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Abstract. A large number of statistical models are “doubly-intractable”:
the likelihood normalising term, which is a function of the model parame-
ters, is intractable, as well as the marginal likelihood (model evidence). This
means that standard inference techniques to sample from the posterior, such
as Markov chain Monte Carlo (MCMC), cannot be used. Examples include,
but are not confined to, massive Gaussian Markov random fields, autologis-
tic models and Exponential random graph models. A number of approximate
schemes based on MCMC techniques, Approximate Bayesian computation
(ABC) or analytic approximations to the posterior have been suggested, and
these are reviewed here. Exact MCMC schemes, which can be applied to a
subset of doubly-intractable distributions, have also been developed and are
described in this paper. As yet, no general method exists which can be applied
to all classes of models with doubly-intractable posteriors.

In addition, taking inspiration from the Physics literature, we study an al-
ternative method based on representing the intractable likelihood as an in-
finite series. Unbiased estimates of the likelihood can then be obtained by
finite time stochastic truncation of the series via Russian Roulette sampling,
although the estimates are not necessarily positive. Results from the Quantum
Chromodynamics literature are exploited to allow the use of possibly nega-
tive estimates in a pseudo-marginal MCMC scheme such that expectations
with respect to the posterior distribution are preserved. The methodology is
reviewed on well-known examples such as the parameters in Ising models,
the posterior for Fisher–Bingham distributions on the d-Sphere and a large-
scale Gaussian Markov Random Field model describing the Ozone Column
data. This leads to a critical assessment of the strengths and weaknesses of
the methodology with pointers to ongoing research.
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1. INTRODUCTION

An open problem of growing importance in the
application of Markov chain Monte Carlo (MCMC)
methods for Bayesian computation is the definition of
transition kernels for posterior distributions with in-
tractable data densities. In this paper, we focus on
methods for a subset of these distributions known as
doubly-intractable distributions, a term first coined by
Murray, Ghahramani and MacKay (2006). To illus-
trate what constitutes a doubly-intractable posterior,
take some data y ∈ Y used to make posterior infer-
ences about the variables θ ∈ � that define a statistical
model. A prior distribution defined by a density π(θ)

with respect to Lebesgue measure dθ is adopted and
the data density is given by p(y|θ) = f (y; θ)/Z(θ),
where f (y; θ) is an unnormalised function of the data
and parameters, and Z(θ) =

∫
f (x; θ) dx is the likeli-

hood normalising term which cannot be computed. The
posterior density follows in the usual form as

π(θ |y) = p(y|θ) × π(θ)

p(y)
(1.1)

= f (y; θ)

Z(θ)
× π(θ) × 1

p(y)
,

where p(y) =
∫

p(y|θ)π(θ) dθ . “Doubly-intractable”
refers to the fact that not only is p(y) intractable (this
is common in Bayesian inference and does not gener-
ally present a problem for inference), but Z(θ) is also
intractable.

Bayesian inference proceeds by taking posterior ex-
pectations of functions of interest, that is,

Eπ(θ |y)

{
h(θ)

}
=
∫

h(θ)π(θ |y) dθ(1.2)

and Monte Carlo estimates of the above expectations
can be obtained by employing MCMC methods if other
exact sampling methods are not available (Gilks, 1996,
Robert and Casella, 2010, Liu, 2001, Gelman et al.,
1995). To construct a Markov chain with invariant dis-
tribution π(θ |y), the Metropolis–Hastings algorithm
can be used; a transition kernel is constructed by de-
signing a proposal distribution q(θ ′|θ) and accepting
the proposed parameter value with probability

α
(
θ

′, θ
)
= min

{
1,

π(θ ′|y)q(θ |θ ′)

π(θ |y)q(θ ′|θ)

}

(1.3)

= min
{

1,
f (y; θ ′)π(θ ′)q(θ ′|θ)

f (y; θ)π(θ)q(θ ′|θ)
× Z(θ)

Z(θ ′)

}
.

Clearly, a problem arises when the value of the
normalising term for the data density, Z(θ), cannot

be obtained either due to it being nonanalytic or un-
computable with a finite computational resource. This
situation is far more widespread in modern-day sta-
tistical applications than a cursory review of the lit-
erature would suggest and forms a major challenge
to methodology for computational statistics currently
(e.g., Møller et al., 2006, Besag and Moran, 1975,
Besag, 1974, Green and Richardson, 2002, Møller and
Waagepetersen, 2004). We review and study meth-
ods which have been published in the Statistics and
Physics literature for dealing with such distributions.
We then study in detail how to implement a pseudo-
marginal MCMC scheme (Beaumont, 2003, Andrieu
and Roberts, 2009) in which an unbiased estimate of
the target density is required at each iteration, and sug-
gest how these might be realised.

This paper is organised as follows. In Section 2 we
describe examples of doubly-intractable distributions
along with current inference approaches. These en-
compass both approximate and exact methods which
have been developed in the Statistics, Epidemiology
and Image analysis literature. In Section 3 we sug-
gest an alternative approach based on pseudo-marginal
MCMC (Beaumont, 2003, Andrieu and Roberts, 2009)
in which an unbiased estimate of the intractable tar-
get distribution is used in an MCMC scheme to sam-
ple from the exact posterior distribution. In Sections 4
and 5 we describe how to realise such unbiased es-
timates of a likelihood with an intractable normalis-
ing term. This is achieved by writing the likelihood
as an infinite series in which each term can be esti-
mated unbiasedly. Then Russian Roulette techniques
are used to truncate the series such that only a finite
number of terms need be estimated whilst maintain-
ing the unbiasedness of the overall estimate. Sections 6
and 7 contain experimental results for posterior infer-
ence over doubly-intractable distributions: Ising mod-
els, the Fisher–Bingham distribution and a large-scale
Gaussian Markov random field. Section 8 contains a
discussion of the method and suggests areas for further
work.

2. INFERENCE METHODS FOR

DOUBLY-INTRACTABLE DISTRIBUTIONS

2.1 Approximate Bayesian Inference

Many models describing data with complex de-
pendency structures are doubly-intractable. Examples
which have received attention in the Statistics literature
include:
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1. The Ising model (Ising, 1925). Originally formu-
lated in the Physics literature as a simple model for
interacting magnetic spins on a lattice. Spins are bi-
nary random variables which interact with neighbour-
ing spins.

2. The Potts model and autologistic models. Gener-
alisations to the Ising model in which spins can take
more than two values and more complex dependencies
are introduced. These models are used in image analy-
sis (Besag, 1986, Hughes, Haran and Caragea, 2011),
as well as in other fields such as disease mapping (e.g.,
Green and Richardson, 2002).

3. Spatial point processes. Used to model point pat-
tern data, for example, ecological data (e.g., Silvertown
and Antonovics, 2001, Møller and Waagepetersen,
2004) and epidemiological data (e.g., Diggle, 1990).

4. Exponential Random Graph (ERG) models. Used
in the field of social networks to analyse global net-
work structures in terms of local graph statistics such
as the number of triangles (e.g., Goodreau, Kitts and
Morris, 2009).

5. Massive Gaussian Markov random field (GMRF)
models. Used in image analysis and spatial statistics,
amongst others (e.g., Rue and Held, 2005).

Standard Bayesian inference techniques such as
drawing samples from the posterior using MCMC can-
not be used due to the intractability of the likelihood
normalising term, and hence a number of approximate
inference methods have been developed. A common
approach when the full likelihood cannot be computed
is to use a pseudo-likelihood (Besag, 1974, Besag
and Moran, 1975), in which an approximation to the
true likelihood is formed using the product of the
conditional probabilities for each variable. This can
normally be computed efficiently and can therefore
replace the full likelihood in an otherwise standard
inference strategy to sample from the posterior (e.g.,
Heikkinen and Hogmander, 1994, Zhou and Schmi-
dler, 2009). This approach scales well with the size of
the data and can give a reasonable approximation to
the true posterior, but inferences may be significantly
biased as long range interactions are not taken into ac-
count [this has been shown to be the case for ERG
models (Van Duijn, Gile and Handcock, 2009), hidden
Markov random fields (Friel et al., 2009) and autolo-
gistic models (Friel and Pettitt, 2004)]. Methods based
on composite likelihoods have also been used for infer-
ence in massive scale GMRF models, in which an ap-
proximation to the likelihood is based on the joint den-
sity of spatially adjacent blocks (Eidsvik et al., 2014).
This has the advantage that the separate parts of the

likelihood cannot only be computed more efficiently,
but also computed in parallel.

Another pragmatic approach is that of Green and
Richardson (2002), in which they discretise the inter-
action parameter in the Potts model to a grid of closely
spaced points and then set a prior over these values.
Estimates of the normalising term are then precom-
puted using thermodynamic integration (as described
by Gelman and Meng, 1998) so that no expensive com-
putation is required during the MCMC run. This al-
lowed inference to be carried out over a model for
which it would not otherwise have been possible. How-
ever, it is not clear what impact this discretisation and
use of approximate normalising terms has on param-
eter inference and it seems preferable, if possible, to
retain the continuous nature of the variable and to not
use approximations unless justified.

Approximate Bayesian Computation (ABC) (Marin
et al., 2012), a technique developed for likelihood free
inference (Tavaré et al., 1997, Beaumont, Zhang and
Balding, 2002), can also be used. The types of models
for which ABC was originally developed are implicit,
meaning data can be simulated from the likelihood but
the likelihood cannot be written down, and hence nei-
ther standard maximum likelihood nor Bayesian meth-
ods can be used. For doubly-intractable distributions,
it is only the normalising term which cannot be com-
puted, but we can still use the techniques developed in
the ABC community. ABC in its simplest form pro-
ceeds by proposing an approximate sample from the
joint distribution, p(y, θ), by first proposing θ

′ from
the prior and then generating a data set from the model
likelihood conditional on θ

′. This data set is then com-
pared to the observed data and the proposed param-
eter value accepted if the generated data is “similar”
enough to the observed data. An obvious drawback
to the method is that it does not sample from the
exact posterior, although it has been shown to pro-
duce comparable results to other approximate methods
and recent advances mean that it can be scaled up to
very large data sets (Grelaud, Robert and Marin, 2009,
Everitt, 2012, Moores, Mengersen and Robert, 2014).

The “shadow prior” method of Liechty, Liechty and
Müller (2009) is an interesting attempt to reduce the
computational burden of intractable normalising con-
stants in the case where constraints on the data or
parameters cause the intractability. As an example,
take data y ∼ p(y|θ) which is constrained to lie in
some set A. Depending on the form of A, sampling
from the posterior π(θ |y) can be hindered by an in-
tractable likelihood normalising term. The model is
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therefore replaced by p(y|δ)I (y ∈ A), “shadow prior”
p(δ|θ) =∏d

i=1 N (δi; θi, ν) and prior π(θ), for some ν

and where d is the dimension of θ . The conditional
posterior p(θ |δ,y) = p(θ |δ) no longer requires the
computation of an intractable normalising term (as de-
pendence on the constrained data has been removed),
although updating δ does. However, this has been re-
duced to d one-dimensional problems which may be
simpler to deal with. The method, of course, only
works if the computational burden of the intractable
normalising constant is significantly less in the shadow
prior format than in the original model, and several ex-
amples of when this might be the case are suggested,
such as when the parameter in the normalising constant
has a complicated hyperprior structure. An approxi-
mate version can be implemented in which the normal-
ising constant is ignored in the shadow prior, which
can sometimes have very little impact on the final in-
ference. In these cases the computational burden has
been eliminated.

Several approximate but consistent algorithms have
been developed based on Monte Carlo approximations
within MCMC methods. For example, an approach
was developed by Atchadé, Lartillot and Robert (2013)
in which a sequence of transition kernels are con-
structed using a consistent estimate of Z(θ) from the
Wang–Landau algorithm (Wang and Landau, 2001).
The estimates of the normalising term converge to the
true value as the number of iterations increases and
the overall algorithm gives a consistent approximation
to the posterior. Bayesian Stochastic Approximation
Monte Carlo (Jin and Liang, 2014) works in a similar
fashion, sampling from a series of approximations to
the posterior using the stochastic approximation Monte
Carlo algorithm (Liang, Liu and Carroll, 2007), which
is based on the Wang–Landau algorithm. These algo-
rithms avoid the need to sample from the model likeli-
hood, but in practice suffer from the curse of dimen-
sionality as the quality of the importance sampling
estimate depends on the number and location of the
grid points. These points need to grow exponentially
with the dimension of the space limiting the applica-
bility of this methodology. They also require a signifi-
cant amount of tuning to attain good approximations to
the normalising term, and hence ensure convergence is
achieved.

Alternative methodologies have avoided sampling
altogether and instead used deterministic approxima-
tions to the posterior distribution. This is particularly
the case for GMRF models which often have complex
parameter dependencies and are very large in scale,

rendering MCMC difficult to apply. INLA (integrated
nested Laplace approximations) (Rue, Martino and
Chopin, 2009) was designed to analyse latent Gaussian
models and has been applied to massive GMRFs in di-
verse areas such as spatio-temporal disease mapping
(Schrödle and Held, 2011) and point processes describ-
ing the locations of muskoxen (Illian et al., 2012). By
using Laplace approximations to the posterior and an
efficient programming implementation, fast Bayesian
inference can be carried out for large models. How-
ever, this benefit also constitutes a drawback in that
users must rely on standard software, and therefore
model extensions which could be tested simply when
using an MCMC approach are not easy to handle. Fur-
ther, it is of course necessary to ensure that the as-
sumptions inherent in the method apply so that the ap-
proximations used are accurate. It should also be noted
that the work of Taylor and Diggle (2014) found that
in the case of spatial prediction for log-Gaussian Cox
processes, an MCMC method using the Metropolis-
adjusted Langevin Algorithm (MALA) algorithm gave
comparable results in terms of predictive accuracy and
was actually slightly more efficient than the INLA
method. Other approximations have also been devel-
oped as part of a large body of work in the area, such
as iterative methods for approximating the log determi-
nant of large sparse matrices, required to compute the
likelihood (Aune, Simpson and Eidsvik, 2014).

2.2 Exact MCMC Methods

As well as approximate inference methods, a small
number of exact algorithms have been developed to
sample from doubly-intractable posteriors. These are
described below as well as advice as to when these al-
gorithms can be used.

2.2.1 Introducing auxiliary variables. An exact
sampling methodology for doubly-intractable distri-
butions is proposed in Walker (2011), which uses a
similar approach to those described in Adams, Mur-
ray and MacKay (2009) and Section 9 of Beskos et al.
(2006). A Reversible-Jump MCMC (RJMCMC) sam-
pling scheme is developed that cleverly gets around the
intractable nature of the normalising term. Consider the
univariate distribution p(y|θ) = f (y; θ)/Z(θ) where
N i.i.d. observations, yi , are available. In its most
general form, it is required that y belongs to some
bounded interval [a, b], and that there exists a constant
M < +∞ such that f (y; θ) < M for all θ and y (it is
assumed that [a, b] = [0,1], and M = 1 in the follow-
ing exposition). The method introduces auxiliary vari-
ables ν ∈ (0,∞), k ∈ {0,1, . . .}, {s}(k) = (s1, . . . , sk),
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to form the joint density

f
(
ν, k, {s}(k),y|θ

)

∝ exp(−ν)νk+N−1

k!

·
k∏

j=1

(
1 − f (sj ; θ)

)
1(0 < sj < 1)

·
N∏

i=1

f (yi; θ).

Integrating out ν and s(k) and summing over all k re-
turns the data distribution

∏N
i=1 p(yi |θ). An RJMCMC

scheme is proposed to sample from the joint density
f (ν, k, {s}(k),y|θ) and this successfully gets around
the intractable nature of the normalising term. The
scheme has been used to sample from the posterior of
a Bingham distribution (Walker, 2014).

However, the methodology has some limitations to
its generality. Firstly, the unnormalised density func-
tion must be strictly bounded from above to ensure
the positivity of the terms in the first product. This
obviously limits the generality of the methodology to
the class of strictly bounded functions; however, this
is not overly restrictive, as many functional forms for
f (yi; θ) are bounded, for example, when there is finite
support, or when f (yi; θ) takes an exponential form
with strictly negative argument. Even if the function to
be sampled is bounded, finding bounds that are tight is
extremely difficult and the choice of the bound directly
impacts the efficiency of the sampling scheme con-
structed; see, for example, Ghaoui and Gueye (2009)
for bounds on binary lattice models. Ideally we would
wish to relax the requirement for the data, y, to be-
long to a bounded interval, but if we integrate with re-
spect to each sj over an unbounded interval, then we
can no longer return 1 −Z(θ) and the sum over k will
therefore no longer define a convergent geometric se-
ries equaling Z(θ). This last requirement particularly
restricts the generality and further use of this specific
sampling method for intractable distributions.

2.3 Valid Metropolis–Hastings-Type Transition

Kernels

An ingenious MCMC solution to the doubly-in-
tractable problem was proposed by Møller et al. (2006)
in which the posterior state space is extended as fol-
lows:

π(θ ,x|y) ∝ p(x|θ ,y)π(θ)
f (y; θ)

Z(θ)
.

This extended distribution retains the posterior as
a marginal. The method proceeds by taking the pro-

posal for x, θ to be q(x′, θ ′|x, θ) = f (x;θ ′)
Z(θ ′) q(θ ′|θ), so

that at each iteration the intractable normalising terms
cancel in the Metropolis–Hastings acceptance ratio.
A drawback of the algorithm is the need to choose
the marginal for x, p(x|θ ,y), particularly as the au-
thors suggest that ideally this distribution would ap-
proximate the likelihood, thereby reintroducing the in-
tractable normalising term.

Murray, Ghahramani and MacKay (2006) simplified
and extended the algorithm to the Exchange algorithm,
and in the process removed this difficulty by defining a
joint distribution as follows:

p
(
x,y, θ, θ ′)∝ f (y; θ)

Z(θ)
π(θ)q

(
θ

′|θ
)f (x; θ ′)

Z(θ ′)
.

At each iteration, MCMC proceeds by first Gibbs
sampling θ

′ and x, and then proposing to swap the val-
ues of θ and θ

′ using Metropolis–Hastings. Again, the
intractable normalising terms cancel in the acceptance
ratio. Both of these algorithms use only valid MCMC
moves and therefore target the exact posterior, render-
ing them a major methodological step forward. How-
ever, they both require the capability to sample from
the likelihood using a method such as perfect sampling
(Propp and Wilson, 1996, Kendall, 2005). This can be
considered a restriction to the widespread applicabil-
ity of this class of methods, as for many models it is
not possible, for example, the ERG model in social
networks. Even when perfect sampling is possible, for
example, for the Ising and Potts models, it becomes
prohibitively slow as the size of the model increases.
Attempts have been made to relax the requirement to
perfectly sample by instead using an auxiliary Markov
chain to sample approximately from the model at each
iteration (Caimo and Friel, 2011, Liang, 2010, Everitt,
2012, Alquier et al., 2014). In particular, the paper by
Alquier et al. (2014) suggests multiple approximate
MCMC algorithms for doubly-intractable distributions
and then applies results from Markov chain theory to
bound the total variation distance between the approx-
imate chains and a hypothetical exact chain. These
types of approximate algorithms were in use due to
their computational feasibility, and so it is pleasing to
see some theoretical justification for their use emerging
in the Statistics literature.

3. AN ALTERNATIVE APPROACH USING

PSEUDO-MARGINAL MCMC

As has been seen, there are many approximate meth-
ods for sampling from doubly-intractable posteriors.
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There are also exact methods available, but these can
only be applied when it is possible to perfectly sam-
ple from the data model. Now we would like to ap-
proach the question of whether it is possible to relax
this requirement and develop methodology for exact
sampling of the posterior when perfect sampling is not
possible. To do this, we develop an approach based on
the pseudo-marginal methodology (Beaumont, 2003,
Andrieu and Roberts, 2009, Doucet, Pitt and Kohn,
2012), and hence we now briefly review the algo-
rithm. The pseudo-marginal class of methods is par-
ticularly appealing in that they have the least num-
ber of restrictions placed upon them and provide the
most general and extensible MCMC methods for in-
tractable distributions. They are sometimes referred to
as Exact-approximate methods, based on the property
that the invariant distribution of the Markov chain pro-
duced is the exact target distribution despite the use
of an approximation in the Metropolis–Hastings accep-
tance probability. To use the scheme, an unbiased and
positive estimate of the target density is substituted for
the true density, giving an acceptance probability of the
form

α
(
θ

′, θ
)
= min

{
1,

π̂(θ ′|y)

π̂(θ |y)
× q(θ |θ ′)

q(θ ′|θ)

}

(3.1)

= min
{

1,
p̂(y|θ ′)π(θ ′)

p̂(y|θ)π(θ)
× q(θ |θ ′)

q(θ ′|θ)

}
,

where the estimate at each proposal is propagated for-
ward as described in Beaumont (2003), Andrieu and
Roberts (2009). For the case of doubly-intractable dis-
tributions, assuming the prior is tractable, this equates
to a requirement for an unbiased estimate of the like-
lihood as seen on the right in (3.1) above. The re-
markable feature of this scheme is that the correspond-
ing transition kernel has an invariant distribution with
θ -marginal given precisely by the desired posterior
distribution, π(θ |y). To see this, denote all the ran-
dom variables generated in the construction of the
likelihood estimator by the vector u and its density
p(u). These random variables are, for example, those
used when generating and accepting a proposal value
in a Markov chain as part of a Sequential Monte
Carlo estimate. The estimator of the likelihood is de-
noted p̂N (y|θ ,u), with N symbolising, for example,
the number of Monte Carlo samples used in the esti-
mate. The estimator of the likelihood must be unbiased,
that is,

∫
p̂N (y|θ ,u)p(u) du = p(y|θ).(3.2)

A joint density for θ and u is now defined which re-
turns the posterior distribution after integrating over u:

πN (θ ,u|y) ∝ p̂N (y|θ ,u)π(θ)p(u)

= p̂N (y|θ ,u)π(θ)p(u)

p(y)
.

It is simple to show using equation (3.2) that
πN (θ,u|y) integrates to 1 and has the desired marginal
distribution for θ |y. Now consider sampling from
πN (θ,u|y) using the Metropolis–Hastings algorithm,
with the proposal distribution for u′ being p(u′). In
this case the densities for u and u′ cancel and we are
using the acceptance probability in (3.1). Hence, this
algorithm samples from πN (θ ,u|y) and the samples of
θ obtained are distributed according to the posterior.

This is a result that was highlighted in the statisti-
cal genetics literature (Beaumont, 2003), then popu-
larised and formally analysed in Andrieu and Roberts
(2009) with important developments such as Particle
MCMC (Doucet, Pitt and Kohn, 2012) proving to be
extremely powerful and useful in a large class of statis-
tical models. Due to its wide applicability, the pseudo-
marginal algorithm has been the subject of several
recent papers in the statistical literature, increasing un-
derstanding of the methodology. These have covered
how to select the number of samples in the unbiased
estimate to minimise the computational time (Doucet,
Pitt and Kohn, 2012), optimal variance and acceptance
rates to maximise efficiency of the chain (Sherlock
et al., 2015) and results to order two different pseudo-
marginal implementations in terms of the acceptance
probability and asymptotic variance (Andrieu and Vi-
hola, 2014). It is interesting to note that the prob-
lem of Exact-Approximate inference was first consid-
ered in the Quantum Chromodynamics literature al-
most thirty years ago. This was motivated by the need
to reduce the computational effort of obtaining values
for the strength of bosonic fields in defining a Markov
process to simulate configurations following a spe-
cific law; see, for example Kennedy and Kuti (1985),
Bhanot and Kennedy (1985), Bakeyev and De Forcrand
(2001), Lin, Liu and Sloan (2000), Joo, Horvath and
Liu (2003).

3.1 Proposed Methodology

One can exploit the pseudo-marginal algorithm to
sample from the posterior, and hence we require un-
biased estimates of the likelihood. For each θ and y,
we show that one can construct random variables
{V (j)

θ
, j ≥ 0} (where dependence on y is omitted) such
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that the series defined as

π
(
θ ,
{
V

(j)
θ

}
|y
)
:=

∞∑

j=0

V
(j)
θ

is finite almost surely, has finite expectation, and
E(π(θ , {V (j)

θ
}|y)) = π(θ |y). We propose a number

of ways to construct such series. Although unbiased,
these estimators are not practical, as they involve in-
finite series. We therefore employ a computationally
feasible truncation of the infinite sum which, cru-
cially, remains unbiased. This is achieved using Rus-
sian Roulette procedures well known in the Physics
literature (Hendricks and Booth, 1985, Carter and
Cashwell, 1975). More precisely, we introduce a ran-
dom time τθ , such that with u := (τθ , {V (j)

θ
,0 ≤ j ≤

τθ }) the estimate

π(θ ,u|y) :=
τθ∑

j=0

V
(j)
θ

satisfies

E
(
π(θ ,u|y)|

{
V

(j)
θ

, j ≥ 0
})

=
∞∑

j=0

V
(j)
θ

.

As in the notation used above, u is a vector of all the
random variables used in the unbiased estimate, that
is, those used to estimate terms in the series, as well
as those used in the roulette methods to truncate the
series. As the posterior is only required up to a normal-
ising constant in y and the prior is assumed tractable,
in reality we require an unbiased estimate of the likeli-
hood.

3.2 The Sign Problem

If the known function f (y; θ) forming the esti-
mate of the target is bounded, then the whole pro-
cedure can proceed without difficulty, assuming the
bound provides efficiency of sampling. However, in
the more general situation where the function is not
bounded, there is a complication here in that the un-
biased estimate π(θ ,u|y) is not guaranteed to be pos-
itive (although its expectation is nonnegative). This
issue prevents us from plugging in directly the es-
timator π(θ ,u|y) in the pseudo-marginal framework
for the case of unbounded functions. The problem of
such unbiased estimators returning negative valued es-
timates turns out to be a well-studied issue in the Quan-
tum Monte Carlo literature; see, for example, Lin, Liu
and Sloan (2000). The problem is known as the Sign

Problem,2 which in its most general form is NP-hard
(nondeterministic polynomial time hard) (Troyer and
Wiese, 2005) and at present no general and practical
solution is available. Indeed, recent work by Jacob and
Thiery (2013) showed that given unbiased estimators
of λ ∈ R, no algorithm exists to yield an unbiased es-
timate of f (λ) ∈ R+, where f is a nonconstant real-
valued function. Therefore, we will need to apply a dif-
ferent approach to this problem.

We follow Lin, Liu and Sloan (2000) and show that
with a weighting of expectations it is still possible to
compute any integral of the form

∫
h(θ)π(θ |y) dθ by

Markov chain Monte Carlo.
Suppose that we have an unbiased, but not

necessarily positive, estimate of the likelihood
p̂(y|θ ,u) and we wish to sample from π(θ ,u|y) =
p̂(y|θ ,u)π(θ)p(u)/p(y), where p(y) =

∫∫
p(y|

θ ,u)π(θ)p(u) dθ du is an intractable normaliser.
Although π(θ ,u|y) integrates to one, it is not a
probability, as it is not necessarily positive. Define
σ(y|θ ,u) := sign(p̂(y|θ ,u)), where sign(x) = 1 when
x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if
x = 0. Furthermore, denote |p̂(y|θ ,u)| as the absolute
value of the measure, then we have p̂(y|θ ,u) =
σ(y|θ ,u)|p̂(y|θ ,u)|.

Suppose that we wish to compute the expectation
∫

h(θ)π(θ |y) dθ =
∫ ∫

h(θ)π(θ ,u|y) dudθ .(3.3)

We can write the above integral as
∫

h(θ)π(θ |y) dθ

=
∫ ∫

h(θ)π(θ ,u|y) dudθ

= 1

p(y)

∫ ∫
h(θ)p̂(y|θ ,u)π(θ)p(u) dudθ(3.4)

=
∫∫

h(θ)σ (y|θ ,u)|p̂(y|θ ,u)|π(θ)p(u) dudθ∫∫
σ(y|θ ,u)|p̂(y|θ ,u)|π(θ)p(u) dudθ

=
∫∫

h(θ)σ (y|θ ,u)π̌(θ ,u|y) dudθ∫∫
σ(y|θ ,u)π̌(θ ,u|y) dudθ

,

where π̌(θ ,u|y) is the distribution

π̌(θ ,u|y) := |p̂(y|θ ,u)|π(θ)p(u)∫∫
|p̂(y|θ ,u)|π(θ)p(u) dudθ

.

2Workshops devoted to the Sign Problem, for example, the Inter-
national Workshop on the Sign Problem in QCD and Beyond, are
held regularly, http://www.physik.uni-regensburg.de/sign2012/.

http://www.physik.uni-regensburg.de/sign2012/
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We can sample from π̌(θ ,u|y) using a pseudo-
marginal scheme. At each iteration we propose a new
value θ

′, generate an unbiased estimate of the likeli-
hood p(y|θ ′,u′), and accept it with probability

min
{

1,
|p̂(y|θ ′,u′)|π(θ ′)

|p̂(y|θ ,u)|π(θ)
× q(θ |θ ′)

q(θ ′|θ)

}
,

remembering to save the sign of the accepted estimate.
We can then use Monte Carlo to estimate the expecta-
tion in (3.3) using (3.4) with

∫
h(θ)π(θ |y) dθ =

∑N
i=1 h(θ i)σ (y|θ i,ui)∑N

i=1 σ(y|θ i,ui)
.(3.5)

The output of this MCMC procedure gives an
importance-sampling-type estimate for the desired ex-
pectation

∫
h(θ)π(θ |y) dθ , which is consistent but bi-

ased (as with estimates from all MCMC methods).
Importantly, this methodology gives us freedom to use
unbiased estimators which may occasionally return
negative estimates. We describe the procedure more
systematically in the Appendix (Section B), and we
discuss in particular how to compute the effective sam-
ple size of the resulting Monte Carlo estimate.

The following section addresses the issue of con-
structing the unbiased estimator to be used in the over-
all MCMC scheme.

4. PSEUDO-MARGINAL MCMC FOR

DOUBLY-INTRACTABLE DISTRIBUTIONS

The foundational component of pseudo-marginal
MCMC is the unbiased and positive estimator of the
target density. In the methodology developed here, it is
not essential for the estimate of the intractable distribu-
tion to be strictly positive and we exploit this character-
istic. Note that whilst there are many methods for unbi-
asedly estimating Z(θ), such as importance sampling,
Sequential Monte Carlo (SMC) (Del Moral, Doucet
and Jasra, 2006) and Annealed Importance Sampling
(AIS) (Neal, 2001), if we then take some nonlinear
function of the estimate, for example, the reciprocal,
the overall estimate of the likelihood is no longer unbi-
ased.

It is possible to directly construct an estimator of
1/Z(θ) using an instrumental density q(y) as follows:

1

Z(θ)
= 1

Z(θ)

∫
q(y) dy =

∫
q(y)

f (y; θ)
p(y|θ) dy

≈ 1

N

N∑

i=1

q(yi)

f (yi; θ)
, yi ∼ p(·|θ);

however, this requires the ability to sample from the
likelihood, and if we can do this, then we can im-
plement the Exchange algorithm. Further, the variance
of the estimate depends strongly on the choice of the
instrumental density. A biased estimator can be con-
structed by sampling the likelihood using MCMC (e.g.,
Zhang et al., 2012), but a pseudo-marginal scheme
based on this estimate will not target the correct poste-
rior distribution. Very few methods to estimate 1/Z(θ)

can be found in the Statistics or Physics literature, pre-
sumably because in most situations a consistent esti-
mate will suffice. Therefore, we have to look for other
ways to generate an unbiased estimate of the likeli-
hood.

In outline, the intractable distribution is first writ-
ten in terms of a nonlinear function of the nonan-
alytic/computable normalising term. For example, in
equation (1.1), the nonlinear function is the recipro-
cal 1/Z(θ), and an equivalent representation would be
exp(− logZ(θ)). This function is then represented by
a convergent Maclaurin expansion which has the prop-
erty that each term can be estimated unbiasedly us-
ing the available unbiased estimates of Ẑ(θ). The in-
finite series expansion is then stochastically truncated
without introducing bias so that only a finite number
of terms need be computed. These two components—
(1) unbiased independent estimates of the normalis-
ing constant, and (2) unbiased stochastic truncation
of the infinite series representation—then produce an
unbiased, though not strictly positive, estimate of the
intractable distribution. The final two components of
the overall methodology consist of (3) constructing an
MCMC scheme which targets a distribution propor-
tional to the absolute value of the unbiased estimator,
and then (4) computing Monte Carlo estimates with re-
spect to the desired posterior distribution as detailed in
the previous section.

This method has its roots in several places in the
Statistics and Physics literature. In the Physics lit-
erature, researchers used a similar method to obtain
unbiased estimates of exp(−U(x)) when only unbi-
ased estimates of U(x) were available (Kennedy and
Kuti, 1985, Bhanot and Kennedy, 1985). They fur-
ther showed that even when using such unbiased es-
timates in place of the true value, detailed balance still
held. The method for realising the unbiased estimates
at each iteration is also similar to that suggested by
Booth (2007), in which he described a method for un-
biasedly estimating the reciprocal of an integral, which
is of obvious relevance to our case. In the Statistics
literature, Douc and Robert (2011) used a geometric
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series to estimate an inverse probability, and Beskos
et al. (2006), Fearnhead, Papaspiliopoulos and Roberts
(2008) also used techniques to truncate a series unbias-
edly in their work on likelihood estimation for stochas-
tic diffusions. Finally, both Rhee and Glynn (2012) and
McLeish (2011) use roulette methods to realise an un-
biased estimate when only biased but consistent esti-
mates are available. This is achieved by writing the
quantity to be unbiasedly estimated as an infinite se-
ries in which each term is a function of the consistent
estimates which can be generated, and then truncating
the series using roulette methods.

In the following sections, we study two series expan-
sions of a doubly-intractable likelihood, in which each
term can be estimates unbiasedly using unbiased esti-
mates of Z(θ). Following this comes a description of
unbiased truncation methods.

4.1 Geometric Series Estimator

In the following discussion we show how the in-
tractable likelihood can be written as a geometric se-
ries in which each term can be estimated unbiasedly.
Take a biased estimate of the likelihood p̃(y|θ) =
f (y; θ)/Z̃(θ), where Z̃(θ) > 0 is ideally an upper
bound on Z(θ) or, alternatively, an unbiased impor-
tance sampling estimate or a deterministic approxima-
tion. Then, using a multiplicative correction

p(y|θ) = p̃(y|θ) × c(θ)

[
1 +

∞∑

n=1

κ(θ)n

]
,(4.1)

where κ(θ) = 1 − c(θ)Z(θ)/Z̃(θ) and c(θ) ensures
|κ(θ)| < 1, the convergence of a geometric series gives

p̃(y|θ) × c(θ)

[
1 +

∞∑

n=1

κ(θ)n

]
= p̃(y|θ) × c(θ)

1 − κ(θ)

= p̃(y|θ) × Z̃(θ)

Z(θ)

= p(y|θ).

Based on this equality, and with an infinite number of
independent unbiased estimates of Z(θ) each denoted
Ẑi(θ), an unbiased estimate of the target density is

π̂(θ |y) = π(θ)p̃(y|θ)

p(y)
(4.2)

· c(θ)

[
1 +

∞∑

n=1

n∏

i=1

(
1 − c(θ)

Ẑi(θ)

Z̃(θ)

)]
.

Notice that the series in (4.2) is finite a.s. and we can
interchange summation and expectation if

E

(∣∣∣∣1 − c(θ)
Ẑi(θ)

Z̃(θ)

∣∣∣∣
)

< 1.

Since E(|X|) ≤ E1/2(|X|2), a sufficient condition
for this is 0 < c(θ) < 2Z̃(θ)Z(θ)/E(Ẑ2

1 (θ)), which is
slightly more stringent than |κ(θ)| < 1. Under this as-
sumption, the expectation of π̂ (θ |y) is

E
{
π̂(θ |y)|Z̃(θ)

}

= π(θ)p̃(y|θ)

p(y)

· c(θ)

[
1 +

∞∑

n=1

n∏

i=1

(
1 − c(θ)

E{Ẑi(θ)}
Z̃(θ)

)]

= π(θ)p̃(y|θ)

p(y)
× c(θ)

[
1 +

∞∑

n=1

κ(θ)n

]

= π(θ |y).

Therefore, the essential property E{π̂ (θ |y)} =
π(θ |y) required for Exact-Approximate MCMC is sat-
isfied by this geometric correction. However, there are
difficulties with this estimator. It will be difficult in
practice to find c(θ) that ensures the series in (4.2) is
convergent in the absence of knowledge of the actual
value of Z(θ). By ensuring that Z̃(θ)/c(θ) is a strict
upper bound on Z(θ), denoted by ZU , guaranteed con-
vergence of the geometric series is established. Even
if an upper bound is available, it may not be computa-
tionally practical, as upper bounds on normalising con-
stants are typically loose (see, e.g., Ghaoui and Gueye,
2009), making the ratio Z(θ)/ZU extremely small,
and, therefore, κ(θ) ≈ 1; in this case, the convergence
of the geometric series will be slow. A more pragmatic
approach is to use a pilot run at the start of each iter-
ation to characterise the location and variance of the
Z(θ) estimates, and use this to conservatively select
Z̃(θ)/c(θ) such that the series converges. Of course,
if the distribution of the estimates is not well enough
characterised, then we may not be able to guarantee
with probability 1 that |κ(θ)| < 1, and hence approxi-
mation will be introduced into the chain.

In the next section we describe an alternative to the
geometric series estimator which does not have the
practical issue of ensuring the region of convergence
is maintained.
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4.2 Unbiased Estimators Using an Exponential

Auxilliary Variable

In this section we show how the introduction of
an auxiliary variable can enable the posterior density
to be written in terms of a Taylor series expansion
of the exponential function. The introduction of ν ∼
Expon(Z(θ)) defines a joint distribution of the form of

π(θ , ν|y) =
[
Z(θ) exp

(
−νZ(θ)

)]

· f (y; θ)

Z(θ)
× π(θ) × 1

p(y)

= exp
(
−νZ(θ)

)
× f (y; θ) × π(θ) × 1

p(y)

=
[

1 +
∞∑

n=1

(−νZ(θ))n

n!

]

· f (y; θ) × π(θ) × 1

p(y)
.

Integrating over ν returns the posterior distribution
and, therefore, if we sample from this joint distribution,
our θ samples will be distributed according to the pos-
terior. As hinted at in the previous section, the methods
used to truncate the series are more computationally
feasible if the series converges quickly. Therefore, we
introduce Z̃(θ), which is preferably an upper bound on
Z(θ) or, if unavailable, some other approximation. The
exponential can then be expanded as follows:

exp
(
−νZ(θ)

)
= exp

(
−νZ̃(θ)

)

· exp
(
ν
(
Z̃(θ) −Z(θ)

))

= exp
(
−νZ̃(θ)

)

·
(

1 +
∞∑

n=1

νn

n!
(
Z̃(θ) −Z(θ)

)n
)
.

If Z̃(θ) is an upper bound on Z(θ), then its intro-
duction prevents the terms in the Taylor series from al-
ternating in sign by ensuring the exponent is positive;
this helps to reduce the impact of returning negative
estimates. Even if Z̃(θ) is not a strict upper bound, its
presence reduces the absolute value of the exponent,
which improves the convergence properties of the se-
ries, and therefore makes the truncation methods de-
scribed in the next section more efficient.

An unbiased estimator of the series is
̂exp
(
−νZ(θ)

)

= exp
(
−νZ̃(θ)

)
(4.3)

·
[

1 +
∞∑

n=1

νn

n!

n∏

i=1

(
Z̃(θ) − Ẑi(θ)

)
]
,

where {Ẑi(θ), i ≥ 1} are i.i.d. random variables with
expectation equal to Z(θ). The magnitude of the ex-
ponent can present computational barriers to the im-
plementation of this scheme; if Z(θ) is very large, it
is easier to carry out the division Ẑ(θ)/Z(θ) in (4.2)
(which can be computed in log space) than the subtrac-
tion Z(θ) − Ẑ(θ) in (4.3). On the other hand, since n!
grows faster than the exponential, this series is always
well defined (finite almost surely).

In Fearnhead, Papaspiliopoulos and Roberts (2008),
the Generalised Poisson Estimator, originally pro-
posed in Beskos et al. (2006), is employed to estimate
transition functions that are similar to (4.3). Here again,
this series is finite almost surely with finite expectation.
The choice of which estimator to employ will be prob-
lem dependent and, in situations where it is difficult
to guarantee convergence of the geometric series, this
form of estimator may be more suitable.

In the following section, we discuss the final element
of the proposed methodology: unbiased truncation of
the infinite series estimators.

5. UNBIASED TRUNCATION OF INFINITE SUMS:

RUSSIAN ROULETTE

Two unbiased estimators of nonlinear functions of
a normalising constant have been considered. Both of
them rely on the availability of an unbiased estimator
for Z(θ) and a series representation of the nonlinear
function. We now require a computationally feasible
means of obtaining the desired estimator without ex-
plicitly computing the infinite sum and without intro-
ducing any bias into the final estimate. It transpires that
there are a number of ways to randomly truncate the
convergent infinite sum S(θ) =∑∞

i=0 φi(θ) in an unbi-
ased manner. These stem from work by von Neumann
and Ulam in the 1940s; see Papaspiliopoulos (2011) for
a good review of such methods.

5.1 Single Term Weighted Truncation

The simplest unbiased truncation method is to de-
fine a set of probabilities and draw an integer index k

with probability qk , then return φk(θ)/qk as the esti-
mator. It is easy to see that the estimator is unbiased as
E{Ŝ(θ)} = ∑

k qkφk(θ)/qk = S(θ). The definition of
the probabilities should be chosen to minimise the vari-
ance of the estimator; see, for example, Fearnhead, Pa-
paspiliopoulos and Roberts (2008). An example could
be that each index is drawn from a Poisson distri-
bution k ∼ Poiss(λ) with qk = λk exp(−λ)/k!. How-
ever, in the case of a geometric series where φk(θ) =
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φk(θ), the variance of the estimator will be infinite
with this choice since the combinatorial function k!
grows faster than the exponential. Using the geomet-
ric distribution as our importance distribution, the vari-
ance is finite subject to some conditions on the choice
of p, the parameter of the geometric distribution. To
see this, note that, as k is chosen with probability qk =
pk(1 − p), the second moment E[Ŝ2] =∑∞

k=0 Ŝ2
kqk =∑∞

k=0 φ2
k/p

k(1 − p) is finite if limk→∞ |φ2
k+1/pφ2

k | <

1.

5.2 Russian Roulette

An alternative unbiased truncation that exhibits su-
perior performance in practice is based on a classic
Monte Carlo scheme, known as Russian Roulette in
the Physics literature (Lux and Koblinger, 1991, Carter
and Cashwell, 1975). The procedure is based on the
simulation of a finite random variable (stopping time)
τ according to some probabilities pn = P(τ ≥ n) > 0
for all n ≥ 0 with p0 = 1. Define the weighted partial
sums as S0 = φ0 and for k ≥ 1

Sk = φ0 +
k∑

j=1

φj

pj

.

The Russian Roulette estimate of S is Ŝ = Sτ . Rus-
sian Roulette implementations in the Physics literature
commonly choose a stopping time of the form

τ = inf{k ≥ 1 : Uk ≥ qk},
where {Uj , j ≥ 1} are i.i.d. U(0,1), qj ∈ (0,1] and
Ŝ = Sτ−1. In this case pn =∏n−1

j=1 qj .
It can be shown that the expectation of the estimate

is as required:
n∑

k=0

SkP(τ = k) =
n∑

k=0

Sk(pk − pk+1)

= φ0 +
n−1∑

k=0

Sk+1pk+1 −
n∑

k=0

Skpk+1

=
n∑

k=0

φk − Snpn+1.

By Kronecker’s lemma, limn→∞ pnSn = 0, and
|pn+1Sn| = (pn+1/pn)pn|Sn| ≤ pn|Sn| → 0, as n →
∞. We conclude that E[Ŝ(θ)] =∑∞

k=0 SkP(τ = k) =∑∞
k=0 φk = S(θ). We refer the reader to the Appendix

for a more detailed discussion relating to the variance
of such an estimator and how to design the sequence of
probabilities (pn).

Based on results presented in the Appendix, for a
geometric series where φk(θ) = φk(θ), if one chooses
qj = q , then the variance will be finite provided q >

φ(θ)2. In general, there is a trade-off between the com-
puting time of the scheme and the variance of the re-
turned estimate. If the selected qj ’s are close to unity,
the variance is small, but the computing time is high.
But if qj ’s are close to zero, the computing time is fast,
but the variance can be very high, possibly infinite. In
the case of the geometric series, φk(θ) = φk(θ), choos-
ing qj = q = φ(θ) works reasonably well in practice.

As an illustrative example, consider the joint density

p(θ , ν,u|y) = exp
(
−νZ̃(θ)

)

·
(

1 +
τθ∑

n=1

νn

qnn!

n∏

i=1

(
Z̃(θ) − Ẑi(θ)

)
)

(5.1)

· f (y; θ)π(θ)

p(y)
,

where the random variable u represents the random
variables in the estimates Ẑi(θ) and the random vari-
able used in Russian Roulette truncation, and qn =∏n

l=1 ql denotes the probabilities in the Russian
Roulette truncation. If we define a proposal for ν′ as
q(ν′|θ ′) = Z̃(θ ′) exp(−ν′Z̃(θ ′)) and a proposal for θ

′

as q(θ ′|θ), then the Hastings ratio for a transition ker-
nel with invariant density π(θ , ν,u|y) follows as

f (y; θ ′)

f (y; θ)
× Z̃(θ)

Z̃(θ ′)
× π(θ ′)

π(θ)
(5.2)

· q(θ |θ ′)

q(θ ′|θ)
× φ

(
ν, ν′, θ, θ ′),

where

φ
(
ν, ν′, θ, θ ′)

(5.3)

=
1 +∑τθ ′

m=1
(ν′)m
qmm!

∏m
j=1(Z̃(θ ′) − Ẑj (θ

′))

1 +∑τθ

n=1
νn

qnn!
∏n

i=1(Z̃(θ) − Ẑi(θ))
.

It is interesting to note that φ(ν, ν′, θ, θ ′) acts as
a multiplicative correction for the Hastings ratio that
uses the approximate normalising term Z̃(θ) rather
than the actual Z(θ). The required marginal π(θ |y)

follows due to the unbiased nature of the estimator.
The Russian Roulette methodology has been used

in various places in the literature. McLeish (2011) and
Rhee and Glynn (2012), Glynn and Rhee (2014) clev-
erly use the Russian Roulette estimator to “debias”
a biased but consistent estimator. We would like to
unbiasedly estimate X, for which we have available
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only a sequence of approximations, Xi , with E[Xi] →
E[X] as i → ∞. Define an infinite series, S = X0 +∑∞

n=1(Xn − Xn−1); an unbiased estimate of S is an
unbiased estimate of X, assuming that the estimates
are good enough to interchange expectation and sum-
mation. To achieve a computationally feasible and un-
biased estimator of X, the Roulette or Poisson trun-
cation schemes can then be applied. In the context of
our work, this provides an alternative to the geometric
or exponential series described above, in which only a
consistent estimator is required. One drawback to this
debiasing scheme for use in pseudo-marginal MCMC
is that there is no obvious way to reduce the probability
of the final estimate being negative. Russian Roulette is
also employed extensively in the modelling of Neutron
Scattering in Nuclear Physics and Ray Tracing in Com-
puter Graphics (Hendricks and Booth, 1985, Carter and
Cashwell, 1975).

Now that the complete Exact-Approximate MCMC
scheme has been detailed, the following section il-
lustrates the methodology on some models that are
doubly-intractable, considering the strengths and
weaknesses.

6. EXPERIMENTAL EVALUATION

6.1 Ising Lattice Spin Models

Ising models are examples of doubly-intractable dis-
tributions over which it is challenging to perform in-
ference. They form a prototype for priors for image
segmentation and autologistic models, for example,
Hughes, Haran and Caragea (2011), Gu and Zhu
(2001), Møller et al. (2006). Current exact methods
such as the Exchange algorithm (Murray, Ghahramani
and MacKay, 2006) require access to a perfect sam-
pler (Propp and Wilson, 1996), which, while feasible
for small grids, cannot be scaled up. A practical alter-
native is employed in Caimo and Friel (2011), where
an auxiliary MCMC run is used to approximately sim-
ulate from the model. This is inexact and introduces
bias, but it is hoped that the bias has little practical im-
pact. We compare this approximate scheme with our
exact methodology in this section.

For an N × N grid of spins, y = (y1, . . . , yN2), y ∈
{+1,−1}, the Ising model has likelihood

p(y;α,β)
(6.1)

= 1

Z(α,β)
exp

(
α

N2∑

i

yi + β
∑

i∼j

yiyj

)
,

where i and j index the rows and column of the lattice
and the notation i ∼ j denotes summation over nearest
neighbours. Periodic boundary conditions are used in
all subsequent computation. The parameters α and β

indicate the strength of the external field and the inter-
actions between neighbours, respectively. The normal-
ising constant,

Z(α,β) =
∑

Y

exp

(
α

N2∑

i

yi + β
∑

i∼j

yiyj

)
,(6.2)

requires summation over all 2N2
possible configura-

tions of the model, which is computationally infeasi-
ble even for moderately sized lattices. This is, in fact,
a naive bound as the transfer matrix method (see, e.g.,
MacKay, 2003), which has complexity N2N that can
also be used to compute the partition function.

Experiments were carried out on a small 10 × 10 lat-
tice to enable a detailed comparison of the various al-
gorithms. A configuration was simulated using a per-
fect sampler with parameters set at α = 0 and β = 0.2.
Inference was carried out over the posterior distribu-
tion p(β|y) (α = 0 was fixed). A standard Metropolis–
Hastings sampling scheme was used to sample the pos-
terior, with a normal proposal distribution centred at
the current value and acceptance rates tuned to around
40%. A uniform prior on [0,1] was set over β . As no
tight upper bound is available on the normalising term
Z(θ), the debiasing series construction of McLeish
(2011) and Glynn and Rhee (2014), described at the
end of Section 5.2, was used to construct an unbiased
estimate of the likelihood. The sequence of biased but
consistent estimates of 1/Z(θ) was produced by tak-
ing the reciprocal of unbiased SMC estimates of Z(θ)

with an increasing number of importance samples and
temperatures [see Del Moral, Doucet and Jasra (2006)
for a good introduction to SMC]. SMC proceeds by
defining a high-dimensional importance density which
is sampled sequentially, and in this case we used a geo-
metric schedule (Gelman and Meng, 1998, Neal, 2001)
to define the sequence of distributions

p(y|θ)n ∝ p(y|θ)φnU(y)1−φn,

with 0 ≤ φ1 < · · · < φp = 1 and U(·) a uniform
distribution over all the grids in Y . A Gibbs transi-
tion kernel, in which one spin was randomly selected
and updated according to its conditional distribution,
was used to sequentially sample the high-dimensional
space. The initial estimate, 1/Z(θ)0, used 100 temper-
atures and 100 importance samples; the ith estimate
used 100 × 2i temperatures and importance samples.
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TABLE 1
Monte Carlo estimates of the mean and standard deviation of the posterior distribution p(β|y) using the five algorithms described. The

debiasing series estimates have been corrected for negative estimates. The exact chain was run for 100,000 iterations and then

the second half of samples used to achieve a “gold standard” estimate. An estimate of the effective sample size (ESS) is

also shown based on 10,000 MCMC samples

Roulette Poisson Exchange (approx) Exchange (exact) Exact

Mean 0.2004 0.2005 0.2013 0.2010 0.2008
Standard deviation 0.0625 0.0626 0.0626 0.0626 0.0625
ESS 2538 2660 1727 1732 3058

The infinite series was truncated unbiasedly using
both Poisson truncation and Russian Roulette. For
comparison, the posterior distribution was also sam-
pled using the Exchange algorithm, the approximate
form of the Exchange algorithm (Caimo and Friel,
2011) with an auxiliary Gibbs sampler run for 50,000
steps at each iteration, and an “exact” MCMC chain
using the matrix transfer method to calculate the parti-
tion function at each iteration. All chains were run for
20,000 iterations and the second half of the samples
used for Monte Carlo estimates.

The exact posterior mean and standard deviation are
not available for comparison, but the estimates from the
five methods agree well (Table 1). The traces in Fig-
ure 1 show that the algorithms mix well and Figures 2
and 3 show that the estimates of the mean and standard
deviation agree well. Estimates of the Effective sample

size (ESS) are also included in Table 1, which give an
idea of how many independent samples are obtained
from each method per 10,000 samples.

Approximately 5% of estimates were negative when
using roulette truncation and 10% when using Pois-
son truncation; however, using the correction in equa-
tion (3.5), expectations with respect to the posterior
still converge to the correct values. If we had opted
to implement the geometric series construction of Sec-
tion 4.1 in order to reduce the number of negative esti-
mates, we have available only a naive upper bound for
the partition function corresponding to setting all spins
to +1. This bound is very loose and therefore imprac-
tical, as the series converges very slowly. Hence, the
availability of a method to deal with negative estimates
frees us from atrocious upper bounds that would ex-
plode the asymptotic variance of the chains.

FIG. 1. Traces of samples using the debiasing infinite series with (a) Russian Roulette, (b) Poisson truncation, and (c) the approximate

Exchange algorithm, (d) the Exchange algorithm using perfect samples and (e) an MCMC chain with the partition function calculated using

the matrix transfer method. Note in (a) and (b) the samples are not drawn from the posterior distribution, p(β|y), but from the (normalised)
absolute value of the estimated density.
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FIG. 2. Plots of the running mean for the posterior distribution p(β|y) of a 10 × 10 Ising model using three methods: (a) debiasing series

with roulette truncation, (b) debiasing series with Poisson truncation, (c) approximate Exchange, (d) the Exchange algorithm using perfect

samples and (e) an MCMC chain with the partition function calculated using the matrix transfer method.

The autocorrelation functions (Figure 4) and the ef-
fective sample size (Table 1) of both Russian Roulette
and Poisson truncation outperform the approximate
and exact Exchange algorithm in this example and are
comparable to the exact implementation; of course, it is
possible to improve the performance of our algorithm
by using more computation, whereas this is not pos-
sible with the Exchange algorithm. It should be noted
that the Exchange algorithm in this guise is less com-

putationally intensive. However, it becomes impossible
to perfectly sample as the size of the lattice increases,
whereas our algorithm can still be implemented, albeit
with considerable computational expense. Note that
even at this small lattice size, the approximate version
of Exchange looks noticeably less stable.

We have further experimented on larger lattices, for
example, we have used both the Exchange algorithm
and our methodology to carry out inference over a

FIG. 3. Plots of the running standard deviation for the posterior distribution p(β|y) of a 10 × 10 Ising model using three methods:
(a) debiasing series with roulette truncation, (b) debiasing series with Poisson truncation, (c) approximate Exchange, (d) the Exchange

algorithm using perfect samples and (e) an MCMC chain with the partition function calculated using the matrix transfer method.
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FIG. 4. Autocorrelation plots for samples drawn from the posterior distribution p(β|y) of a 10 × 10 Ising model using five methods:
(a) debiasing series with roulette truncation, (b) debiasing series with Poisson truncation, (c) approximate Exchange, (d) the Exchange

algorithm using perfect samples and (e) an MCMC chain with the partition function calculated using the matrix transfer method.

40×40 grid. At this size it is not possible to use the ma-
trix transfer method to run an “exact” chain. Sequen-
tial Monte Carlo (SMC) was used to estimate Zi(θ) at
each iteration in the Roulette implementation. The es-
timates of the means and the standard deviations from
both methods again agreed well (to the third or fourth
decimal place). We have also carried out inference over
a 60 × 60 grid; however, it is no longer possible to
perfectly sample at this size, particularly for parame-
ter values near the critical value.

6.2 The Fisher–Bingham Distribution on a Sphere

The Fisher–Bingham distribution (Kent, 1982) is
constructed by constraining a multivariate Gaussian
vector to lie on the surface of a d-dimensional unit ra-
dius sphere, Sd . Its form is

p(y|A) ∝ exp
{
y′Ay

}
,

where A is a d × d symmetric matrix and, from here
on, we take d = 3. After rotation to principle axes, A is
diagonal and so the probability density can be written
as

p(y|λ) ∝ exp

{
d∑

i=1

λiy
2
i

}
.

This is invariant under addition of a constant factor
to each λi , so for identifiability we take 0 = λ1 ≥ λ2 ≥
λ3. The normalising constant, Z(λ), is given by

Z(λ) =
∫

S

exp

{
d∑

i=1

λiy
2
i

}
μ(dy),

where μ(dy) represents the Hausdorff measure on the
surface of a sphere. Very few papers have presented
Bayesian posterior inference over the distribution due
to the intractable nature of Z(λ). However, in a re-
cent paper, Walker uses an auxiliary variable method
(Walker, 2011) outlined in the Introduction to sample
from p(λ|y). We can apply our version of the Exact-
Approximate methodology, as we can use importance
sampling to get unbiased estimates of the normalising
constant.

Twenty data points were simulated using an MCMC
sampler with λ = [0,0,−2] and posterior inference
was carried out by drawing samples from p(λ3|y),
that is, it was assumed λ1 = λ2 = 0. Our Exact-
Approximate methodology was applied using the ge-
ometric construction with Russian Roulette truncation.
A uniform distribution on the surface of a sphere was
used to draw importance samples for the estimates of
Z(λ). The proposal distribution for the parameters was
Gaussian with mean given by the current value, a uni-
form prior on [−5,0] was set over λ3, and the chain
was run for 20,000 iterations. Walker’s auxiliary vari-
able technique was also implemented for comparison
using the same prior but with the chain run for 200,000
samples and then the chain thinned by taking every
10th sample to reduce strong autocorrelations between
samples. In each case the final 10,000 samples were
then used for Monte Carlo estimates.

In the Russian Roulette method, six negative es-
timates were observed in 10,000 estimates. The es-
timates of the mean and standard deviation of the
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TABLE 2
Estimates of the posterior mean and standard deviation of the

posterior distribution using roulette and Walker’s method for the

Fisher–Bingham distribution. An estimate of the effective sample

size (ESS) is also shown based on 10,000 MCMC samples

Roulette Walker

Estimate of mean −2.377 −2.334
Estimate of standard deviation 1.0622 1.024
ESS 1356 212

posterior agree well (Table 2), however, the effec-
tive sample size and autocorrelation of the Russian
Roulette method are superior as seen in Figure 5. Note
that it is also possible to get an upper bound on the im-
portance sampling estimates for the Fisher–Bingham
distribution. If we change our identifiability constraint
to be 0 = λ1 ≤ λ2 ≤ λ3, we now have a convex sum in
the exponent which can be maximised by giving unity
weight to the largest λ, that is,

∑d
i=1 λiy

2
i < λmax. We

can compute Z̃(θ) as 1/N
∑

n exp(λmax)/g(yn), where
g(y) is the importance distribution.

7. THE LIMITS OF EXACT APPROXIMATE

METHODS: THE OZONE DATA SET

In the previous sections of this paper we have com-
bined various ideas from both the Statistics and Physics

literature to suggest a pseudo-marginal MCMC scheme
for doubly-intractable distributions. Further, we have
shown experimentally that this method can be imple-
mented in a range of Bayesian inference problems. We
now turn our attention to a case where this methodol-
ogy runs into difficulty.

It is tempting to think that the method could be used
to tackle very large problems in which, for example,
the likelihood requires the computation of the deter-
minant of a very large matrix. For many problems the
matrix in question is so large that it is not possible to
compute its Cholesky decomposition, and hence not
possible to compute the determinant. As methods are
available to produce unbiased estimates of the log de-
terminant (Bai, Fahey and Golub, 1996, Aune, Simp-
son and Eidsvik, 2014), the idea would be to write the
determinant, D(θ), as D(θ) = exp(logD(θ)) and then
use the Maclaurin series expansion of the exponential
function in which each term can be estimated unbias-
edly. The infinite series can then be unbiasedly trun-
cated using Russian Roulette methods and the over-
all estimate plugged into a pseudo-marginal MCMC
scheme. Theoretically, this is an exact scheme to sam-
ple from the posterior of such a model; however, upon
closer inspection, there are several practical difficul-
ties associated with such an approach, namely, that it
is not possible to realise a fully unbiased estimate of
the log determinant. For exposition purposes, we now

FIG. 5. Sample traces and autocorrelation plots for the Fisher–Bingham distribution for the geometric tilting with Russian Roulette trun-

cation [(a) and (b)] and Walker’s auxiliary variable method [(c) and (d)].
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describe a specific example of a posterior for which it
is difficult if not impossible to realise an unbiased es-
timate of the likelihood. In particular, we consider the
total column ozone data set that has been used many
times in the literature to test algorithms for large spa-
tial problems (Cressie and Johannesson, 2008, Jun and
Stein, 2008, Bolin and Lindgren, 2011, Aune, Simpson
and Eidsvik, 2014, Eidsvik et al., 2014). This data set
is representative of the types of problems for which ex-
act Markov chain Monte Carlo is considered infeasible.
While large, this data set is still of a size to run exact
inference on and it serves as an interesting example of
a problem in which the methods discussed in this paper
break down. Full details and an implementation can be
found at http://www.ucl.ac.uk/roulette.

We begin by describing the model and inference
problem, and then suggest reasons why an application
of the pseudo-marginal approach may run into difficul-
ties. We close by describing results we were able to
obtain and giving pointers to alternative approaches for
similar problems.

7.1 The Model

The data, which is shown in Figure 6, consists of
N = 173,405 ozone measurements gathered by a satel-
lite with a passive sensor that measures back-scattered
light (Cressie and Johannesson, 2008). While a full
analysis of this data set would require careful mod-
elling of both the observation process and the uncer-
tainty of the field, for the sake of simplicity, we will
focus on fitting a stationary model.

We model the data using the following three-stage
hierarchical model:

yi |x, κ, τ ∼ N
(
Ax, τ−1I

)
,

x|κ ∼ N
(
0,Q(κ)−1),(7.1)

κ ∼ log2 N (0,100), τ ∼ log2 N (0,100),

where Q(κ) is the precision matrix of a Matérn
stochastic partial differential equation (SPDE) model
defined on a fixed triangulation of the globe and A is
a matrix that evaluates the piecewise linear basis func-
tions in such a way that x(si) = [Ax]i . The parameter κ

controls the range over which the correlation between
two values of the field is essentially zero (Lindgren,
Rue and Lindström, 2011). The precision matrix Q(κ)

is sparse, which allows both for low-memory storage
and for fast matrix-vector products.

In this paper, the triangulation over which the SPDE
model is defined has n = 196,002 vertices that are
spaced regularly around the globe, allowing piecewise
linear spatial prediction. As the observation process is
Gaussian, a straightforward calculation shows that

x|y, κ, τ ∼ N
(
τ
(
Q(κ) + τAT A

)−1
AT y,

(7.2) (
Q(κ) + τAT A

)−1)
.

Given the hierarchical model in (7.1), we are in-
terested in the parameters κ and τ only. To this end,
we sample their joint posterior distribution given the
observations y, marginalised over the latent field x,

FIG. 6. The total ozone column data set, aligned with a map of the world.

http://www.ucl.ac.uk/roulette
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which gives π(κ, τ |y) ∝ π(y|κ, τ )π(κ)π(τ). To com-
pute this expression, we need the marginal likelihood
π(y|κ, τ ), which in this case is available analytically
since π(y|x, τ ) and π(x|κ) are both Gaussian,

π(y|κ, τ ) =
∫

π(y|x, κ, τ )π(x|κ)dx

(7.3)
= N

(
0, τ−1I + AQ(κ)−1AT ).

Using the matrix inversion lemma to avoid storing
nonsparse matrices, the log marginal likelihood is

2L(θ) := 2 logπ(y|κ, τ )

= C + log
(
det
(
Q(κ)

))
+ N log(τ )

(7.4)
− log

(
det
(
Q(κ) + τAT A

))

− τyT y + τ 2yT A
(
Q(κ) + τAT A

)−1
AT y.

7.2 Likelihood Estimation and Russian Roulette

In order to apply a pseudo-marginal MCMC scheme,
we require an unbiased estimate of (7.3), for which we
first need to compute unbiased estimates of the log-
likelihood (7.4). Those are then plugged into a Rus-
sian Roulette truncated Maclaurin expansion of the ex-
ponential function, exp(L(θ)) =∑∞

n=0
L(θ)n

n! [after re-
placing each L(θ) with an unbiased estimate], to obtain
the required unbiased estimate of the overall Gaussian
likelihood (7.3).

To construct an unbiased estimator of (7.4), the main
challenge is to estimate log(det(Q)). We note that

log
(
det(Q)

)
= tr

(
log(Q)

)
= Ez

(
zT log(Q)z

)
,(7.5)

where z is a vector of i.i.d. centred, unit variance ran-
dom variables (Bai, Fahey and Golub, 1996). There-
fore, an unbiased estimator of the log-determinant can
be constructed through Monte Carlo estimates of the
expectation with respect to the distribution of z. Aune,
Simpson and Eidsvik (2014) used rational approxima-
tions and Krylov subspace methods to compute each
log(Q)z in (7.5) to machine precision, and they intro-
duced a graph colouring method that massively reduces
the variance in the Monte Carlo estimator. This ap-
proach is both massively parallel and requires a low-
memory overhead, as only O(1) large vectors need to
be stored on each processor.

However, as already mentioned, several issues are
foreseeable when applying the pseudo-marginal
MCMC scheme to the posterior. We emphasize two
main points here:

1. Numerical linear algebra: In order to compute es-
timates of the log-likelihood (7.4), we need to solve
a number of sparse linear systems. More precisely,
we apply the methodology of Aune, Simpson and
Eidsvik (2014), which reduces computing each log-
determinant to solving a family of shifted linear equa-
tions for each of the log(Q)z in (7.5). In addition, we
need to solve the matrix inversions in (7.4). Note that
each sparse linear system is independent and may be
solved on its own separate computing node. Speed of
convergence for solving these sparse linear systems
largely depends on the condition number of the under-
lying matrix—the ratio of the largest and the smallest
eigenvalues. In this example, the smallest eigenvalue
of Q(κ) is arbitrarily close to zero, which catastroph-
ically affects convergence of the methods described in
Aune, Simpson and Eidsvik (2014). We can partially
overcome these practical issues by regularising the ma-
trix’s smallest eigenvalue via adding a small number
to the diagonal, shrinking the condition number using
preconditioning matrices for the conjugate gradient,
and setting a large iteration limit for the linear solvers.
These convergence problems are typical when consid-
ering spatial models, as the eigenvalues of the continu-
ous precision operator are unbounded. This suggests a
fundamental limitation to exact-approximate methods
for these models: it is impossible to attain full floating
point precision when solving these linear systems, and
hence the resulting Markov chain cannot exactly target
the marginal posterior density π(κ, τ |y).

2. Scaling: A big challenge for practically imple-
menting the Russian Roulette step is the large amount
of variability in the estimator for (7.4), which is am-
plified by Russian Roulette. Denote by L̂(θ) − U the
unbiased estimator of the log-likelihood in equation
(7.4), shifted towards a lower bound (see below) to re-
duce its absolute value. When the variance of the log-
determinant estimator is large, the exponential series
expansion will converge slowly and we will need to
keep a large number of terms in order to keep the vari-
ance of the overall estimate low. We can get around this
by borrowing the idea of “scaling-and-squaring” from
numerical analysis (Golub and Van Loan, 1996).

We find an integer E ∈ N with E ≈ L(θ) − U , for
example, by averaging over a number of estimates. We
then write

exp
(
L(θ) − U

)
=
(

exp
(
L(θ) − U

E

))E

.(7.6)

In order to compute an unbiased estimate for this ex-
pression, we need to multiply E unbiased estimates of
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exp{(L(θ)−U)/E}, each of which we can obtain using
Russian Roulette. This is now an easier problem since
(L(θ)−U)/E ≈ 1 is close to one. Therefore, the expo-
nential series converges rapidly so that we only need a
few estimates for (L(θ) − U)/E in order to obtain one
estimate of exp{(L(θ) − U)/E}. The fact that a lower
bound for L(θ) is unavailable compromises unbiased-
ness of the estimator. In practice, this, however, was
not measurable and drastically improved run-time.

7.3 Results and Remarks on Approximate

Schemes

As this model is sufficiently small to (with some
effort) perform exact inference, we began by finding
the exact marginal posterior π(κ, τ |y), which is shown
in Figure 7. The resulting density is relatively simple,
which suggests that an appropriately scaled random
walk Metropolis algorithm is sufficient for exploring
it. As expected, in contrast to the other cases exam-
ined in this paper, we found that the Russian Roulette
random walk Metropolis chain failed to converge for
this problem: the chain exhibited catastrophic sticking
and therefore extremely high autocorrelation. This is
likely due to a combination of (a) our approximations
in the log-likelihood estimator (due to the ill-posed lin-
ear systems), (b) the variation of the log-determinant
estimator due to slow convergence of the linear solvers,
and (c) the bias due to introducing the above scaling
trick to the Russian Roulette scheme.

The fact that it is infeasible to realise a genuinely
unbiased estimate of the normalising term for a model
of this nature and size may mean that the Russian
Roulette framework (and perhaps the entire concept of
exact-approximate methods) is not the right approach
for this type of model. We note that it has been shown
previously in the literature that there are limitations to
the efficiency of the pseudo-marginal scheme. For ex-
ample, Sherlock et al. (2015) established results on op-

timal scaling and acceptance rate which indicate com-
promised efficiency when using the scheme. We close
with the remark that compromising the ambitious goal
of performing full and exact Bayesian inference on this
problem might be a reasonable approach for practition-
ers who are interested in using models of the above
type for solving large-scale problems. Recently, there
has been an increased interest in approximate Markov
transition kernels that allow such trade-off between
computing time and introduced bias. Most of those
methods are based on subsampling available obser-
vations in the Big Data case (Bardenet, Doucet and
Holmes, 2014, Korattikara, Chen and Welling, 2014,
Welling and Teh, 2011), and are therefore not avail-
able for the described ozone model, where we aim to
do inference for a single observation. Similarly, the Ex-
change algorithm (Murray, Ghahramani and MacKay,
2006) is unavailable due to sampling from the likeli-
hood being infeasible.

Using an approximate Markov transition kernel, in-
duced from any approximation to the likelihood, leads
to a chain whose invariant distribution is not equal
to the true marginal posterior. Recently, Alquier et al.
(2014) reviewed and analysed many cases of such ap-
proximate MCMC algorithms. A weak form of conver-
gence is given by Alquier et al. (2014) (Theorem 2.1),
which states that a Markov chain induced by an ap-
proximate transition kernel which approaches its exact
version in the limit has an invariant distribution and
this converges to the desired distribution as the kernel
converges to the exact kernel under certain conditions.
Theoretically, it is possible to apply this approach to
the ozone example, as we can get a biased estimator for
the log-likelihood via avoiding the Russian Roulette,
and this kernel becomes exact when we use a very
large number of iterations in the linear solvers. How-
ever, the slow convergence of the solvers remains a
problem and in fact leads to such large variation in

FIG. 7. Histograms of the marginals p(log2(τ )|y) (left) and p(log2(κ)|y) (right).
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the log-likelihood estimate that again the chain catas-
trophically sticks. It would seem, for the moment, that
further approximation is required in order to carry out
Bayesian inference. For example, in Shaby (2014), it
is suggested that a function other than the likelihood,
for example, a composite likelihood, can be used in
an MCMC scheme to obtain samples from a “quasi-
posterior” which can then be rotated and scaled to give
asymptotically valid estimates.

8. DISCUSSION AND CONCLUSION

The capability to perform pseudo-marginal MCMC
on a wide class of doubly-intractable distributions has
been reviewed and established in this paper. The meth-
ods described are not reliant on the ability to simulate
exactly from the underlying model, only on the avail-
ability of unbiased estimates of the inverse of a nor-
malising term, which makes them applicable to a wider
range of problems than has been the case to date.

The development of this method, which returns an
unbiased estimate of the target distribution, is based
on the stochastic truncation of a series expansion of
the desired density. If the intractable likelihood is com-
posed of a bounded function and nonanalytic normalis-
ing term, then the proposed methodology can proceed
to full MCMC with no further restriction. However, in
the more general case, where an unbounded function
forms the likelihood, then the almost sure guarantee of
positive unbiased estimates is lost. The potential bias
induced due to this lack of strict positivity is dealt with
by adopting a scheme employed in the QCD literature
where an absolute measure target distribution is used in
the MCMC and the final Monte Carlo estimate is “sign
corrected” to ensure that expectations with respect to
the posterior are preserved. The inflation of the Monte
Carlo error in such estimates is a function of the sever-
ity of the sign problem and this has been characterised
in our work. What has been observed in the experimen-
tal evaluation is that, for the examples considered, the
sign problem is not such a practical issue when the vari-
ance of the estimates of the normalising terms is well
controlled and this has been achieved by employing
Sequential Monte Carlo Sampling in some of the ex-
amples. Hence, one of the areas for future work is effi-
cient estimators of the normalising term, which can be
either unbiased or merely consistent. Indeed, for the to-
tal column ozone data set, it is not possible at present to
realise a completely unbiased estimate of log(det(Q)),
as is required for the pseudo-marginal methodology.

The inherent computational parallelism of the method-
ology, due to it only requiring a number of indepen-
dent estimates of normalising constants, indicates that
it should be possible to implement this form of infer-
ence on larger models than currently possible, however
it is also clear that there is some limit to how much the
method can be scaled up. For the time being, approx-
imate methods described in Section 2 can be used for
very large-scale models, for example, analytic approx-
imations to the posterior (Rue, Martino and Chopin,
2009) or ABC (Moores, Mengersen and Robert, 2014)
could be used.

It has been shown (Jacob and Thiery, 2013) that it
is not possible to realise strictly positive estimates of
the target distribution using the series expansions de-
scribed in this paper, unless the estimates of the nor-
malising term lie in a bounded interval. In its most
general representation it is recognised that the sign
problem is NP-hard, implying that a practical and el-
egant solution may remain elusive for some time to
come. However, other ideas from the literature, such
as the absolute measure approach (Lin, Liu and Sloan,
2000), can be used to tackle the sign problem. The
methodology described in this paper provides a gen-
eral scheme with which Exact-Approximate MCMC
for Bayesian inference can be deployed on a large class
of statistical models. This opens up further opportuni-
ties in statistical science and the related areas of sci-
ence and engineering that are dependent on simulation-
based inference schemes.

APPENDIX A: RUSSIAN ROULETTE

Consider approximating the sum S = ∑
k≥0 αk as-

sumed finite. Let τ denote a finite random time taking

positive integer values such that pn
def= P(τ ≥ n) > 0

for all n ≥ 0. The fact that τ is finite almost surely
means that

P(τ = ∞) = lim
n→∞pn = 0.(A.1)

We consider the weighted partial sums S0 = α0, and
for k ≥ 1,

Sk = α0 +
k∑

j=1

αj

pj

.

For completeness, we set S∞ = ∞. The Russian
Roulette random truncation approximation of S is

Ŝ = Sτ .

If τ can be easily simulated and the probabilities pn

are available then Ŝ can be computed. The next result
states that Ŝ is an unbiased estimator of S.
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PROPOSITION A.1. The random variable Ŝ has fi-

nite expectation, and E(Ŝ) = S.

PROOF. Set S̄0 = |α0|, and S̄k = |α0|+
∑k

j=1 |αj |/
pj . Then for all n ≥ 1

n∑

k=0

|Sk|P(τ = k)

≤
n∑

k=0

S̄kP(τ = k) =
n∑

k=0

S̄k(pk − pk+1)

= S̄0p0 +
n∑

k=1

(S̄k − S̄k−1)pk

+
n∑

k=1

S̄k−1pk −
n∑

k=0

S̄kpk+1

=
n∑

k=0

|αk| − S̄npn+1 ≤
n∑

k=0

|αk|.

Since
∑

n |αn| < ∞, we conclude that
∑

n |Sn|P(τ =
n) < ∞, hence E(|Ŝ|) < ∞. A similar calculation as
above gives for all n ≥ 1,

n∑

k=0

SkP(τ = k) =
n∑

k=0

αk − Snpn+1.

By Kronecker’s lemma limn→∞ pnSn = 0, and
|pn+1Sn| = (pn+1/pn)pn|Sn| ≤ pn|Sn| → 0, as n →
∞. We conclude that E(Ŝ) = ∑∞

k=0 SkP(τ = k) =∑∞
k=0 αk . �

This random truncation approximation of the series∑
n αn is known in the Physics literature as Russian

Roulette. It has been re-derived apparently indepen-
dently by McLeish (2011). In the Physics literature it
is common to choose τ as a stopping time of the form

τ = inf{k ≥ 1 : Uk ≥ qk},

where {Uj , j ≥ 1} are i.i.d. U(0,1), qj ∈ (0,1] and
Ŝ = Sτ−1. In this case pn =∏n−1

j=1 qj . The random time
τ can be thought as the running time of the algorithm. It
is tempting to choose τ such that the Russian Roulette
terminates very quickly. The next result shows that the
resulting variance will be high, possibly infinite.

PROPOSITION A.2. If

∑

n≥1

|αn|
pn

sup
j≥n

∣∣∣∣∣

j∑

ℓ=n

αℓ

∣∣∣∣∣< ∞,

then Var(Ŝ) < ∞ and

Var(Ŝ) = α2
0 +

∑

n≥1

α2
n

pn

+ 2
∑

n≥1

αnSn−1 − S2.

If {αn} is a sequence of nonnegative numbers and∑
n≥1 αnSn−1 = ∞, then Var(Ŝ) = ∞.

PROOF. Var(Ŝ) = E(Ŝ2) − S2. So it suffices to
work with E(Ŝ2). E(Ŝ2) = ∑∞

k=0 S2
kP(τ = k) =

limn→∞
∑n

k=0 S2
kP(τ = k). For any n ≥ 1, we use the

same telescoping trick used in Proposition A.1 to get

n∑

k=0

S2
kP(τ = k)

=
n∑

k=0

S2
k−1(pk − pk+1)(A.2)

= α2
0 +

n∑

k=1

α2
k

pk

+ 2
n∑

k=1

αkSk−1 − S2
npn+1.

By Jensen’s inequality S2
n ≤ (

∑n
k=1 p−1

k ) ×
(
∑n

k=1 p−1
k α2

k ). Hence, using Kronecker’s lemma, we
see that

pn+1S
2
n ≤ pnS

2
n

≤
(
pn

n∑

k=1

1

pk

)(
n∑

k=1

α2
k

pk

)
(A.3)

= o

(
n∑

k=1

α2
k

pk

)
, as n → ∞,

so it suffices to show that the sequence
∑n

k=1
α2

k

pk
+∑n

k=1 αkSk−1 is bounded. But
∣∣∣∣∣

n∑

j=1

α2
k

pk

+
n∑

k=1

αkSk−1

∣∣∣∣∣

=
∣∣∣∣∣α0

n∑

j=0

αj +
n∑

j=1

αj

pj

(
n∑

k=j

αk

)∣∣∣∣∣

≤ |α0|
∑

j≥0

|αj | + sup
n

n∑

j=1

|αj |
pj

∣∣∣∣∣

n∑

k=j

αk

∣∣∣∣∣,

and the two terms on the right-hand side are bounded
under the stated assumptions. Therefore the series∑

n S2
nP(τ = n) is summable and the variance formula

follows by taking the limit as n → ∞ in (A.2).
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To establish the rest of the proposition, we deduce
from (A.3) that for n large enough

n∑

k=1

S2
kP(τ = k) ≥ α2

0 + 2
n∑

k=1

αkSk−1,

which easily implies the statement. �

REMARK A.1. As an example, for a geometric se-
quence αi = αi for α ∈ (0,1), and we choose qi = q

for some q ∈ (0,1), then for α2/q < 1, the condition
of Proposition A.2 are satisfied and Var(Ŝ) < ∞. If
q > α2 the variance is infinite. The average comput-
ing time of the algorithm is E(τ̂ ) = 1

1−q
. Although this

variance/computing speed trade-off can be investigate
analytically, a rule of thumb that works well in simula-
tions is to choose q = α.

APPENDIX B: COMPUTING ABSOLUTE MEASURE

EXPECTATIONS

Let (X,B) denotes a general measure space with
a reference sigma-finite measure dx. Let π : X → R

a function taking possibly negative values such that∫
|π(x)|dx < ∞. We assume that

∫
π(x)dx > 0 and

we wish to compute the quantity

I =
∫

h(x)π(x) dx∫
π(x)dx

,

for some measurable function h : X → R such
that

∫
|h(x)π(x)|dx < ∞. We introduce σ(x) =

sign(π(x)), and p(x) = |π(x)|∫
|π(x)|dx

. Thus p is a prob-
ability density on X. Suppose that we can construct an
ergodic Markov chain {Xn, n ≥ 0} with invariant dis-
tribution p, for instance using the Metropolis–Hastings
algorithm. An importance sampling-type estimate for
I is given by

În =
∑n

k=1 σ(Xk)h(Xk)∑n
k=1 σ(Xk)

.

În has the following properties.

PROPOSITION B.1.

1. If the Markov chain {Xn, n ≥ 0} is phi-irreducible

and aperiodic, then În converges almost surely to I as

n → ∞.
2. Suppose that {Xn, n ≥ 0} is geometrically er-

godic and
∫

|h(x)|2+εp(x)dx < ∞ for some ε > 0.
Then

√
n(În − I )

w→ N
(
0, σ 2(h)

)
,

where

σ 2(h) = C11 + I 2C22 − 2IC12

r2 ,

and

C11 = Varp
(
{hσ }(X)

)

·
∞∑

j=−∞
Corrp

(
{hσ }(X),P |j |{hσ }(X)

)
,

C22 = Varp
(
σ(X)

) ∞∑

j=−∞
Corrp

(
σ(X),P |j |σ(X)

)
,

C12 = 1

2

√
Varp

(
{hσ }(X)

)
Varp

(
σ(X)

)

·
[ ∞∑

j=−∞
Corrp

(
{hσ }(X),P |j |σ(X)

)

+
∞∑

j=−∞
Corrp

(
σ(X),P |j |{hσ }(X)

)
]
.

PROOF. Part (1) is a straightforward application
of the law of large numbers for the Markov chain
{Xn, n ≥ 0}: as n → ∞, În converges almost surely to

∫
σ(x)h(x)p(x) dx∫

σ(x)p(x) dx
=
∫

h(x)π(x) dx∫
π(x)dx

= I.

A bivariate central limit theorem using the Cramer–
Wold device gives that

√
n

⎛
⎜⎜⎜⎜⎝

1

n

n∑

k=1

σ(Xk)h(Xk) − rI

1

n

n∑

k=1

σ(Xk) − r

⎞
⎟⎟⎟⎟⎠

w→
(

Z1
Z2

)
∼ N

[(
0
0

)
,

(
C11 C12
C12 C22

)]
,

where C11,C12 and C22 are as given above.

By the delta method, it follows that
√

n(În − I )
w→

Z1−IZ2
r

∼ N(0, C11+I 2C22−2IC12
r2 ). �

We can roughly approximate the asymptotic vari-
ance σ 2(h) as follows. Suppose for simplicity that the
Markov chain is reversible, so that

C12 =
√

Varp
(
{hσ }(X)

)
Varp

(
σ(X)

)

·
∞∑

j=−∞
Corrp

(
{hσ }(X),P |j |σ(X)

)
.
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Assume also that the mixing of the Markov chain is
roughly the same across all the functions:

∞∑

j=−∞
Corrp

(
{hσ }(X),P |j |{hσ }(X)

)

=
∞∑

j=−∞
Corrp

(
σ(X),P |j |σ(X)

)

=
∞∑

j=−∞

Corrp(σ (X),P |j |{hσ }(X))

Corrp(σ (X), {hσ }(X))
≡ V,

where we also assume that Corrp({hσ }(X), σ (X)) = 0.
Therefore

σ 2(h)

V
≈
(
Varp

(
{hσ }(X)

)
+ I 2Varp

(
σ(X)

)

− 2ICovp

(
{hσ }(X), σ (X)

))
/r2

= rπ̌(h2σ) + I 2 − 2Irπ̌(hσ)

r2 ,

where π̌ = π/
∫

π , and π̌(f ) =
∫

f (x)π̌(x) dx. By a
Taylor approximation of (h, σ ) �→ h2σ around (π̌(h),

π̌(σ )), it comes easily that rπ̌(h2σ) = π̌(h2) +
2Irπ̌(hσ) − 2I 2, so that

σ 2(h) ≈
(
π̌
(
h2)− I 2)× V

r2 .

Thus a quick approximation of the Monte Carlo vari-
ance of În is given by

1

n
×
{∑n

k=1 h2(Xk)σ (Xk)∑n
k=1 σ(Xk)

−
(∑n

k=1 h(Xk)σ (Xk)∑n
k=1 σ(Xk)

)2}

· V̂

{1/n
∑n

k=1 σ(Xk)}2
,

where V̂ is an estimate of the common autocorrelation
sum. For example V̂ can be taken as the lag-window
estimate of

∑∞
j=−∞ Corrp({hσ }(X),P |j |{hσ }(X)).

The quantity 1
n

∑n
k=1 σ(Xk) which estimates r is in-

dicative of the severity of the issue of returning nega-
tive estimates. The smaller r , the harder it is to estimate
I accurately.
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