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\S $0$ . Introduction.

A complex n-dimensional Kaehlerian manifold of constant holomorphic sec-
tional curvature $c$ is called a complex space form, which is denoted by $M_{n}(c)$ .
A complete and simply connected complex space form consists of a complex

projective space $P_{n}C$ , a complex Euclidean space $C^{n}$ or a complex hyperbolic

space $H_{n}C$ , according as $c>0,$ $c=0$ or $c<0$ . The induced almost contact metric

structure of a real hypersurface $M$ of $M_{n}(c)$ is denoted by $(\phi, \xi, \eta, g)$ .
In his study of real hypersurfaces of a complex projective space $P_{n}C$ ,

Takagi [10] classified all homogeneous real hypersurfaces and Cecil-Ryan [2]

showed also that they are realized as the tubes of constant radius over Kae-

hlerian submanifolds if the structure vector field $\xi$ is principal. On the other

hand, real hypersurfaces of a complex hyperbolic space $H_{n}C$ also investigated

by Berndt [1], Montiel [7], Montiel and Romero [8] and so on. Berndt [1]

classified all homogeneous real hypersurfaces of $H_{n}C$ and showed that they are
realized as the tubes of constant radius over certain submanifolds. According

to Takagi’s classification theorem and Berndt’s one the principal curvatures

and their multiplicities of homogeneous real hypersurfaces of $M_{n}(c)$ are all

determined.

In particular, Maeda [6] and Okumura [9] (resp. Montiel [7] and Montiel-

Romero [8]) considered real hypersurfaces of $M_{n}(c),$ $c>0$ (resp. $c<0$) whose

second fundamental tensor $A$ of $M$ in $M_{n}(c),$ $c\neq 0$ , satisfies

(0.1) $(\nabla_{X}A)Y=\frac{C}{4}\{\eta(X)\phi Y-g(\phi X, Y)\xi\}$ ,

(0.2) $A\phi-\phi A=0$ .
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In fact, real hypersurfaces of type $A$ are characterized by these properties.

Namely, they proved the following.

THEOREM A. Let $11f$ be a real hypersurface of $P_{n}C,$ $n\geqq 3$ . If it satisfies
(0.1) or (0.2), then $M$ is locally a tube of radius $r$ over one of the following

Kaehlerian submanifolds:
$(A_{1})$ a hyperplane $P_{n-1}C$ , where $0<r<\pi/2$ ,

$(A_{2})$ a totally geodesic $P_{k}C(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ .

THEOREM B. Let $M$ be a real hypersurface of $H_{n}C,$ $n\geqq 3$ . If it satisfies
(0.1) or (0.2), then $M$ is locally congruent to one of the following hypersurfaces:

$(A_{0})$ a horosphere in $H_{n}C,$ $i$ . $e.$ , a Montiel tube,

$(A_{1})$ a tube of a totally geodesic hyperplane $H_{k}C$ ( $k=0$ or $n-1$ ),

$(A_{2})$ a tube of a totally geodesic $H_{k}C(1\leqq k\leqq n-2)$ .

Now let us define a distribution $T_{0}(x)=\{X\in T_{x}M:X\perp\xi_{(x)}\}$ of a real hy-

persurface $M$ of $M_{n}(c),$ $c\neq 0$ , which is holomorphic with respect to the structure

tensor $\phi$ . If we restrict (0.1) and (0.2) to the distribution $T_{0}$ , then the shape

operator $A$ of $M$ satisfies $g((\nabla_{X}A)Y, Z)=0$ and $g((A\phi-\phi A)X, Y)=0$ for any

vector fields $X,$ $Y$ and $Z$ in $T_{0}$ . Thus in this paper let us consider the follow-

ing two conditions

(0.3) $g((\nabla_{x}A)Y, Z)=0$

and

(0.4) $g((A\phi-\phi A)X, Y)=0$

for any vector fields $X,$ $Y$ and $Z$ in $T_{0}$ .

About a ruled real hypersurface of $P_{n}C$ some properties are investigated

by Kimura [4], Kimura and Maeda [5]. Contrary to homogeneous real hy-

persurfaces of $P_{n}C$ , it is known that any ruled real hypersurface of $P_{n}C$ is

not complete and its structure vector field $\xi$ is not principal. In this paper we
can assert that this fact is extended for any ruled real hypersuface of $H_{n}C$ .

Also in [5] they gave a characterization for ruled real hypersurfaces of

$P_{n}C$ with an integrability condition of $T_{0}$ in addition to the condition (0.3).

Replacing this integrability condition by the property (0.4) we give another

characterization of ruled real hypersurfaces of $M_{n}(c),$ $c--\pm 0$ .

THEOREM C. Let $M$ be a connected real hypersurface of $M_{n}(c),$ $c\neq 0$ and
$n\geqq 3$ . If it satisfies (0.3) and (0.4) and the structure vector field $\xi$ is not prin-
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cipal, then $M$ is locally congruent to a ruled real hypersurface.

\S 1. Preliminaries.

We begin with recalling fundamental properties of real hypersurfaces of a
complex space form. Let $M$ be a real hypersurface of a complex n-dimensional

complex space form $(M_{n}(c),\overline{g})$ of constant holomorphic sectional curvature $c$ ,

and let $C$ be a unit normal vector field defined on a neighborhood of a point

$x$ in $M$ . We denote by $J$ the almost complex structure of $M_{n}(c)$ .
For a local vector field $X$ on the neighbourhood of $x$ in $M$, the images of

$X$ and $C$ under the linear transformation $J$ can be represented as

$JX=\phi X+\eta(X)C$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$

of $M$, while $\eta$ and $\xi$ denote a l-form and a vector field on the neighbourhood

of $x$ in $M$, respectively. Then it is seen that $g(\xi, X)=\eta(X)$ , where $g$ denotes

the Riemannian metric on $M$ induced from the metric $\overline{g}$ on $M_{n}(c)$ . The set of

tensors $(\phi, \xi, \eta, g)$ is called an almost contact metric structure $M$ . They satisfy

the following

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$

for any vector field $X$ , where $I$ denotes the identity transformation. Further-

more the covariant derivatives of the structure tensors are given by

(1.1) $\nabla_{X}\xi=\phi AX$ , $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$

for any vector fields $X$ and $Y$ on $M$, where $\nabla$ is the Riemannian connection of

$g$ and $A$ denotes the shape operator in the direction of $C$ on $M$ .

Since the ambient space is of constant holomorphic sectional curvature $c$

the equations of Gauss and Codazzi are respectively obtained:

$R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)1^{\gamma}$

(1.2) $+g(Y, Z)\phi X-g(\phi X, Z)dY-2g(\phi X, Y)\phi Z$ }

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(1.3) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{C}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the

covariant derivative of the shape operator $A$ with respect to $X$ .



314 Seong-Soo AHN, Sung-Baik LEE and Young-Jin SUH

\S 2. The proof of Theorem C.

In this section we shall prove Theorem C. A characterization of a real

hypersurface of type $A$ of a complex space form $M_{n}(c),$ $c\pm O$ is first recalled.

It is seen by a theorem due to Okumura [9] and a theorem due to Montiel and

Romero [8] that if the shape operator $A$ and the structure vector $\phi$ commute

each other, then a real hypersurface $M$ is locally congruent to the real hyper-

surface of type $A$ . Restricting this condition to the orthogonal distribution $T_{0}$

of $\xi$ , we find the following.

LEMMA 2.1. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . If $M$ satisfies
the condition (0.4), then we have

(2.1) $g((\nabla_{X}A)Y, Z)=Sg(AX, Y)g(Z, V)$ ,

where $S$ denotes the cyclic sum with respect to $X,$ $]^{\gamma}$ and $Z$ orthogonal to $\xi$ and
$V$ stands for the vector field $\nabla_{\xi}\xi$ .

PROOF. Differentiating the condition (0.4) covariantly in the direction of
$X$ , we get

$g((\nabla_{x}A)\phi 1^{r}+A(\nabla_{X}\phi)Y+A\phi\nabla_{x}Y-(\nabla_{X}\phi)AY-\phi(\nabla_{x}A)1^{\nearrow}-\phi A\nabla_{x}Y, Z)$

$+g((A\phi-\phi A)1^{\nearrow}, \nabla_{X}Z)=0$

for any vector fields $X,$ $Y$ and $Z$ orthogonal to $\xi$ . By taking account of (1.1)

and by using the fact that $g(\nabla_{X}Y, \xi)=-g(Y, \phi AX)$ , the above equation is

reformed as

$g((\nabla_{X}A)Y, \phi Z)+g((\nabla_{X}A)Z, \phi J^{f})=\eta(AV)g(X, AZ)$

(2.2)
$+\eta(AZ)g(1^{\nearrow}, AX)+g(X, A\phi Y)g(Z, V)+g(X, A\phi Z)g(Y, V)$ .

Now let us denote by $f(X, Y, Z)$ the following equation

$f(X, Y, Z)=g((\nabla_{X}A)Y, \phi Z)+g((\nabla_{X}A)Z, \phi Y)$

$-\eta(A1^{\nearrow})g(X, AZ)-\eta(AZ)g(Y, AX)-g(X, A\phi Y)g(Z, V)$

$-g(X, A\phi Z)g(Y, V)$ .

Then by (2.2) we have $f(X, V, Z)=0$ . Thus $f(X, Y, Z)+f(1^{\prime}, Z, X)-f(Z,$ $X$ ,

$Y)=0$ implies

$2g((\nabla_{x}A)1^{\prime^{-}}, \phi Z)=2\eta(AZ)g(AX, Y)+g(X, V)\{g(Y, A\phi Z)-g(Z, A\phi Y)\}$

$+g(Y, V)\{g(X, A\phi Z)-g(Z, A\phi X)\}$ ,
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from which together with the condition (0.4) we get

$g((\nabla_{X}A)Y, \phi Z)=\eta(AZ)g(AX, Y)+g(l^{\gamma}, V)g(X, A\phi Z)+g(X, V)g(Y, A\phi Z)$ .

From this, replacing $Z$ by $\phi Z$ , we can get the above equation (2.1).

REMARK 2.1. Let us denote by $S^{2n+1}$ (resp. $H_{1}^{2n+1}$) a $(2n+1)$-dimensional
sphere (resp. anti-De Sitter space). Given a real hypersurface of $M_{n}(c)$ , one
can construct a (resp. Lorentzian) hypersurface $lV$ of $S^{2n+1}(resp. H_{1}^{2n+1})$ which
is a principal $S^{1}$-bundle over $M$ with (resp. time-like) totally geodesic fibers and
the projection $\pi;N\rightarrow M$ in such a way that the diagram

$N^{\underline{i}}S^{2n+1}\downarrow\pi_{i^{\prime}\psi}|_{\pi}(H_{1}^{2n+1})$

$M-P_{n}C(H_{n}C)$

is commutative ( $i,$ $i$
’ being the isometric immersions). Then it is seen (cf Yano

and Kon [11]) that the second fundamental tensor $A^{\prime}$ of $N$ is parallel if and
only if the second fundamental tensor $A$ of $M$ satisfies the conditions (0.1) or
(0.2).

Now, a ruled real hypersurface $M$ of $M_{n}(c),$ $c\neq 0$ , can be defined as follows:
Let $\gamma:I\rightarrow M_{n}(c)$ be any regular curve. Then for any $t(\in I)$ let $M_{n-1}^{(i)}(c)$ be a
totally geodesic complex hypersurface of $M_{n}(c)$ which is orthogonal to a holo-
morphic plane spanned by $\gamma^{\prime}(t)$ and $I7^{\prime}(t)$ . Set $M=\{x\in M_{n-1}^{(l)}(c):t\in I\}$ . Then,

by the construction, $M$ becomes a real hypersurface of $M_{n}(c)$ , which is called
a ruled real hypersurface. This means that there are many ruled real hyper-

surfaces of $M_{n}(c)$ . Let $T_{0}$ be a distribution defined by $T_{0}(x)=\{u\in T_{x}M:u\perp\xi(x)\}$

in the tangent space $T_{x}M$ of $M$ at any point $x$ in $M$. Then it is seen in [4]

that the shape operator $A$ of a ruled real hypersurface $M$ of $P_{n}C$ satisfies

$A\xi=\alpha\xi+\beta U(\beta\neq 0)$ , $ AU=\beta\xi$ , $AX=0$

for any vector $X$ orthogonal to $\xi$ and $U$, where $U$ is a unit vector orthogonal

to $\xi$ , and $\alpha$ and $\beta$ are smooth functions on $M$ . The second fundamental form

is said to be $\eta$-parallel if the shape operator $A$ satisfies $g((\nabla_{X}A)Y, Z)=0$ for

any vector fields $X,$ $Y$ and $Z$ . It is seen in [5] that the second fundamental
form is $\eta$ -parallel by (1.1) and (2.3). Thus the properties (0.1) and (0.2) hold

along the distribution $T_{0}$ for a ruled real hypersurface of $P_{n}C$ . Namely, it

satisfies the conditions (0.3) and (0.4). By the similar argument to that in $P_{n}C$

we can assert that a ruled real hypersurface of $H_{n}C$ satisfies the conditions

(0.3) and (0.4).
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PROOF OF THEOREM C. Suppose that the shape operator $A$ satisfies the

conditions (0.3) and (0.4). Let us also suppose that the structure vector field $\xi$

satisfies

(2.4) $A\xi=\alpha\xi+\beta U$ ,

where $U$ is a unit vector in the distribution $T_{0}$ . Now let us denote $V$ the

vector field $\nabla_{\xi}\xi$ . Then, from this definition together with (1.1) it follows

(2.5) $V=\beta\phi U$ .

Lemma 2.1 means that

(2.6) $Sg(AX, Y)g(Z, V)=0$

for any vector fields $X,$ $Y$ and $Z$ in $T_{0}$ , because the second fundamental form

is $\eta$ -parallel. When we put $Z=V$ in (2.6), it reduces to

(2.7) $g(AX, Y)g(V, V)+g(AY, V)g(X, V)+g(AV, X)g(Y, V)=0$ .

Furthermore, we put $Y=V$ in (2.7) and then $X=V$ in the obtained equation.

Then the following equations

(2.8) $2g(AX, V)g(V, V)+g(AV, V)g(X, V)=0$ ,

(2.9) $g(AV, V)g(V, V)=0$

are obtained.

Let $M_{0}$ be a set consisting of points $x$ in $M$ such that $V(x)\neq 0$ . Since we

assume that $\xi$ is not principal, $M_{0}$ is not empty. On the subset $M_{0}$ , from (2.8)

and (2.9) we see $g(AV, V)=0$ and $g(AX, V)=0$ for any vector field on $M_{0}$

orthogonal to $\xi$ , which implies $ AV=g(AV, \xi)\xi$ . Substituting (2.4) into the

above equation, we see $AV=0$ . Accordingly, (2.7) means that

$g(AX, I^{7})=0$

for any vector fields $X$ and $Y$ belonging to $T_{0}$ . So, it follows from this and

(2.4) we get $ AX=g(AX, \xi)\xi=\beta g(X, U)\xi$ for any $X\in T_{0}$ , which means that

(2.10) $AX=0$ , $ AU=\beta\xi$

for any $X\in T_{0}$ orthogonal to $U$ . Consequently we obtain

$g(A\phi X, Y)=0$ , $g(\phi AX, 1^{\nearrow})=0$

for any $X$ and $Y\in T_{0}$ . Accordingly we get $g(\nabla_{x}Y, \xi)=-g(\phi AX, Y)=0$ by

(1.1), which means that $\nabla_{x}Y=\nabla_{Y}X$ is also contained in $T_{0}$ , namely the distribu-

tion $T_{0}$ is integrable on the open set $M_{0}$ .
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Now we want to show that the open set $M_{0}$ coincides with the whole $M$ .

Thus let us suppose that the interior of $M-M_{0}$ is not empty. On the subset

the vector field $V$ vanishes identically and therefore $\xi$ is principal. Thus we

have

(2.11) $(A\phi-\phi A)\xi=0$ .

This fact implies that $T_{0}$ is invariant by $A\phi-\phi A$ . From this together with

the condition (0.4) it follows $(A\phi-\phi A)X=0$ for any vector field $X$ in $T_{0}$ . From

this and (2.11) we have

(2.12) $A\phi-\phi A=0$

on the interior of $M-M_{0}$ . In the sequel, since the structure vector field $\xi$ is

principal with corresponding principal curvature $\alpha$ , it is seen in [3] and [71

that $\alpha$ is constant on the interior of $M-M_{0}$ , because this is a local property.

So it satisfies

(2.13) $A\phi A=\frac{c}{2}\phi+\alpha(A\phi+\phi A)$ .

Thus, if $X$ is a principal vector field with corresponding principal curvature $\lambda$ ,

then we have

(2.14) $(2\lambda-\alpha)A\phi X=(\frac{c}{2}+\alpha\lambda)\phi X$ .

From (2.12) and (2.14) we get

$2\lambda^{2}-2\alpha\lambda-\frac{c}{2}=0$

and hence, from which it follows that all principal curvatures are constant on
the interior of $M-M_{0}$ .

From the assumption we know that the set $M_{0}$ is not empty. Thus by

means of the continuity of principal curvatures, the interior of $M-M_{0}$ must be

empty and therefore, by the continuity of principal curvatures again we see
that $M_{0}$ concides with the whole $M$ . Accordingly the distribution $T_{0}$ is inte-

grable on $M$. Moreover the integral manifold of $T_{0}$ is totally geodesic in $M_{n}(c)$ ,

because of $\overline{g}(D_{X}Y, \xi)=g(\nabla_{X}Y, \xi)=0$ and $\overline{g}(D_{x}C, Y)=-g(AX, Y)=0$ for any

vector fields $X$ and $Y$ in $T_{0}$ by (1.1) and (2.10), where $D$ denotes the Rieman-

nian connection of $M_{n}(c)$ . Since $T_{0}$ is J-invariant, its integral manifold is a
complex manifold and therefore it is a complex space form $M_{n-1}(c)$ . Thus $M$

is locally congruent to a ruled real hypersurface.

Conversely, suppose that $M$ is a ruled real hypersurface of $M_{n}(c)$ . Then
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it satisfies (2.4) and (2.10). So we have

$g(A\phi X, Y)=0$ , $g(\phi AX, Y)=0$

for any vector fields $X$ and $Y$ in $T_{0}$ . Also it is seen by [5] that the second

fundamental form of $M$ in $P_{n}C$ is $\eta$ -parallel. In the complex hyperbolic space
$H_{n}C$ the property is derived from the same discussion. Thus they are equi-

valent to the conditions (0.3) and (0.4).

REMARK 2.2. It is proved by Kimura and Maeda [5] that for a real hy-

persurface $M$ of $P_{n}C$ if the distribution $T_{0}$ is integrable and if $A$ is $\eta$ -parallel,

then $M$ is locally congruent to a ruled real hypersurface.

\S 3. An example of minimal ruled real hypersurfaces of $H_{n}C$ .
This section is concerned with an example of minimal ruled real hyper-

surfaces of $H_{n}C$ . First of all, we recall about the fibration

$\pi;H_{1}^{2n+1}-H_{n}C$ .

In a complex Euclidean space $C^{n+1}$ with the standard basis, let $F$ be a
Hermitian form defined by

$F(z, w)=-z_{0}\overline{w}_{0}+\Sigma_{k1}^{n_{=}}z_{k}\overline{w}_{k}$ ,

where $z=(z_{0}, \cdots , z_{n})$ and $w=(w_{0}, \cdots w_{n})$ are in $C^{n+1}$ . Then $(C^{n+1}, F)$ is a
complex Minkowski space, which is simply denoted by $C_{1}^{n+1}$ . The scalar product

given by $\Re F(z, w)$ is an indefinite metric of index 2 in $C_{1}^{n+1}$ , where $\Re z$ denotes

the real part of the complex number $z$ . Let $H_{1}^{2n+1}$ be a real Lorentzian hyper-

surface of $C_{1}^{n+1}$ defined by

$H_{1}^{2n+1}=\{z\in C_{1}^{n+1} : F(z, z)=-1\}$ ,

and let $G$ be a Lorentzian metric of $H_{1}^{2n+1}$ induced from the Lorentzian metric
$\Re F$. Then $(H_{1}^{2n+1}, G)$ is the Lorentzian manifold of constant sectional curvature

$-1$ , which is called an anti-De Sitter space. For the anti-De Sitter space $H_{I}^{2n+1}$

the tangent space $T_{z}(H_{1}^{2n+1})$ at each point $z$ can be identified (through the parallel

displacement in $C_{1}^{n+1}$ ) with $\{w\in C_{1}^{n+1}|\Re F(z, w)=0\}$ . Let us denote by $T_{z}^{\prime}$ the

orthogonal complement of the vector $iz$ in $T{}_{z}H_{1}^{2n+1}$ , that is,

$T_{z}^{\prime}=\{w\in C_{1}^{n+1} : \Re F(z, w)=0, \Re F(iz, w)=0\}$ .

Let $S^{1}$ be the multiplicative group of complex numbers of absolute value 1.

Then $H_{1}^{2n+1}$ can be regarded as a principal fiber bundle over a complex hyper-

bolic space $H_{n}C$ with the group $S^{1}$ and the projection $\pi$ . Furthermore, there
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is a connection such that $T_{z}^{\prime}$ is the horizontal subspace at $z$ which is invariant

under the $S^{1}$-action. The natural projection $\pi$ of $H_{1}^{2n+1}$ onto $H_{n}C$ induces a
linear isomorphism of $T_{z}^{\prime}$ onto $T_{p}(H_{n}C)$ , where $p=\pi(z)$ . The metric $g$ of

constant holomorphic sectional curvature $-4$ is given by $g_{p}(X, Y)=\Re F_{z}(X^{*}, Y^{*})$

for tangent vectors $X$ and }’ in $T_{p}(H_{n}C)$ , where $z$ is any point in the fiber
$\pi^{-1}(p)$ and, $x*$ and $Y^{*}$ are vectors in $T_{z}^{\prime}$ such that $d\pi(X^{*})=X$ and $d\pi(Y^{*})=Y$ ,

where $ d\pi$ denotes the differential of the projection $\pi$ .
On the other hand, a complex structure $j:w\rightarrow iw$ in the subspace $T_{z}^{\prime}$ is

compatible with the action of $S^{1}$ and induces an almost complex structure $J$

on $H_{n}C$ such that $ d\pi\circ\overline{J}=J\circ d\pi$ . Thus $H_{n}C$ is a complex hyperbolic space of

constant holomorphic sectional curvature $-4$ and it is seen that the principal

S’-bundle $H_{1}^{2n+1}$ over $H_{n}C$ with the projection $\pi$ is a semi-Riemannian submer-

sion with the fundamental tensor $J$ and totally geodesic time-like fibers.

Now, let us denote by $N$ a real Lorentzian hypersurface of $H_{1}^{2n+1}$ given by

$N=\{z=(re^{t\psi}\cos h\theta, re^{i\psi}\sin h\theta, (r^{2}-1)^{1/2}z_{2}, \cdots, (r^{2}-1)^{1/2}z_{n})$

$\in C_{1}^{n+1}=C_{1}^{2}\times C^{n-1}$ : $\Sigma_{j=2}^{n}|z_{j}|^{?}=1,$ $r>1,0\leqq\phi<2\pi,$ $\theta\in R$}.

Then $(r, \phi, \theta, z_{2}, \cdots, z_{n})$ can be regarded as the coordinate system for $N$ and

tangent vectors at $z$ for coordinates curves for coordinates $r,$ $\phi$ and $\theta$ are
given by

$(\frac{\partial}{\partial r})_{z}=(e^{t\phi}\cos h\theta, e^{i\phi}\sin h\theta, r(r^{2}-1)^{-1/2}z_{2}, \cdots, r(r^{2}-1)^{-I/2}z_{n})$ ,

(3.1) $(\frac{\partial}{\partial\phi})_{z}=(ire^{i\phi}\cos h\theta, ire^{i\phi}\sin h\theta, 0, \cdots, 0)$ ,

$(\frac{\partial}{\partial\theta})_{z}=(re^{i\phi}\sin h\theta, re^{i\emptyset}\cos h\theta, 0, \cdots, 0)$ ,

where the vector $(\partial/\partial\phi)_{z}$ is time-like. We put at $z$ .

(3.2) $u=(O, 0, i(r^{2}-1)^{1/2}z_{2}, \cdots, i(r^{2}-1)^{1/2}z_{n})$ .

Let $T_{z}^{J/}$ be the subspace consisting of vectors $w=(O, 0, w_{2}, \cdots, w_{n})$ orthogonal

to vectors $z$ and $u$ through the parallel transformation in $C_{1}^{n+1}$ . These vectors

span the tangent space $T_{z}N$ at the point $z$ . A unit space-like normal vector
$\overline{C}_{z}$ at $z$ is given by

$C.=(ie^{i\phi}\sin h\theta, ie^{i\phi}\cos h\theta, 0, \cdots , 0)$ .

Let V and $\overline{D}$ be the Levi-Civita connection of $H_{1}^{2n+1}$ and $C_{1}^{n+1}$ , respectively.

Then, by (3.1) and the definition of C. and by the choice of vectors $u$ and $w$ ,

it is easily seen that we get
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$5_{(v^{\neg}/\partial r)z}\overline{C}=\partial_{(\partial/\partial r)z}=0$ ,

$\overline{\nabla}_{(\partial/\partial\phi)}{}_{z}\overline{C}=\overline{D}_{(\partial/\partial\phi)}{}_{x}\overline{C}=(-e^{t\phi}\sin h\theta, -e^{i\phi}\cos h\theta, \cdots, 0)$

$=-\frac{1}{r}(\frac{\hat{o}}{\partial\theta})_{z}$ ,

(3.3) $5_{(\partial/\partial\theta)}{}_{z}\overline{C}=\overline{D}_{(\partial/\partial\theta)}{}_{z}C=(ie^{i\psi}\cos h\theta, ie^{i\phi}\sin h\theta, 0, \cdots , 0)$

$=\frac{1}{r}(\frac{\partial}{\partial\phi})_{z}$

$V_{u}\overline{C}=\overline{D}_{u}\overline{C}=0$ ,

$\overline{\nabla}_{w}\overline{C}=\overline{D}_{w}\overline{C}=0$ ,

for any vector $w$ in $T_{z}^{\prime\prime}$ . We denote by $\overline{A}$ the shape operator of $N$ in $H_{1}^{2n+1}$ .
Then from (3.3), the Weingarten equation implies that

(3.4)

$\overline{A}(\frac{\partial}{\hat{o}r})_{z}=0$ , $\overline{A}(\frac{O\tau}{\partial\phi})_{z}=\frac{1}{r}\left(\begin{array}{l}\hat{o}\\\overline{oq}\theta\end{array}\right)$ , $\overline{A}(_{\partial}\frac{\partial}{\theta})_{z}=-\frac{1}{r}(\frac{\partial}{o\hat\phi})_{z}$ ,

$\overline{A}u=0$ , $\overline{A}w=0$ .

for any vector $w$ in $T_{z}^{\prime\prime}$ .
On the other hand, for the vertical vector $iz$ with respect to the submersion

$\pi$ at $z$ we have $iz=(\partial/\partial\phi)_{z}+u$ . We put

$\overline{U}_{z}=(r^{2}-1)^{1/2}r^{-1}(\frac{\partial}{\partial\phi})_{z}+r(r^{\underline{2}}-1)^{-(1/1)}u$ .

Then U. is a unit space-like horizontal vector in T.V and again by (3.1) and

(3.2) we get

$j\overline{U}_{z}=i\overline{U}_{z}=-(r^{2}-1)^{1/2}(\frac{\partial}{\partial r})_{z}$

Moreover, if we put $\overline{\xi}_{z}=-i\overline{C}_{z}$ , then we get $\overline{\xi}_{z}=(1/r)(\partial/\partial\theta)_{z}$ .

Given for the Lorentzian hypersurface $ 1\backslash \dagger$ of a $(2n+1)$-dimensional anti-De

Sitter space $H_{1}^{2n+1}$ in $C_{1}^{n+1}$ , a real hypersurface $M$ of a complex hyperbolic

space $H_{n}C$ is given as follows: $N$ is a principal $S^{1}$ -bundle over $M$ with time-

like totally geodesic fibers and the projection $\pi;N\rightarrow M$ . Since $N$ is $S^{1}$-invariant,
$C_{\pi(z)}=d\pi(\overline{C}_{z})$ provides a unit vector normal to $M$ . The tangent space $T_{x}M$ of
$M$ at $x=\pi(z)$ is spanned by the vectors $\xi_{x}=d\pi(\xi_{z}),$ $U_{x}=d\pi(\overline{U}_{z}),$ $\phi U_{x}=JU_{x}=$

$d\pi(J\overline{U}_{z})$ and $X_{x}=d\pi(\overline{X}_{z})$ where any vector $\overline{X}_{z}\in T_{z}^{\prime\prime}$ . In particular, $\xi$ is the

structure vector field on $M$ . It is seen by Montiel and Romero [8] that the

shape operator $A$ of $M$ satisfies $AX=d\pi(\overline{A}\overline{X})$ , where $\overline{X}$ is the horizontal lift

of the vector field $X$ on $M$ .
Now, because of $u=-(\partial/\partial\phi)_{z}+iz$ , we get
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$\overline{U}_{z}=-r^{-1}(r^{2}-1)^{-1/2}(\frac{\partial}{\partial\phi})_{z}+r(r^{2}-1)^{-1/2}iz$

by means of the definition of $u$ and $\overline{U}_{z}$ . Accordingly, by (3.4) and the above

equation we have

$A\xi_{x}=d\pi(\overline{A}(\frac{1}{r}\frac{\partial}{\partial\theta})_{z})=-\frac{1}{r^{2}}d\pi((\frac{\partial}{\partial\phi})_{z})=\frac{1}{r^{2}}d\pi(r(r^{2}-1)^{1/2}\overline{U}_{z})$

and therefore we get

(3.5) $A\xi_{x}=(r^{2}-1)^{1/2}r^{-1}U_{x}$ ,

because $iz$ is vertical. By the similar calculation to that developed as above

we have also the following relations:

$\overline{A}\overline{U}_{z}=\overline{A}((r^{2}-1)^{1/2}r^{-1}(\frac{\partial}{\partial\phi})_{z}+r(r^{2}-1)^{-1/2}u)$

$=(r^{2}-1)^{1/2}r^{-2}(\frac{\partial}{\partial\theta})_{z}=(r^{2}-1)^{1/2}r^{-1}\overline{\xi}_{z}$ ,
(3.6)

$\overline{A}(\overline{J}\overline{U}_{z})=\overline{A}(i\overline{U}_{z})=-(r^{2}-1)^{1/2}\overline{A}(\frac{\partial}{\partial r})_{z}=0$ ,

$\overline{A}\overline{X}_{z}=0$

for any vector $\overline{X}_{z}$ at $z$ orthogonal to $\overline{\xi}_{z}$ , U. and $j\overline{U}_{z}$ . Thus, it follows from

(3.5) and (3.6) that

(3.7) $A\xi=(r^{2}-1)^{1/2}r^{-1}U$ , $ AU=(r^{2}-1)^{1/2}r^{-1}\xi$ , $AX=0$

for any vector field $X$ orthogonal to the structure vector field $\xi$ and $U$ . By the

similar discussion to that of the proof of the theorem the equations (3.7) mean

that the real hypersurface $M$ is minimal and the distribution $T_{0}$ is defined by

$\{X(x)\in T_{x}M:X\perp\xi\}$ is integrable. Moreover the integral manifold is totally

geodesic in $H_{n}C$ . Since $T_{0}$ is J-invariant, its integral manifold is a complex

hypersurface $H_{n-1}C$ and $M$ is the ruled real hypersurface. However it is not

complete. In fact, using (1.3) and (3.7), we have $(\nabla_{\xi}A)\phi U-(\nabla_{\psi U}A)\xi=U$ and

$(\nabla_{\xi}A)\phi U-(\nabla_{\phi U}A)\xi=\beta A\xi-A\phi\nabla_{\xi}U-(\phi U\beta)U-\beta\nabla_{\phi U}U$ ,

where $\beta=(r^{2}-1)^{1/2}/r$ . Hence we have $-U+\beta A\xi-A\phi\nabla_{\xi}U-(\phi U\beta)U-\beta\nabla_{\phi U}U=0$ .

This equation yields that $\nabla_{\phi U}U=0$ , because it is orthogonal to $\xi$ and $U$ . Thus

we get

$\phi U\beta=\beta^{2}-1$ ,

which tells us that $M$ is not complete.
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