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ABSTRACT
Computer networks require increasingly complex packet pro-
cessing in the data path to adapt to new functionality re-
quirements. To meet performance demands, packet process-
ing systems on routers employ multiple processor cores. We
investigate the design of an efficient run-time management
system that handles the allocation of processing tasks to
processor cores. Using run-time profiling information about
processing requirements and traffic characteristics, the sys-
tem is able to adapt to dynamic changes in the workload and
balance the utilization of all processing resources to maxi-
mize throughput. We present a prototype implementation
of our system that is based on the Click modular router.
Our results show that our prototype system can adapt to
changing workloads and process computationally demanding
packets at 1.32 times higher data rates than SMP Click.

General Terms
Design, Performance, Algorithms

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Inter-
networking—Routers; C.1.4 [Processor Architectures]:
Parallel Architectures

1. INTRODUCTION
The complexity of operations performed in the data path

of today’s Internet has expanded significantly beyond the
simple store-and-forward concepts proposed in the original
architecture. Packet processing steps in IP routers are nu-
merous and include packet classification, content inspection,
traffic shaping, and accounting. It can be expected that the
trend towards more functionality and complexity in the data
path continues in order to accommodate demands for more
security features, operational controls, and new data path
services [6]. A similar need for complex data path function-
ality can be observed in the proposed architectures for the
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next-generation Internet [7]: Virtualized router platforms
need to perform packet processing operations for several par-
allel networks with different data path functionality.

This need for flexible packet processing systems has led
to development of router architectures with programmable
packet processors that handle packets in the data path.
These systems employ highly parallel, programmable packet
processors ranging from embedded multi-core systems-on-a-
chip (i.e., network processors) to programmable logic devices
with high-performance I/O capabilities. A key challenge in
the operation of parallel packet processing system is how to
allocate a suitable workload to each processing engine. The
difficulty of this process lies in several inherent properties
of packet processing workloads. First, processing demands
for different packet processing steps vary with changes in
network traffic (e.g., IPSec processing varies with amount
of VPN traffic). This variability requires packet processing
systems to be flexible in terms of how many processing re-
sources are allocated to a particular type of packet process-
ing step. Second, embedded processing engines are tightly
coupled to each other. If one engine is overloaded, it may
present a bottleneck in the stream of packets traversing the
packet processing system and thus cause other processing
engines to perform poorly. Therefore, it is important that
multi-core packet processing systems are carefully managed
during runtime in order to translate their raw processing
power into high packet throughput.

We address this question of how to manage multi-core
packet processing systems in this paper. Starting from a
Click representation of the router’s data path operations,
we use runtime profiling information to determine the pro-
cessing requirement of each router module. Using a novel ap-
proach of task duplication according to processing demands,
we can balance the amount of work each module needs to
perform. This balance allows us to use a straightforward task
mapping algorithm to assign processing tasks to processing
resources while achieving global workload balance. As pro-
filing information changes, the allocations can be updated
during runtime. The specific contributions of our work are:

• Extension of the Click modular router to support run-
time profiling and task duplication on multi-core plat-
forms.

• Development of a novel task duplication algorithm and
a task mapping algorithm that balances the workload
across the system.

• Evaluation of a prototype implementation of our sys-
tem and a comparison to SMP Click.
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Our results show that our runtime system can achieve 1.32×
higher throughput for computationally demanding traffic
than SMP Click, which is the current state-of-the-art adap-
tive packet processing system on general-purpose multi-core
processors. It is important to note that our results are gen-
erally applicable to any type of multi-core packet processing
system ranging from multi-core general-purpose processors
to network processors to programmable logic devices.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents an overview
of the system architecture and how packet processing work-
loads are represented. The task duplication and task map-
ping algorithms, which are the central components of the
run-time management system, are presented in Section 4.
Section 5 presents the evaluation of our prototype system,
and Section 6 summarizes and concludes this paper.

2. RELATED WORK
Flexibility in the data path of networks has been explored

in many different ways, ranging from extensible operating
system kernels (e.g., x-Kernel by Hutchinson and Peterson
[12]) to routers with selectable features (e.g., router plugins
by Decasper et al. [5]) to active networks with programmable
and customizable processing capabilities (e.g., capsules by
Tennenhouse and Wetherall [20]) to routers fully customiz-
able protocol stacks (e.g., router virtualization by Ander-
son et al. [1]). Our work assumes a software-programmable
router platform, but could be extended to other systems
with programmable data paths.

General-purpose programmable packet processing systems
have been developed in form of high-performance, general-
purpose workstation processors (e.g., Sun’s Niagara2 plat-
form [10]), network processors (e.g., Intel’s IXP platform
[19]), and programmable logic devices (e.g., P4 [11] and
NetFPGA [15]). In the context of next-generation Inter-
net architecture proposals [7], various router designs have
employed specialized hardware to provide programmable
packet processing functionality at high data rates (e.g.,
GENI backbone platforms [21] and high-performance Plan-
etLab nodes [22]). All these systems are characterized by
featuring multiple parallel processing engines.

Most existing software development toolkits for parallel
packet processors allocate processing tasks to processor cores
automatically, but these allocations are static [9, 17]. Dy-
namic allocation mechanism have been proposed by Kokku
et al. [14], where complete processors are turned on and off
on demand, and by Wolf et al. [23], where basic block al-
located individually to processing cores. Neither of those
systems uses a workload representation that is easily us-
able when developing packet processing systems (too coarse-
grained, monolithic functions in [14] and too fine-grained in-
struction graph in [23]). A more suitable representation of
data path processing is the Click modular router abstrac-
tion [13], which has also been expanded to be applicable
for multiprocessor systems (SMP Click by Chen and Mor-
ris [3]) and network processors (NP-Click by Shah et al. [18]).
Based on the Click, Mallik and Memik have recently pro-
posed to allocate processing tasks based on the statistics of
their processing characteristics [16]. Their system allocates
tasks statically to processors and uses an empirical approach
to duplicating tasks to fill all processor cores. In our sys-
tem, we propose an approach to continually profile the Click
router during run-time in order to dynamically reallocate
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Figure 1: Architecture of Runtime Management
System for Multi-Core Packet Processing Systems.

modules to processors. Also, we use a duplication approach
that balances the workload more evenly as we allow multiple
threads per processor.

3. SYSTEM ARCHITECTURE
The main task of a runtime management system for packet

processing hardware is to ensure that all processing resources
are set up to process the packets that traverse the data path
of the router. Changes in traffic characteristics require the
system to adapt the configuration of the packet processing
system at runtime. To implement such functionality, our
runtime management system consists of a number of com-
ponents that interact as illustrated in Figure 1. The main
components are the offline programming and configuration
step, the runtime management subsystem and the packet
processing hardware. In this section, we describe each com-
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ponent in more detail to highlight their operation and inter-
actions with other system components.

Is is important to note that our system focuses on the run-
time management of processing resource. While it is also im-
portant to consider program data structures and their place-
ment in memory, we do not consider this problem within the
scope of our paper.

3.1 Programming and Configuration
The user (i.e., the administrator of the router system) de-

termines what functionality should be provided in the data
path of the system. This “workload”needs to be represented
in a suitable way such that it is (1) manageable for the user,
(2) implementable on the underlying hardware, and (3) us-
able for the run-time system. Since no single representation
can achieve all three goals, we use different workload models
and automatically transition between them (as illustrated in
Figure 1).

The following three representations of workload move pro-
gressively from a user-friendly representation to a workload
model that can be efficiently implemented:

• Data Path Specification: From a user’s point of view,
packet processing systems of routers implement sev-
eral network, transport, or application layer functions.
These packet processing“applications”range from pro-
tocol processing steps (e.g., IP forwarding, firewalling,
VPN termination) to more complex network services
[2, 8]. The data path specification determines which
sequences of applications can be traversed by packets.

• Graph Representation: To provide more details about
the operation of the data path, the graph represen-
tation uses nodes to represent processing tasks and
directed edges to denote communication paths (i.e.,
dependencies). Each task denotes a schedulable unit
that runs on the hardware platform and performs a set
of operations on packets it receives.

• Implementation with Click Elements: The Click mod-
ular router is a software system that allows the con-
struction of custom data path functions from basic
function blocks called “elements.” Each element be-
longs to a corresponding C++ class, which implements
a specific functionality in the packet processing proce-
dure. Communication between Click elements is per-
formed via connections and queues.

When moving from the data path specification to the
graph representation, each application needs to be parti-
tioned into tasks. Application partitioning has been studied
extensively in related work. For our system, it is impor-
tant to note that practically any partitioning into tasks is
suitable (e.g., simply selecting Click elements to represent
tasks). In particular, the amount of processing associated
with tasks does not need to be evenly distributed. As we
show below, the run-time system can automatically adapt
and compensate. To transition from the task representation
to the Click representation, we can use a one-to-one map-
ping between tasks and Click elements. Task dependencies
are represented by communication links and queues in Click.

Given this ability to move from a user-level representation
of the router data path operations to a graph representation
of the workload, we can now turn towards the question of
how to profile, duplicate, and allocate tasks.

 

Figure 2: Graph Representation with Profiling In-
formation.

3.2 Runtime Profiling
The processing demands on the packet processing system

are affected by two factors: first, by computational charac-
teristics of all tasks in the system; second, by network traffic
that exercises the processing system. In order to derive an
optimal allocation of tasks to processing resources at run-
time, both factors need to be quantified and considered in
the mapping process.

Many systems have used offline profiling information to
obtain processing characteristics of tasks. However, these
offline solutions cannot consider variation in application se-
quences that are due to changes in network traffic that oc-
cur during runtime. Also, processing requirements may be
data-dependent and thus change depending on packet data
(which cannot be predicted). Therefore, we use a runtime
profiling approach, where profiling information is collected
while the system is operational.

We collect the following information:

• Task Service Time si: For each task ti, we determine
the service time si (measured, for example, in number
of processing cycles per packet). Since this value may
be different for each packet, we consider si as a sample
from a random variable Si. We assume the distribution
of Si matches the empirical observations of si.

• Task Utilization u(ti): Based on usage counters, we
can derive the utilization of a particular task ti, which
is denoted by u(ti).

Using this information, we can annotate the graph repre-
sentation of the workload with execution time distributions
Si and utilization u(ti) for each task. This is illustrated
in Figure 2. Since task utilization changes over time, we
denote it as dependent on time parameter τ : uτ (ti). This
time-dependence is further considered in Section 3.4, where
dynamic adaptation is discussed. We assume that the ser-
vice time distribution is not time-dependent (although that
could be considered in a straightforward extension of this
work).

3.3 Task Duplication and Task Mapping
Once profiling information is available, the runtime sys-

tem can determine which tasks are particularly processing
intensive. These tasks present an imbalance in the system
and make it difficult to derive a task mapping that leads to
high system utilization.

Since we cannot change the service time for a task (unless
we ask the user/programmer to change the implementation,
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Figure 3: Task Duplication Example with di−1=1,
di=3, and di+1=2.

which would be difficult), we use the idea of task duplica-
tion to adapt the processing demand of a task by changing
its utilization. This task duplication creates an additional
instance of a task that is fully connected to the same prede-
cessor and successor tasks as the original task. We assume
that the predecessor distributes packets uniformly among
all task instances. This process is illustrated in Figure 3.
We use parameter di to indicate the number of duplicated
instances that exist for task ti. Section 4.2 presents the
algorithm that determines the optimal value of di.

With an extended graph representation that includes du-
plicated instances of schedulable Click elements, the runtime
system needs to map each task to a hardware packet pro-
cessing element. One of the main concerns in this context is
where tasks that are dependent on each other are mapped
relative to each other. If a task passes packets to another
task and both tasks are placed on the same processor, then
state can efficiently be transferred through local registers or
cache. If the tasks reside on different processors, the pro-
cessor interconnect needs to be used for the transfer. An
algorithm to find a suitable mapping is described in more
detail in Section 4.3.

3.4 Dynamic Adaptation
After a configuration has been installed in the data path,

the runtime system continues to operate while adapting dy-
namically. Dynamic adaptation is crucial for packet process-
ing systems. The processing workload required by network
traffic cannot be known in advance since end-systems may
send packets to any arbitrary destination using any proto-
col. Thus, a packet processing system needs to either (1)
over-provision for any possible traffic scenario or (2) dynam-
ically adapt. With an increasing diversity of services that
are provided in packet processing systems, the first choice is
becoming less feasible. Thus, we need adapt the task dupli-
cation and task mapping results to changes in traffic.

Since the profiling component monitors the dynamic
trends in the processing workload, we can implement such
adaption easily. Changes in traffic are reflected in the uti-
lization parameters uτ (ti). Thus, duplication and mapping
can be updated based on this information. An important
question is how frequently to update this information and
how frequently to revise the task mapping. The utilization

information should be collected over a reasonably large num-
ber of packets to average out short packet bursts that are not
representative of the overall workload. The interval between
task mappings should depend on how much the workload
changes. In related work, different mechanisms have been
proposed in this context (e.g., mapping based on length of
inter-processor queues [14], mapping based on fixed intervals
optimized for workload [23]).

4. DUPLICATION AND MAPPING ALGO-
RITHMS

With an understanding of the overall system operation
as described in the previous section, we now turn to the
question of how the two key algorithms, task duplication
and task mapping, work. To formalize the description of
the algorithms, we start with a problem statement.

4.1 Problem Statement
Assume we are given the task graph of all subtasks in all

applications by T task nodes t1, . . . , tT and directed edges
ei,j that represent processing dependencies between tasks ti

and tj . For each task, ti, its utilization u(ti) and its service
time Si is given. Also assume that we represent a packet
processing system by N processors with M processing re-
sources on each (i.e., each processor can accommodate M
tasks and the entire system can accommodate N ·M tasks).
The goal of our work is to (1) determine the optimal number
of duplicates di for each task ti and (2) find a mapping m
that assigns each of the T tasks (and their duplicates) to
one of N processors: m : {t1, . . . , tT } → [1, N ]. This map-
ping needs to consider the constraint of resource limitations:
∀j, 1 ≤ j ≤ N : |{ti|m(ti) = j}| ≤M .

Processing resources are typically threads on a processor
core. Most high-performance packet processing systems sup-
port hardware multi-threading, which presents an inherent
limit on resources (i.e., M tasks per processor). In Click,
tasks are scheduled in software and thus not inherently lim-
ited. However, practical concerns (e.g., scheduler complex-
ity) also limit the maximum number of software tasks.

Tasks may be mapped to multiple processing resources.
If tasks are computationally demanding, a single processing
resource may not be sufficient and thus multiple processing
resources could be used (i.e., task duplication). Since there
are no inter-packet dependencies for most packet processing
applications, such parallelization is easily possible.

The quality of the mapping can be measured by a num-
ber of different metrics (e.g., system utilization, power con-
sumption, packet processing delay, etc.). In our work, we
aim to find a mapping that provides the most balanced pro-
cessor utilization (i.e., a mapping such that the difference
between the maximum and minimum processor utilization
across the system is minimized). The reasoning behind this
metric is that such a mapping can provide the highest over-
all throughput without overloading any particular processor
core. Clearly, it is impossible to perform this optimization
without more detailed knowledge of the processing demands
of each task and the paths that packets take through the
system. Thus runtime profiling information is essential.

4.2 Task Duplication
In order to fully utilize the available system resources and

thus support the highest possible data rate, we need to con-
sider the load that tasks place on the system’s processing
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resources. A task’s processing requires not only depend on
how computationally demanding the task is (i.e., expected
service time E[Si]), but also how frequently it is used (i.e.,
task utilization u(ti)). Thus, we define wi as the amount of
“work” that is imposed by task ti:

wi = u(ti) · E[Si]. (1)

Clearly, the amount of work for different tasks may vary
significantly. Note that this imbalance is not only due to dif-
ferences in task size when partitioning, but also due to dif-
ferences in utilization. The latter is dependent on dynamic
traffic requirement. Therefore the balance issue cannot be
addressed by using different workload representations that
partition tasks differently. Instead, it is necessary to dynam-
ically balance the work for each task.

4.2.1 Duplication Process
We can adapt the amount of work of a task by changing

its utilization through duplication. The higher the number
of duplications, di, the lower the utilization. We use param-
eter di to indicate the number of duplicated instances that
exist for task ti. These instances are named t1i , t

2
i , . . . , t

di
i .

Any incoming edge ej,i from tasks tj to ti is duplicated:
ej,i1 , ej,i2 , . . . , ej,idi . Similarly, outgoing edges are dupli-

cated. Due to the reduced edge utilization of u(ej,i)/di,
fewer packets are processed by each task instance and the
task utilization decreases to u(ti)/di. Correspondingly, the
amount of work required by each task instance is denoted as
w′

i:

w′
i =

u(ti)

di
· E[Si]. (2)

4.2.2 Duplication Choice
The main question remaining is: How to determine the

best set of di (i.e., which task to duplicate how many times)?
Our goal is to balance the amount of work that each task
performs in order to simplify the mapping process. Thus,
the ideal scenario would be one where w′

1 = w′
2 = · · · = w′

T .
However, such a scenario may require very large values for
di if w′

i do not share common factors. Such a solution would
conflict with the constraint that we cannot have more tasks
instances than processing resources (i.e.,

∑T
i di ≤ N ·M).

To make duplication choices while observing this process-
ing resource constraint, we use a greedy approach shown as
Algorithm 1. While processing resources are available, we
identify the task that has the highest w′

i value. Adding a
duplicated task instance to this task reduces the amount of

work done by each instance because u(ti)
di+1
·E[Si] < u(ti)

di
·E[Si]

for any di, u(ti), and E[Si]. We repeat this process until all
processing resources are used.

Algorithm 1 Task Duplication Algorithm.

1: while
∑T

i=1 di < N ·M do
2: j ← argmaxi w′

i

3: dj ← dj + 1
4: end while

Depending on the number of tasks in the workload and
the number of available processing resources, there may be
more tasks than resources (i.e., T > N ·M). This scenario
is not very likely since even low-end network processor sup-
port high levels of multi-threading and Click applications do

not require a large number of elements. However, if such a
case occurs, then either tasks need to be merged or multiple
tasks need to be combined onto a single processing resource.
While both approaches are possible, we do not consider them
further in this paper and assume T ≤ N ·M .

4.3 Task Mapping Algorithm
Given a workload graph with duplicated task instances, we

need to map each task to a packet processing resource. An
effective mapping algorithm needs to consider two important
aspects:

• Task Locality: Tasks ti and tj that are connected
through an edge eij (or through a short path of edges),
in practice often may share data structures. Thus,
placing these tasks on the same packet processing en-
gine may improve the efficiency of the system (e.g.,
caching is more effective, locks on data structures cause
less overhead, etc.). If there is a choice of tasks, the
task tj with higher utilization u(tj) is preferred as more
packets traverse between the current task ti and tj .
Thus, placing both tasks on the same processor in-
creases locality for more packets.

• Workload Balance: The resulting mapping should bal-
ance the total work allocated to all processors. Fortu-
nately, since all task instances require approximately
the same amount of work (due to the previous duplica-
tion step), the algorithm can derive a balanced solution
simply by allocating the same number of tasks to each
processor. It is not necessary to solve a complex pack-
ing problem to balance the amount of work on each
process.

In light of these goals, we use the utilization-based depth-
first (UDFS) algorithm shown as Algorithm 2 for task map-
ping. The algorithm greedily clusters tasks on a processor
until all processing resources are fully utilized. The order of
graph traversal determines the allocation of tasks to proces-
sor cores. High-utilization downstream tasks are traversed
first to increase task locality.

Algorithm 2 UDFS Task Mapping Algorithm.

1: function map next(i,p)
2: while ∃ ei,j with tj unmapped do
3: k ← argmaxj(u(tj))
4: if tasks allocated to(p) ≤M then
5: m(tk)← p
6: p← map next(k,p)
7: else
8: m(tk)← p + 1
9: p← map next(k,p + 1)

10: end if
11: end while
12: return p
13:
14: function map()
15: m(t1)← 1
16: map next(1,1)
17: return m

We initially map node t1, which is assumed to be the
ingress node for all traffic, to the first processor. Then, using
the map next function, we search among all outgoing edges
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(a) Systems I & II

 

(b) System III

 

(c) System IV

Figure 4: Example Task Graphs for Different Sys-
tems. Schedulable units are separated by queues
and denoted by dashed lines. (Unqueue elements are
omitted for simplicity.)

to find the highest utilized downstream task. If there are
still resources available on the same processor, the task that
is pointed to by this edge is mapped to the same processor.
Otherwise it is mapped to the next processor. This process
is repeated recursively to achieve depth-first mapping. Note
that the algorithm maps tasks and their duplicates, but to
simplify notation, only tasks are mentioned.

5. EVALUATION
To evaluate the effectiveness of the proposed runtime sys-

tem, we have implemented a prototype.

5.1 Prototype System
Before presenting results, we first describe the prototype

system, workloads, and testbed setup.

5.1.1 System Configurations
In order to evaluate the impact of runtime adaptation

and task duplication, we consider several variations of our
proposed router system and a traditional Click router. The
systems used in our evaluation are:

• System I (Original Click on Unicore Processor [13]):
This configuration uses unmodified Click source code.

• System II (Original Click with SMP Support [3]): This
configuration uses unmodified Click source code that
supports parallelism in form on multiprocessors. Both
System I and II use the queue allocations determined
by the original Click model. As illustrated in Fig-
ure 4(a), this leads to schedulable units that may con-
tain multiple Click elements. These units all need to
be allocated to the same processor.

• System III (Runtime Adaptation without Task Du-
plication): This configuration uses a version of Click
that we have modified to separate all elements by
queues. As illustrated in Figure 4(b), each element
can be allocated separately to a different processor.
This system does not use task duplication (to allow a
quantitative evaluation of the overhead from profiling

and additional queues). Runtime adaptation occurs in
form of changes to task mapping when task utilizations
change.

• System IV (Runtime Adaptation with Task Dupli-
cation): This configuration is based on System III,
but does use task duplication (as illustrated in Fig-
ure 4(c)). Runtime adaptation occurs in form of
changes to the number of duplicated tasks instances
and changes to the task mapping. This configuration
represents the entire functionality proposed in this pa-
per.

In most cases, we compare Systems IV and II. System
II (SMP Click [3]) represents the current state of the art
of packet processing with general multiprocessor support.
System IV represents the concept of task duplication and
the associated task mapping that we present in this paper.

Note that Systems III and IV require several small changes
to Click. Since inter-task queues do not get duplicated dur-
ing task duplication, it is possible that multiple element in-
stances pull packets from a single queue. Therefore it is
necessary to modify the MSQueue element to allow multi-
ple pulls. In addition, we implement a blocking mechanism
for MSQueue to prevent packets from being dropped when
a queue is full (which would lead to a performance collapse
under load). We also extended each Click kernel thread with
a profiling database, which records utilization of each task
as well as its average service time using the processors’ high-
resolution time stamp counter (TSC) register. A user space
program reads profiling information periodically from each
kernel thread, calculates duplication and mapping results for
the task graph, and generates a (potentially different) Click
router configuration that is then installed in the prototype
system.

5.1.2 Traffic and Processing Workload
The Click router configuration that we use during this

evaluation offers two choices on how packets are processed
via different applications in the data path: (1) Path I: con-
ventional IP forwarding and (2) Path II: VPN termination
with IP forwarding. Path II represents a processing-intense
data path since VPN termination requires IPSec process-
ing. Thus, the overall processing demand is roughly propor-
tional to the amount of traffic sent via Path II. To control
the amount of traffic that traverses each path, we use the
StrideSwitch element to direct packets in different propor-
tions along each path. Our Click configuration consists of a
total of 23 elements (i.e., tasks that can be duplicated and
scheduled).

To explore network traffic with varying processing require-
ments, we use the workload illustrated in Figure 5. Traffic
initially is mostly allocated to Path I and then transitions to
Path II (i.e., from low processing requirements to high pro-
cessing requirements). For experiments that compare our
system to Click and SMP Click, we need pick fixed traffic
profiles. For these cases, we have identified three specific
scenarios (also illustrated in Figure 5): Scenario I (99% IP
forwarding, 1% VPN termination), Scenario II (50% IP for-
warding, 50% VPN termination), and Scenario III (1% IP
forwarding, 99% VPN termination).

5.1.3 Testbed Setup
The hardware platform for our testbed is a four-core Intel
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Evaluation.

development board that is specifically designed for embed-
ded systems. It is equipped with two 2.0 GHz Dual-Core LV
Xeon processors and two dual port Intel 82571EB Gigabit
Ethernet Controllers. The software is based on a modified
Click release (version 1.6.0) running on a patched Linux ker-
nel (version 2.6.16.13). Click is configured as kernel module
and handles all packets transferred through the systems net-
work interfaces. Four workstations connected to the system
transmit and receive network traffic at varying data rates
and packet sizes.

5.1.4 Representativeness of Evaluation
It is important to note that the results obtained from this

experimentation configuration are representative for systems
beyond this specific setup. While we use a general-purpose
multicore processor system, the results are equally applica-
ble to network processor systems. Click has been ported to
network processors [18], and network processor cores that
are ANSI C programmable have been developed [4].

In terms of processing workload, we only consider IPSec as
a computationally intensive application (i.e., Path II). How-
ever, the results are representative of any type of packet pro-
cessing. The runtime system does not distinguish between
what operations are actually performed on a packet. As the
Internet moves towards more data path services, Scenario
III is becoming more representative.

5.2 Validation of Correct Operation
Before comparing different system, we first show results

that indicate that our proposed system (System IV) operates
as described in Sections 3 and 4.

5.2.1 Profiling
To illustrate the functionality of the profiling component

in our runtime system, we show in Figure 6 the profiling
information for each of the 23 schedulable elements over
the range of all processing workloads (Figure 5). The y-
axis of this figure shows the total work per task per packet
(as defined in Equation 1) in processor cycles. Initially,
the ip_classifier and ip_lookup tasks require as much
work as ipsec_postproc_b. As IPSec traffic increases,
ipsec_postproc_b dominates processing requirements.
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5.2.2 Task Duplication and Mapping
The profiling information from Figure 6 is then used to

duplicate tasks. Figure 7 shows the number of times each
of the tasks is duplicated. The total number of available
schedulable threads for each of the N = 4 processor cores
is assumed to be M = 64. Thus a total of 256 tasks are
created. As expected, the tasks that require most processing
are duplicated most frequently (initially, ip_classifier and
ip_preproc, and later ipsec_postproc_b).

To show the correct operation of our duplication algo-
rithm, we compare the work per task before duplication, wi,
with the work per task after duplication, w′

i in Figure 8 (for
Scenario I and M · N=96). For the interval shown in the
figure, 14 of the 23 tasks did not receive any packets (since
they are associated with ARP processing) and thus their uti-
lization (and work) is zero. Therefore, the 14 rightmost task
instances have zero work associated with them. Still, each
instance is present in the system to ensure that all packets
can be correctly processed in case traffic changes.

The distribution of work per task instance before dupli-
cation is clearly unbalanced with tasks requiring between 5
cycles and 746 cycles per packet (155× difference). After du-
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Table 1: Processing Time Requirements for Task
Duplication and Task Mapping Algorithms.

Number of tasks Execution time

64 139ms
128 198ms
256 228ms

plication, these differences are much less pronounced. Task
instances require between 5 cycles and 68 cycles (13.5× dif-
ference). While duplication reduces the difference between
tasks significantly, the results are not a completely even dis-
tribution. The remaining imbalance is due to a few tasks
with very small wi values (that cannot be increased by du-
plication). When ignoring the three tasks with smallest wi,
the difference between the largest and smallest w′

i is only
2.43× after duplication.

5.2.3 Runtime Adaptation Overhead
The execution times of the task duplication and task map-

ping algorithm are shown in Table 1. Depending on the
number of tasks that need to be handled, the processing
time can take up to 0.2 seconds. This puts a lower bound
on the adaptation interval. The execution time (and thus
the interval bound) may be higher if the same processor is
used for computing task duplication and mapping and for
forwarding packets. In a high-performance system, however,
runtime management would be performed on a dedicated
control processor.

5.3 Performance Comparison
To compare the performance of all four systems discussed

above, we show their throughput performance for all three
scenarios in Figure 9. Since we focus on the processing as-
pect of the router (rather than its ability to get packets
in and out of the system), we send large (1452-byte) UDP
packets. (Results for minimum size packets are discussed
below.) In Scenario I, there is very little processing, but
in Scenario III, all packet payloads need to be processed by
cryptographic algorithms. We make the following observa-
tions:

• Scenario I: This scenario, which has very low com-
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Figure 9: Throughput Performance Comparison.
(RTA = Runtime Adaptation.)

putational demands, is dominated by System I, the
traditional Click unicore system, which achieves over
1.2Gbps in throughput. The main limitation for other
systems, which utilized multiple processor cores, is the
overhead for packet I/O and coordination among pro-
cessors. Systems II, III, and IV can forward between
700Mbps and 900Mpbs. Our proposed System IV per-
forms slightly better than Systems IV and II, but its
full capabilities cannot be shown in a scenario that has
limited processing demands.

• Scenario II: In this scenario, where more processing is
required, traditional Click (System I) starts to perform
poorly since it uses only a single processor core (around
400Mbps). Our proposed System IV achieve around
800Mbps at its peak. SMP Click (System II) levels
out at 600Mbps.

• Scenario III: This scenario requires the most amount of
processing per packet. In this case, our proposed Sys-
tem IV achieves nearly 600Mbps, whereas SMP Click
(System II) peaks out at just above 400Mbps.

The peak rates are summarized in Table 2. This table
also shows throughput results for small packets. For small
packets, the proposed System IV does not perform as well as
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Table 2: Peak Throughput Rates for All Router Systems.
Scen- Packet size Peak throughput (in Mbps) Improvement of
ario in bytes I II III IV System IV over II

I
64 57.23 44.21 32.85 38.92 -12.0% (=0.88×)

1452 1236.74 836.60 813.11 935.51 11.8% (=1.11×)

II
64 65.96 61.16 47.78 49.09 -19.7% (=0.80×)

1452 432.38 603.26 646.78 797.78 32.2% (=1.32×)

III
64 72.33 56.10 45.28 48.33 -13.9% (=0.86×)

1452 275.64 435.14 236.96 574.51 32.0% (=1.32×)

SMP Click (between 12% and 20% lower throughput). This
is due to the overhead of task duplication, which leads to
more packet movement between processors. However, small
packets require much less processing in Path II since their
payload is minimal. Therefore, such traffic (similarly to Sce-
nario I) is not representative of processing-intensive work-
loads for which we target the design of System IV. Instead,
Scenarios II and III with larger packets should be considered
the main evaluation target for our platform. As the Inter-
net moves towards more data path services (at least on the
network edge), such scenarios will become more common.

For these processing-intensive scenarios, our runtime
adaptation system with task duplication (System IV) can
sustain a 1.32× higher data rate than SMP Click (System
II). Also, our system performs consistently well for all three
scenarios and does not show the severe degradations ob-
served in Click (System I). This indicates that our runtime
system uses available processing resources more effectively.
Thus, we can conclude that our approach of task duplication
and mapping presents a significant improvement to runtime
management of parallel packet processing systems.

6. SUMMARY AND CONCLUSION
The need for flexibility and performance in the data path

of routers motivates the need for packet processing systems
that utilize multiple parallel processor cores. To provide
the ability to adapt to changing traffic characteristics, it is
essential to have a runtime management system in place that
can adjust the allocation of processing tasks to processing
resources. We present a runtime system that uses runtime
profiling and a novel task duplication algorithm to achieve
a balanced workload across all processor cores. We present
a prototype implementation of this runtime system that is
based on the Click modular router. Our extensive evaluation
of this system shows the correct operation of the algorithms
that we present. Our results also show that our runtime
system outperforms SMP Click and provides 1.32× higher
throughput for processing intensive packets. We believe that
the concepts introduced in this runtime system present an
important step towards implementing and deploying highly
parallel packet processing systems in the current Internet
and next-generation network architectures.
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