evolvable hardware. Vari-
ous implementations have been proposed, for example [13].

It is a typical feature of these approaches that the chro-
mosomes are transformed to configuration bit stream and
the configuration bit stream is uploaded into the FPGA. Xil-
inx introduced Jbits to make this work easier [4]. Holling-
worth et al. showed how Jbits can be utilized for evolvable
hardware [3]. However, it is not easy to decode usually very
complex configuration bit stream of FPGA vendors. Fur-
thermore, most families of FPGAs can be configured only
externally (i.e. from an external device connected to the
configuration port). Internal reconfiguration means that a
circuit placed inside an FPGA can configure programmable
elements of the same FPGA (which is important for evolv-
able hardware). Although the internal configuration access
port (ICAP) has been integrated into the newest Xilinx Vir-
tex Il family [1], it is still too slow for our purposes.

2.2. Virtual Reconfigurable Circuits

Evolvable systems utilizing virtual reconfigurable cir-
cuits belong to the category (2) defined in the previous sec-
tion. VRCs were introduced for digital evolvable hardware
as a new kind of rapidly reconfigurable platform utilizing
conventional FPGAs [10, 12]. When a VRC is uploaded
into the FPGA then its configuration bit stream has to
cause that there will be created the following units at spec-

inputs o configuration port of VRC |

1

configuration memory

PEO PE1 PE2 PE7 outl

PEO PE1 PE2 PE3 PE6 PE7 —t

-

L Vﬂ’tl@' reconfigurablecircuit g

configuration port of FPGA

Figure 1. Example of internal organization of
a VRC utilized in an evolvable system

ified positions: array of programmable elements (PE), pro-
grammable interconnection network, configuration memory
and configuration port.

Fig. 1 shows that the VRC is in fact a new reconfigurable
circuit (consisting of 8 programmable elements in the ex-
ample) realized on top of an ordinary FPGA. “Virtual” PE2
depicted in Fig. 1 is controlled using 6 bits determining se-
lection of its operands (2+2 bits) and its internal function
(2 bits). This architecture is very similar to the represen-
tation employed in Cartesian Genetic Programming (CGP)
that has been developed for circuit evolution [7]. The rout-
ing circuits are created using multiplexers. The configura-
tion memory of VRC is typically implemented as a register
array. All bits of the configuration memory are connected to
multiplexers that control routing and selection of functions
in PEs.

The main advantage of the proposed method is that the
array of PEs, the routing circuits and the configuration
memory can be designed exactly according to the require-
ments of a given application. Furthermore, the style of re-
configuration and granularity of the new VRC can exactly
fit the needs of a given application. Because VRCs can
be described in HDL, they can be synthesized with various
constraints and for various target platforms.

As Fig. 2 shows, the VRC can directly be connected
to hardware implementation of the evolutionary algorithm

component 1 component 2

110 fitness | control

component 4

virtual i
) enetic
reconfigurable 8nit

circuit

configuration

component 3

BT

Figure 2. Evolvable system containing VRC
and evolutionary algorithm

placed on the same FPGA. If the structure of chromosome
corresponds to the configuration interface of VRC then a
very fast reconfiguration can be achieved (e.g. consuming
a few clocks only)—which is impossible by means of any
other technique. In Fig. 2, the component 1 is responsible
for communication with the VRC (it supplies input vectors
and receives output vectors); the component 2 calculates the
fitness value for a given circuit uploaded into the VRC.

Note that FPGA virtualization is sometimes utilized in
the reconfigurable computing domain to increase perfor-
mance. In case of evolvable hardware, Sekanina used
the functional-level VRC to implement adaptive image fil-
ters [12]. However, his system was designed for a single
specific application—no automatic design tools were uti-
lized.

3. Design Approach

Figure 3 shows the general approach to routine design-
ing of evolvable systems using virtual reconfigurable cir-
cuits. The basic idea behind the design system is that the
user specifies the target application at high level of abstrac-
tion and the design system is able to automatically gen-
erate VHDL code of the application that can by synthe-
sized for various target platforms. In particular, the spec-
ification includes: description of architecture of VRC (the
number of inputs and outputs, types and organization of
programmable elements, configuration options, configura-
tion strategy, etc.), description of the evolutionary algorithm
(type, parameters, chromosome encoding, etc.) and fitness
evaluation, and interaction of all these units. The approach
is in fact based on combining and tuning various prede-
fined templates. Currently, the design system consists of

probl em
speci fication

description description description .
of VRC of genetic unit of fitness calc. |modify
1

l l l

VRC
desi gner

fitness

EA
desi gner desi gner

SW

X per f or mance
si mul at or

test

per f or mance
test

conpl ete evol vabl e system
on FPGA

synthesis

configuration

\
[
[
\
\
[
[
1
\
[
—

constraints,
FPGA type,
systemlibraries,
etc.

FPGA

Figure 3. Design method in outline

four parts: (1) the VRC Designer, (2) the EA Designer, (3)
the Fitness Designer and (4) the Integrator.

3.1. The VRC Designer

The user can choose an architecture of the virtual recon-
figurable circuit and its parameters. Then this tool auto-
matically generates synthesizable VHDL code and simula-
tor (in C language) for the required VRC. The simulator is
useful for evaluation of the VRC in software. Currently,
only a single type of VRC is supported—pipelined array
of programmable elements. The architecture is based on
the circuit model introduced in CGP and extended to the
functional level in [10]. In CGP, digital circuits are com-
posed of programmable elements arranged in a regular pat-
tern of & rows and y columns. The configuration bit stream
determines the configuration of these elements, their inter-
connection and connection of primary inputs and outputs.
As an example, the following code has been taken from
the specification file that was prepared in order to gener-
ate VHDL code of the VRC that will be described in Sec-
tion 5.2:

#f or VHDL

ROW 10; #nunber of rows

caL: 8§; #nunber of col ums
BIT: 1; #datapath size (1 bit)
CFB: 80; #nunber of PEs

I NPUT: 6; #nunber of inputs

L- BACK: {1}; #l-back
NUM FCl: 8; #nunber of functions in CFB
#nunber out puts {subrange} {output CFB}

QUTPUT: 6 {70..79} {72,73,74,75,76, 77};
#defined functions for PE
FCE: 0: {ALL}, {

{0: VHDL: c <= a;" },

{1: VHDL: " ¢ <= b;" },

{2: VHDL: " ¢ <= a and b;" },

{3: VHDL: " ¢ <= a or b;" },

{4: VHDL: " ¢ <= not a;" },

{5: VHDL: " ¢ <= not b;" },

{6: VHDL: " ¢ <= not (a and b);" },
{7: VHDL: " ¢ <= a xor b;" }

Configuration interface of all VRCs is equivalent. The
templates for other types of VRCs will be available in fu-
ture.

3.2. The EA Designer

The user can choose architecture of the evolutionary al-
gorithm and its parameters. This tool then automatically
generates synthesizable code of the required evolutionary
algorithm. Currently, only a simple generic evolutionary
algorithm is available. The genetic unit is composed of
reusable parametric modules. Figure 6 shows that the de-
signer can choose type and size of the chromosome memory
(population size), chromosome size, mutation unit etc. The
interfaces of all genetic units generated by the EA designer
are uniform in order to ensure connectivity with the VRC. It
is assumed that the unit is controlled form the environment
(using signals NC, “generate new configuration”; BC, “get
the best configuration”, etc.) and the environment is able to
evaluate any chromosome that was generated by the genetic
unit and uploaded into VRC. This strategy is known from
evolvable components [10]. The templates for other types
of evolutionary algorithms will be available in future.

3.3. The Fitness Designer

The environment has to evaluate any circuit uploaded
into the VRC and to send the fitness value into the ge-
netic unit (see Fig. 2). Because the fitness calculation is
application-specific, its definition is left opened for the user.
However, a generic template is available for typical situa-
tions, such as evaluation of combinational circuits using a
truth table. The implementation is able to send test vec-
tors to the inputs of VRC, collect responses at the outputs
of VRC, compare them with the required vectors and in-
crease the counter of fitness value. The implementation is
pipelined and the pipeline naturally extends the pipeline of
the VRC.

3.4. The Integrator

The integrator corresponds to the top-level-entity file in
VHDL. It interconnects VRC, genetic unit and fitness calcu-

Figure 4. Combo6 card with Virtex XC2V3000

lation together. The integrator also provides user interface
to the evolvable system and utilization of other resources
available at the target platform. In case of COMBOS6 card,
it ensures communication with a personal computer via PCI
bus.

4. Target Platform: COMBO6

COMBOG6 developed in the Liberouter project is a
PCI card primarily dedicated for a dual-stack (IPv4 and
IPv6) router hardware accelerator [5, 8]. This board of-
fers an extremely high computational power (FPGA Virtex
XC2V3000 by Xilinx, Inc. with more than 3 mil. equiva-
lent gates, up to 2GB DDR SDRAM, up to 9Mbit context
addressable memory, etc.) and so it is well suited for devel-
opment and the use in various application domains, includ-
ing evolvable hardware.

We decided to use this card for our experiments because
it offers us a sufficient performance and capacity of FPGA.
Furthermore, the card was developed in cooperation with
the Faculty of Information Technology in Brno. Neverthe-
less, the primary advantage of the proposed approach is that
any FPGA-based system of sufficient capacity can be used
as the target platform.

5. Experiments and Results

The major objective of this section is to demonstrate that
(1) useful digital evolvable hardware systems can be real-
ized physically in a very short time (thus reducing the time
from the problem specification till running first experiments
substantially) and (2) the circuits evolved using the systems
are useful and non-trivial.

5.1. Problem 1: Evolutionary Design of the 3x 3-bit
Multiplier

In order to demonstrate the method we decided to de-
sign a high-performance system for evolving small combi-

outputs

2
/ i o [
e i o
o
8
0
1 o

| DO00000000

P /I, 880
~
_ ~
a=inp0-inp5 - a
— 1 b
PEinprev. column| aandb configuration memory
aorb c
nota FF
notb
b=inp0-inp5- anand b T 1, 1,
— — | axorb 3 110

PE in prev. column WR column config. data

clk

Figure 5. Virtual reconfigurable circuit gener-
ated automatically

national circuits, such as 3x3-bit multipliers, in a few sec-
onds. These small circuits were initially evolved in software
(extrinsically) by Miller et al. [7, 19]. It is believed that
hardware implementation can make the evolution faster.

5.2. Proposed Evolvable System

Virtual Reconfigurable Circuit: Figure 5 shows the ar-
chitecture of VRC, which was automatically generated from
the specification given in Section 3.1. The circuit consists
of 80 PEs (10 rows x 8 columns) equipped with flip-flops
allowing pipelined processing. Each of them can be pro-
grammed to perform one of eight functions that are evident
from the same figure.

Any PE can be connected to some of circuit inputs or
to some of the outputs of PEs placed in the previous col-
umn. In contrary to Miller’s experiments, in which inputs of
PEs could be connected to a PE in whichever preceding col-
umn, we allowed the interconnection between neighboring
columns only. Although we restricted the search space sub-
stantially and thus made the evolution of innovative designs
probably impossible, we obtained a relatively cheap imple-
mentation in hardware utilizing only relatively inexpensive
16-input multiplexers in the interconnection network.

Because the VRC is utilized for evolution of 3x3-bit
multipliers, the inputs 0-2 serve for the first operand and
the inputs 3-5 serve for the second operand of the multi-
plier. The 6-bit output is directly connected to the middle
PEs of the last column.

interface to VRC‘

reg. new

chromosome
L din

reg. random

=
cntr-best add

population data
memory
4x(8x110)b L, |
addr mutation |
dout ™====>unit generate/
wen —» mutate |
men 3b column addy
1
L addr 0 control signals |
reg. best fitness T T T T |
fitness wen memory dout
4x16b WR-
controller write
din generate/ (finite conﬁJ
wen mutate state data .
™ machine) |
ks |
>]

NC - new config.
VF - fitnessisvalid
BC - get best config.

interface to environment (fitness calculation)

Figure 6. Genetic unit

In order to define behavior of the VRC, 880 configura-
tion bits have to be uploaded. The configuration of each PE
is defined using 11 bits—the four define the connection of
the first input, the other four define the connection of the
second input and the remaining three bits select the func-
tion of PE. The configuration bits are stored in the 880-bit
configuration register realized using flip-flops available in
the FPGA. We need 8 clocks to completely change the con-
figuration information and thus the behavior of the VRC.

Evolutionary Algorithm: Fig. 6 shows hardware re-
alization of the genetic unit generated using the EA De-
signer. Chromosome memory consists of four 880-bit chro-
mosomes; each of them is divided into eight banks per 110
bits. The initial four-member population is generated ran-
domly and evaluated. In order to make hardware imple-
mentation easier and with respect to the results in [7], new
populations are produced as follows. A mutated version of
each chromosome is evaluated. If the obtained fitness value
is higher than the fitness value of “parent” chromosome then
the mutated chromosome replaces the parent in the chromo-
some memory. This is repeated for all chromosomes in the
memory until a correct solution is found or the predefined
number of generations is exhausted. Based on experiments,
we decided to invert four bits per chromosome on average
by the mutation unit.

The controller is responsible for communication be-
tween the genetic unit and the environment and for config-
uring the VRC. The pseudo-random numbers are generated
using LSFR seeded from software via PCI bus.

Circuit Evaluation: The Fitness Designer is able to gen-
erate a circuit evaluating the circuits uploaded in the VRC.
In our case, the circuit generates 2° = 64 test vectors (all
possible input combinations), applies them at the VRC in-

Table 1. Results of synthesis — evolvable sys-
tem in FPGA for 3x3 multiplier

Resource Used | Awvail | Utilization
10s 41 684 5.99%
Function Generators | 5207 | 28672 18.16%
CLB Slices 2604 | 14336 18.16%
Dffs or Latches 3193 | 30724 10.39%
Block RAMs 4 96 4.17%
Block Multipliers 0 96 0.00%

Table 2. Results of synthesis — VRC and ge-
netic unit

VRC Genetic Unit
Resource Used Util. Used Util.
10s 127 18.57% 297 43.42%
Function Gens. 2256 7.87% 1726 6.02%
CLB Slices 1128 7.87% 863 6.02%
Dffs or Latches 940 3.06% 1177 3.83%
Block RAMs 0 0.00% 4 417%
Block Multipliers 0 0.00% 0 0.00%
Max freq. [MHz] | 122.1 91.6

put, reads the output vectors from VRC and compares them
against the required vectors. The fitness value is incre-
mented for every output bit calculated correctly.

It takes 8 clocks to obtain an output vector from VRC.
However, thanks to pipelined processing, one output vec-
tor is available per a clock. In the current version, the fit-
ness value is available in 64+8 = 72 clocks where the 8
clocks represent the configuration and communication over-
head. Nevertheless, the overhead can be reduced in case
of pipelined reconfiguration (which is has not been imple-
mented yet).

Synthesis: After simulations in ModelSim, the design
was synthesized using LeonardoSpectrum to Virtex FPGA
XC2V3000bf957, which is available at COMBOG6 card.
The complete synthesis process took about 25 min at Sun
Blade. The whole evolvable system requires 403,372 equiv-
alent gates. Tables 1 and 2 summarize the results of synthe-
sis.

In this implementation the population in stored in Block
RAMSs. The design can operate at 93.3 MHz. The results
that will be described in the next section were obtained
using 50MHz only because of easier synchronization with
PCI interface. However, there is a potential to go beyond
120MHz by optimizing some parts of the design.

5.3. Results

Figure 7 shows an example of the evolved 3 x 3-bit mul-
tiplier. Our analysis has shown that the circuit utilizes 45

L =logical LOW, input 1: bits 0-2, input 2: bits 3-5

Figure 7. Evolved 3x3 multiplier

PEs. The remaining 35 PEs are not connected or can be re-
placed by direct wires. It is assumed that the connection can
be simplified even more.

We performed 1600 runs and obtained the fully correct
solutions in all cases and after generation 5,377,900 on av-
erage. The shortest run required 497,217 generations; the
longest 48,804,757 generations. Considering the average
number of generations, the time of evolution is

_gp(v+e¢) 5377900.4(64 + 8)
 fm 50.106

where g is the number of generations, p is population size,
v is the number of test vectors and ¢ denotes the overhead.
Considering f,, = 100 MHz (which we will reach with the
optimized design) then we can obtain the design time 15.5
sec. on average.

t =3lsec., (1)

5.4. Problem 2: The 4x3 Multiplier

It is easy to modify the specification file and to synthe-
size the evolvable system for designing other circuits, for
example, 4x 3 multipliers. The results of synthesis are given
in Table 3. Maximal operational frequence is 89.4 MHz.
Figure 8 shows an example of the evolved 4x3 pipelined
multiplier. The VRC contains 10 x 10 PEs and utilizes
10 x 130 = 1300 configuration bits. Since the correspond-
ing truth table is two times larger than in the previous case,
the fitness calculation is two times slower.

We performed 19 runs and obtained the fully correct
multipliers in 10 runs, after 265 millions generations on av-
erage. It correspondsto the design time about 48 minutes on
average (at 50 MHz). The fastest run required 44 millions
generations, i.e. 504 seconds.

Table 3. Results of synthesis — evolvable sys-
tem in FPGA for 4x3 multiplier

Resource Used | Awvail | Utilization
10s 41 684 5.99%
Function Generators | 7956 | 28672 27.75%
CLB Slices 3978 | 14336 27.75%
Dffs or Latches 4702 | 30724 15.30%
Block RAMs 5 96 5.21%
Block Multipliers 0 96 0.00%

L =logical LOW, input 1: bits 0-3, input 2: bits 4-6

Figure 8. Evolved 4 x 3 multiplier

6. Discussion

The experiments have confirmed that the design time of
the proposed evolvable systems is really short. Starting with
specification, the design can be completed in a few hours
including synthesis, placement and routing. It is easy to
go back, modify some parts and synthesize a completely
new evolvable system again. The main advantage is that the
method is based on software approach; no operations with a
physical hardware are needed if a card or a board containing
a sufficiently large FPGA is available.

It is impossible to directly compare the presented results
and the results from [19], for instance, because of different
interconnection strategy of PEs. Recall that the best 3x3-
bit multiplier evolved in [19] consists of 23 gates and the
evolution was carried out using an array of 1 x 35 PEs, by
allowing unrestricted interconnections of the PEs. In order
to perform 10,000 generations, about 2 sec. are needed on
Pentium@200MHz [19] (our estimate is 0.8 sec. for cur-
rent Pentium IV@2.6GHz). In some cases a few millions
of generations were produced to find a solution.

The speedup obtained by means of COMBO6 (f,,,=100
MHz) and calculated using the available values is 69
(against Pentium) and 28 (against Pentium 1V). Note that
we do not compare the total time of evolution here. Table 1

indicates that four VRCs could be implemented on the same
FPGA, allowing four times higher performance.

Nevertheless, in this view, the obtained speed up could
be understood as low. The reason is that it is very easy to
evaluate candidate circuits in software (if proper encoding
is utilized). Note that it is not the case of evolving analog
circuits for which the circuit simulator is usually very slow.
Hence hardware implementation (JPL’s FPTA, for instance)
can reduce the time of the evolutionary design of analog cir-
cuits by 4+ orders of magnitude if compared with PSPICE
running at Pentium 11 3000 Pro [15]. The proposed ap-
proach utilizing VRCs seems to be useful for such designs
in which the circuit evaluation is very time consuming in
software. As a typical example, we can mention the evolu-
tionary design of image filters [10].

The evolvable system proposed in Section 5 is devoted
for speeding up the evolutionary design of small combina-
tional circuits. However, its implementation is very area-
demanding in comparison to the size of evolved circuits.
The approach is much more suitable for evolvable hardware
at the functional level, in which programmable elements op-
erate with more complicated functions (such as addition,
minimum, maximum, etc.) and over words instead of bits.
Note that in order to support the functional level evolution,
only datapath size (BIT parameter) has to be modified in the
code given in Section 3.1. Therefore, it seems to be reason-
able to apply the approach in real-world systems in which
the evolution is responsible for adaptation.

We have to also mention that it was not our goal to mini-
mize the number of gates used in the evolved circuits. Con-
sidering evolvable adaptive systems (in which the evolu-
tionary algorithm is a part of the target system), there is
not usually the requirement to minimize the number of el-
ements utilized in evolved circuits. All the PEs physically
exist in the system and they are available for free for the
evolutionary purposes, as opposed to the strategy used in
the evolutionary design of a single circuit [10]. The advan-
tage of the evolved multipliers is that they are inherently
pipelined, which is useful for processing large data sets.

7. Conclusions

An approach to routine designing of high-performance
evolvable systems has been introduced in this paper. Using
the proposed method and tools we were able to quickly de-
signh complete evolvable systems in a physical FPGA. The
design time was reduced drastically in comparison to previ-
ous approaches. The created systems were utilized to evolve
small combinational circuits in a very short time. In partic-
ular we evolved the pipelined multipliers.

We do believe that the proposed approach represents a
step towards routine designing of evolvable systems. In
fact, the problem of digital evolvable hardware design was

completely transformed to the software domain by means
of the proposed method. The future work will be devoted to
extending the design tools in order to generate other types of
virtual reconfigurable circuits and evolutionary algorithms
automatically. We will work also on improving the quality
of evolvable systems (hardware) generated using the tools.

Acknowledgment

The research was performed with the Grant Agency of
the Czech Republic under No. 102/03/P004 Evolvable
hardware based application design methods and the Re-
search intention MSM 262200012 — Research in informa-
tion and control systems. étép’an Friedl was supported by
6NET project (1IST-2001-32603) and the CESNET’s Pro-
grammable hardware project.

References

[1] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and
P. Sundararajan. A Self-reconfiguring Platform. In Proc. of
the 13th Conf. on Field Programmable Logic and Applica-
tions FPL’03, volume 2778 of Lecture Notes in Computer
Science, pages 565-574, Lisbon, Portugal, 2003. Springer-
Verlag.

[2] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Mu-
rakawa, |. Kajitani, E. Takahashi, K. Toda, M. Salami,
N. Kajihara, and N. Otsu. Real-World Applications of Ana-
log and Digital Evolvable Hardware. IEEE Transactions on
Evolutionary Computation, 3(3):220-235, 1999.

[3] G. Hollingworth, S. Smith, and A. Tyrrell. The Intrin-
sic Evolution of Virtex Devices Through Internet Reconfig-
urable Logic. In Proc. of the 3rd International Conference
on Evolvable Systems: From Biology to Hardware ICES’00,
volume 1801 of Lecture Notes in Computer Science, pages
72-79, Edinburgh, Scotland, UK, 2000. Springer-Verlag.

[4] D. LeviandS. A. Guccione. A Java-based Tool for Evolving
Stable Circuits. In Reconfigurable Technology: FPGAs for
Computing and Applications, Proc. SPIE 3844, pages 114—
121, Bellingham, WA, 1999.

[5] Liberouter home page, 2004. http://www.liberouter.org.

[6] P. Martin. A Hardware Implementation of a Genetic
Programming System Using FPGAs and Handel-C. Ge-
netic Programming and Evolvable Machines, 2(4):317-343,
2001.

[7]1 J. Miller, D. Job, and V. Vassilev. Principles in the Evolu-
tionary Design of Digital Circuits — Part I. Genetic Program-
ming and Evolvable Machines, 1(1):8-35, 2000.

[8] J. Novotny, O. Fucik, and D. Antos. Project of IPv6 Router
with FPGA Hardware Accelerator. In Proc. of the 13th Conf.
on Field Programmable Logic and Applications FPL’03,
volume 2778 of Lecture Notes in Computer Science, pages
964-967, Lisbon, Portugal, 2003. Springer-Verlag.

[9] S. Perkins, R. Porter, and N. Harvey. Everything on
the Chip: A Hardware-Based Self-Contained Spatially-
Structured Genetic Algorithm for Signal Processing. In

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Proc. of the 3rd International Conference on Evolvable Sys-
tems: From Biology to Hardware ICES’00, volume 1801 of
Lecture Notes in Computer Science, pages 165-174, Edin-
burgh, Scotland, UK, 2000. Springer-Verlag.

L. Sekanina. Evolvable Components: From Theory to Hard-
ware Implementations. Natural Computing Series, Springer
Verlag, 2003.

L. Sekanina. Towards Evolvable IP Cores for FPGAs.
In Proc. of the 2003 NASA/DoD Conference on Evolv-
able Hardware, pages 145-154, Chicago, USA, 2003. IEEE
Computer Society.

L. Sekanina. Virtual Reconfigurable Circuits for Real-World
Applications of Evolvable Hardware. In Proc. of the 5th In-
ternational Conference on Evolvable Systems: From Biol-
ogy to Hardware ICES’03, volume 2606 of Lecture Notes
in Computer Science, pages 186-197, Trondheim, Norway,
2003. Springer-Verlag.

B. Shackleford. A high-performance, pipelined, FPGA-
based genetic algorithm machine. Genetic Programming
and Evolvable Machines, 2(1):33-60, 2001.

A. Stoica, D. Keymeulen, A. Thakoor, T. Daud, G. Klimech,
Y. Jin, R. Tawel, and V. Duong. Evolution of Analog Circuits
on Field Programmable Transistor Arrays. In Proc. of the
2000 NASA/DoD Conference on Evolvable Hardware, pages
99-108, Palo Alta, CA, 2002. IEEE Computer Society.

A. Stoica, R. S. Zebulum, D. Keymeulen, M. I. Ferguson,
and X. Guo. Evolving Circuits in Seconds: Experiments
with a Stand-Alone Board Level Evolvable System. In Proc.
of the 2002 NASA/DoD Conference on Evolvable Hardware,
pages 67-74, Alexandria, Virginia, 2002. IEEE Computer
Society.

A. Thompson. Hardware Evolution: Automatic Design of
Electronic Circuits in Reconfigurable Hardware by Artificial
Evolution. Springer Verlag, London, 1998.

G. Tufte and P. Haddow. Prototyping a GA Pipeline for
Complete Hardware Evolution. In A. Stoica, D. Keymeulen,
and J. Lohn, editors, Proc. of the 1st NASA/DoD Workshop
on Evolvable Hardware, pages 143-150, Pasadena, CA,
USA, 1999. IEEE Computer Society.

G. Tufte and P. Haddow. Evolving an Adaptive Digital Fil-
ter. In Proc. of the 2nd NASA/DoD Workshop on Evolvable
Hardware, pages 143-150, Los Alamitos, CA, USA, 2000.
IEEE Computer Society.

V. Vassilev, D. Job, and J. Miller. Towards the Automatic
Design of More Efficient Digital Circuits. In Proc. of the
2nd NASA/DoD Workshop on Evolvable Hardware, pages
151-160, Los Alamitos, CA, USA, 2000. IEEE Computer
Society.

R. Zebulum, M. Pacheco, and M. Vellasco. Evolutionary
Electronics — Automatic Design of Electronic Circuits and
Systems by Genetic Algorithms. The CRC Press Interna-
tional Series on Computational Intelligence, 2002.

