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SUMMARY
The log-rank test is commonly used to test the equivalence of two survival distributions under
right censoring. Jung et al. (2005) proposed a modified log-rank test for noninferiority trials and
its corresponding sample size calculation. In this paper, we extend the use of the modified log-
rank test for clinical trials with various types of non-conventional study objectives and propose its
sample size calculation under general null and alternative hypotheses. The proposed formula is so
flexible that we can specify any survival distributions and accrual pattern. The proposed methods
are illustrated with designing real clinical trials. Through simulations, the modified log-rank test
and the derived formula for sample size calculation are shown to have satisfactory small sample
performance.
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1 INTRODUCTION
In clinical trials, it is often of interest to compare the survival distribution of an experimental
therapy, denoted by arm 2, with that of a standard (or control) therapy, denoted by arm 1. In
practice, a proportional hazards model is assumed. Let Λk(t) denote the cumulative hazard
function of arm k(= 1, 2) and Δ = Λ2(t)/Λ1(t) the hazard ratio. By the standard log-rank test
(Peto and Peto, 1972), we usually test a null hypothesis that two arms have identical survival
distributions against an alternative hypothesis that the experimental arm has a longer
survival, i.e. H0 : Δ = 1 against H1 : Δ < 1 using the standard log-rank test. We will refer to
such trials as superiority trials. Sample size for a superiority trial can be calculated under the
alternative hypothesis that H1 : Δ = Δ1 for a pre-specified clinically significant hazard ratio
Δ1(< 1) (see e.g., George and Desu, 1973; Schoenfeld, 1983; Lakatos, 1988; Yateman and
Skene, 1992).

In many cases, the experimental therapy may be less extensive, less toxic or less expensive
than the standard therapy. In this case, the former may be acceptable so long as there is
evidence that it is not worse than the latter. Thus, we may want to prove that an
experimental therapy is stochastically equal or not inferior to the standard therapy. That is,
with a given non-inferiority margin (the maximal hazard ratio of clinical insignificance)
Δ0(> 1), H0 : Δ ≥ Δ0 against H1 : Δ < Δ0 using the non-inferiority log-rank test, e.g., Jung
et al. (2005). In a non-inferiority trial, the experimental therapy can be hardly as efficacious
as the control, so that we often want to show that the survival distributions are identical
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between two arms. Thus, we calculate the sample size under H1 : Δ = 1, see e.g., Chow,
Shao and Wang (2003) and Jung et al. (2005).

Generalizing superiority and non-inferiority trials, we consider calculating the sample size
for H0 : Δ = Δ0 against H1 : Δ = Δ1 with Δ0 ≥ Δ1. We have Δ0 = 1 for superiority trials and
Δ1 = 1 for non-inferiority trials. In general, a non-inferiority margin is so small (e.g., Δ0 ≈
1.1 contrary to a usual superiority margin Δ1 ≈ 1.5), so that the required sample size
becomes very big. However, possibly due to lower adverse event, a moderate chemotherapy
may be able to extend the survival of cancer patients compared to a standard aggressive
chemotherapy. In this case, by using Δ0 larger than 1 and Δ1 smaller than 1, we can lower
the sample size, and the effect size Δ0/Δ1 may be close to that of a superiority trial.

For illustration, we consider an example concerning a randomized phase II trial for patients
with locally advanced nasopharyngeal carcinoma. A high dose (arm 1) chemotherapy A
concurrent with radiotherapy is a standard treatment for the patient population. However, the
high dose chemotherapy is not well tolerated by most patients. So, we want to investigate a
low dose (arm 2) concurrent chemotherapy A administered more frequently (weekly vs.
every 3 weeks). It is known that the high dose chemotherapy has a 3-year progression-free
survival (PFS) of S1(3) = 0.75, corresponding to a hazard rate of λ1 = 0.096 under an
exponential model. In the new randomized phase II trial, we will not be interested in the low
dose chemotherapy if its 3-year PFS is S2(3) = 0.65 or lower, corresponding to Δ0 = 1.4974,
and will be very much interested in it if its 3-year PFS is S2(3) = 0.8 or higher,
corresponding to Δ1 = 0.7757 under an exponential model. It is believed that the low
expected adverse events and more frequent administration will possibly extend the PFS for
arm 2 slightly beyond that of arm 1.

Note that the cumulative hazard function for the control arm Λ1(t) is identical under both H0
and H1. Assuming the proportional hazards model, the cumulative hazard function for the
experimental arm is Λ2(t) = Δ0Λ1(t) under H0 and Λ2(t) = Δ1Λ1(t) under H1. Hence, the
survival distributions for a sample size calculation can be specified by (Λ1(t), Δ0, Δ1).

In the next section, a generalized log-rank test is derived under general null and alternative
hypotheses. A formula for sample size calculation is proposed in Section 3. The practical
application of the proposed sample size calculation method is presented in Section 4. A brief
discussion is given in the last section.

2 THE GENERALIZED LOG-RANK TEST
Let nk denote the sample size in arm k and Tki the survival time for subject i in arm k (1 ≤ i
≤ nk; k = 1, 2). Then we usually observe (Xki, δki), where Xki is the minimum of Tki and the
censoring time and δki is an event indicator taking 1 if the subject had an event and 0
otherwise.

For arm k, Tk1, …, Tk,nk are IID with hazard function λk(t). Under the proportional hazards
assumption, Δ = λ2(t)λ1(t) denotes the hazard ratio. By Cox (1972), the partial score

function W (Δ) and the information function  are given as

and
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where  is the Aalen-Nelson estimator (Aalen, 1978; Nelson, 1969)

for the cumulative hazard function ,  and

 are the at-risk process and the event process for group k,
respectively, N(t) = N1(t) + N2(t), and I(·) is the indicator function. Note that W (1) is the
standard log-rank test statistic (Peto and Peto, 1972). We call W (Δ) the generalized log-
rank test in this paper.

As n → ∞and nk/n → pk ∈ (0, 1), W (Δ0)/σ(Δ0) converges to the standard normal
distribution under H0 : Δ = Δ0, see e.g. Fleming and Harrington (1991). Let z1−α denote the
100(1 − α) percentile for the standard normal distribution. Then we reject H0, in favor of
H1 : Δ < Δ0, if W (Δ0)/σn(Δ0) > z1−α with one-sided type I error rate α.

The partial MLE  is obtained by solving W (Δ) = 0. The MLE is a consistent estimator of
the true hazard ratio. Furthermore, by the asymptotic linearity, the score-type test statistic W

(Δ0)/σn(Δ0) is asymptotically equivalent to the Wald-type test statistic , so
that our sample size formula derived in the following section is valid for both types of test
statistics.

3 SAMPLE SIZE FORMULA
We want to estimate the sample size n under a specific alternative hypothesis that H1 : Δ =
Δ1(<Δ0) with a desired power. Jung et al. (2005) proposed a sample size formula with Δ0 >
1 and Δ1 = 1 for designing non-inferiority trials. This paper is to extend their formula for
general Δ0 and Δ1 with Δ1 < Δ0. Let pk = nk/n denote the allocation proportion for arm k
and n = n1 + n2.

The asymptotic results in this section are derived under H1. Let Sk(t) and fk(t) = −∂Sk(t)∂t
denote the survival and probability density functions, respectively, for arm k under H1. Note
that S2(t) = S1(t)Δ1 and f2(t) = Δ1f1(t)S1(t)Δ1−1 under H1. For a censoring variable C, let
G(t) = P (C ≥ t) denote the survivor function of the censoring distribution which is common

in two arms. By Jung et al. (2005),  is asymptotically equivalent to nσ2(Δ), where

(1)

By the definition of W (Δ), we have

which is asymptotically equivalent to nω, where

(2)
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The integrals in (1) and (2) are calculated using a numerical method.

Under H1, the generalized log-rank test statistic can be expressed as

which, from (1) and (2), can approximated by

where  for l = 0, 1.

Suppose that we want to estimate the sample size for detecting H1 : Δ = Δ1 with a power of
1 − β by the generalized log-rank test with a one-sided α at H0 : Δ = Δ0, i.e.

Since W (Δ1)/σ1 is approximately N(0, 1) under H1, we have

Hence the required sample size is obtained as

(3)

Note that ω,  and  are functions of the survival distributions S1(t) and S2(t) under H1,
and the common censoring distribution G(t). They are calculated using numerical methods.

The power of the generalized log-rank test roughly depends on the number of events, rather
than the number of patients, so that one may want to calculate the expected number of
events at the final data analysis. The number of events D is calculated as in the standard log-

rank test, i.e. D = n(p1d1 + p2d2), where , see e.g. Schoenfeld (1983).
Note that if the survival distributions are shorter, then the required sample size is smaller.

3.1 SOME PRACTICAL INPUT PARAMETER SETTINGS
In this section, we will illustrate the application of the proposed methods when designing a
clinical trial for comparing survival distributions with right censoring as follows.

(A) An exponential distribution can be uniquely specified by a single parameter,
such as the hazard rate, the median or the survival probability at a chosen time
point. Furthermore, the family of exponential distributions fit real survival data
relatively well. So, we often specify the survival distributions using exponential
distributions with hazard rates λk, Sk(t) = exp(−λkt).
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(B) When a trial is open, patients are usually uniformly recruited during an accrual
period a and additional follow-up period b. In this case, we have

Note that these assumptions can be easily extended to non-exponential survival models and
a non-uniform censoring (accrual) distribution. Further, we assume that there is no loss to
follow-up by (B), but it can be easily extended to account for possible loss to follow-up, see
Jung, Kim and Chow (2008).

3.2 WHEN AN ACCRUAL RATE IS SPECIFIED
In Section 3.1, we assume that the accrual period is known. In designing a clinical trial,
however, we can estimate the accrual pattern, rather than an accrual period, based on the
experience from previous studies on the same patient population. For example, we may
assume that patients are expected to be entered to the study at an rate of r during accrual
period based on the number of patients treated by the member sites recently. In this case, (B)
is replaced by:

(B′) Patients are accrued following a Poisson distribution with rate r, and are
followed for a period b after the completion of accrual.

With (λ1, Δ0, Δ1, α, 1 − β, p1, b) specified, ω = ω(a) and σl = σl(a) are functions of a.
Hence, under (A) and (B), (3) is expressed as

(4)

On the other hand, under the Poisson accrual distribution (B′), we have

(5)

By equating the right hand sides of (4) and (5), we obtain an equation on a,

(6)

Equation (6) is solved using a numerical method, such as bisection method. Let a* denote
the solution to equation (6). Then, given an accrual rate r, instead of an accrual period a, we
obtain the sample size by n = a* × r. The procedure for a sample size calculation may be
summarized as follows.

[1] Specify the input variables:

• Type I and II error probabilities, (α, β)

• Allocation proportions, p1, p2

• Hazard rate λ1 for the control arm under exponential survival model,
and hazard ratios Δ0 and Δ1 under H0 and H1, respectively

• Accrual rate r, and follow-up period b

[2] Solve
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with respect to a using the bisection method, where

and

[3] For the solution a = a* to the equation in [2], the required sample size is given as
n = a*×r.

3.3 UNDER GENERAL ACCRUAL PATTERNS
In (B′), we assume a constant accrual rate over the whole accrual period. Usually in a multi-
center trial, however, it takes a while (e.g. 1 to 2 years) until the study is approved by the
institutional review boards of the study centers and the accrual rate is stabilized. Let h(t) for
t ≥ 0 be the function representing the pattern of patient accrual over time period. For
example, if we expect that the accrual will be linearly increasing for the first a0 years, called
a run-in time, and maintain a constant accrual of r per year after then, then we have

(7)

This is similar to the piecewise linear accrual pattern considered by Yateman and Skene
(1992). Given an accrual period of a and an accrual function h(t), (5) is extended to

(8)

The accrual function h(t) is related to the censoring distribution function G(t) as follows. Let
E denote the entry time of a patient in the study. The probability density function of E is
expressed as
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Since C = a + b − E, the survivor function of C, G(t) = P (C ≥ t), is given as

(9)

By calculating ,  and ω(a) using this G(t) and equating the right hand sides of (4)
and (8), we obtain an equation on a for a general accrual pattern. Using the solution a* to

this equation, we obtain the required sample as .

Combining (8) and (9), we calculate the probability to observe an event from a patient in

arm k by .

For example, for the piecewise linear accrual pattern of (7), we have

and

The sample size for a general accrual pattern can be summarized as follows. Note that the

term  is cancelled out in the equation for sample size calculation.

[1] Specify the input variables:

• Type I and II error probabilities, (α, β)

• Allocation proportions, p1, p2

• Hazard rate λ1 for the control arm under exponential survival model,
and hazard ratios Δ0 and Δ1 under H0 and H1, respectively

• Accrual pattern h(t), and follow-up period b

[2] Solve

with respect to a using the bisection method, where
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and

[3] For the solution a = a* to the equation in [2], the required sample size is given as

.

4 EXAMPLES
We consider some real examples of cancer trials that can be designed using the proposed
sample size method.

Example 1
We consider the locally advanced nasopharyngeal carcinoma study that is discussed in the
introduction section. Under an equal allocation p1 = p2 = 0.5, an annual accrual rate of r = 55
patients and b = 3 years of additional follow-up after completion of accrual, we need n = 138
patients (nk = 69 per arm) for 1 − β = 80% power for detecting H1 : Δ1 = 0.7757 by the
generalized log-rank test with one-sided α = 10% for H0 : Δ0 = 1.4974. We expect about 42
events (progressions or deaths) at the final data analysis.

In order to validate this sample size, 10,000 samples of size n = 138 are generated from the
design setting of (p1, λ1, Δ1, r, b) = (0.5, 0.096, 0.7757, 55, 3) as in the above sample size
calculation, and the generalized log-rank test with one-sided α = 0.1 is applied to each
simulated sample. The empirical power is obtained as 0.7920, which is very close to the
nominal 1 − β = 0.8. We also conduct simulations to check the small sample property of the
generalized log-rank test by generating 10,000 samples of size n = 138 under H0 : Δ0 =
1.4974. The empirical type I error rate is 0.0923, which is very close to the nominal α = 0.1.

Extending this example, suppose that the accrual is expected to linearly increase for the first
year (a0 = 1) and maintain a constant accrual rate of r = 55 per year from the beginning of
the second year. Then, we obtain a* = 3 and n = 136. With the slightly longer accrual period
(3 years vs. 138/55 = 2.5 years), this design setting requires a slightly smaller sample size
than the setting with a constant accrual rate which was considered above.
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Example 2
Chemotherapy B has been a standard regimen for patients with non-bulky stage I and II
Hodgkin lymphoma. In a previous study on 6 cycles of B, each patient had a FDG-PET
(fluorodeoxyglucose positron-emission tomography) imaging after 2 cycles of B. It was
found that the patients with a negative PET image (group 1) and those with a positive PET
image (group 2) had a 3-year PFS, defined as the time to disease progression or death, of
S1(3) = 0.86 and S2(3) = 0.52, respectively, and the hazard ratio λ2/λ1, was estimated as Δ0
= 4.3.

In a new (single-arm) phase II trial, the patients with a negative PET image after 2 cycles of
B will be treated by additional 4 cycles of the standard chemotherapy B, whereas those with
a positive PET image after 2 cycles of B will be treated by 4 cycles of a more aggressive
chemotherapy C. By the PET-guided chemotherapy strategy, it is believed that the 3-year
PFS of the PET-positive patients can be increased to S2(3) = 0.74, from 0.52, resulting in a
hazard ratio of Δ1 = 2. Note that the group 1 patients will receive the same treatment as that
of the previous study. Based on an exponential distribution model for PFS, the annual
hazard rate for group 1, corresponding to S1(3) = 0.86, is λ1 = 0.05. The previous study
observed about p2 = 20% of PET-positivity. Assuming an annual accrual rate of r = 60
patients and b = 3 years of additional follow-up after completion of accrual, we need n = 195
patients for 1 − β = 90% power for detecting H1 : Δ1 = 2 by the generalized log-rank test
with one-sided α = 10% for H0 : Δ0 = 4.3. Under this specific alternative hypothesis, we
expect about 47 events (progressions or deaths) at the data analysis. Note that this is not a
randomized trial, so that the resulting allocation proportions may be slightly different from
the specified (p1, p2) = (0.8, 0.2). If the observed allocation proportions are closer to 0.5, the
planned sample size has enough power. However, if they are farther from 0.5, we may
consider checking the statistical power of the study based on the observed power while other
design parameters are fixed at the values used when designing the study. In this power

checking, we may use the estimated censoring distribution  based on the accrual times
of patients too.

Simulation studies are conducted to evaluate the calculated sample size under the above
design settings of H0 and H1, respectively. Using 10,000 simulation samples of size n = 132
under each hypothesis, the empirical type I error rate and power are observed as 0.0984 (to
be compared to α = 0.1) and 0.8749 (to be compared to 1 − β = 0.9), respectively.

5 DISCUSSIONS
We have proposed a sample size calculation method of the generalized log-rank test for
hypotheses H0 : Δ = Δ0 vs. H0 : Δ = Δ1 (Δ0 > Δ1). The proposed sample size formula is
identical to that of the log-rank test by Schoenfeld (1983) and Lakatos (1988) if Δ0 = 1, and
that of the futility log-rank test by Jung et al. (2005) if Δ1 = 1.

From (1)–(3), we observe that n is complicatedly dependent on the allocation proportions pk,
but the total sample size n is approximately minimized when p1 = p2 = 1/2. The sample size
increases in λ1, r and 1 − β, and decreases in Δ0/Δ1, b and α.

Our sample size method is so flexible that we can assume any survival distributions for two
arms and any accrual pattern during study period. As a typical setting, we specify type I
error rate α, power 1 − β, allocation proportion for arm 1 p1, accrual rate r, follow-up period
b, and survival distributions for two arms under H0 and H1 (or the survival distribution of
the control arm and the hazard ratios Δ0 and Δ1 under H0 and H1. respectively); and we
obtain the required sample size using our formula. However, we can obtain any of these
input and output parameters given other parameter values. Furthermore, accrual rate r can be
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replaced by an expected accrual rate a in these calculations. The general accrual pattern
approach will be very useful when checking the statistical power in the middle of a study
with the realized accrual times.
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