
1

On Sample Size Control in Sample Average

Approximations for Solving Smooth Stochastic

Programs

Johannes O. Royset
Operations Research Department, Naval Postgraduate School

Monterey, California, USA

May 29, 2012

Abstract. We consider smooth stochastic programs and develop a discrete-time optimal-control

problem for adaptively selecting sample sizes in a class of algorithms based on variable sample av-

erage approximations (VSAA). The control problem aims to minimize the expected computational

cost to obtain a near-optimal solution of a stochastic program and is solved approximately using

dynamic programming. The optimal-control problem depends on unknown parameters such as rate

of convergence, computational cost per iteration, and sampling error. Hence, we implement the

approach within a receding-horizon framework where parameters are estimated and the optimal-

control problem is solved repeatedly during the calculations of a VSAA algorithm. The resulting

sample-size selection policy consistently produces near-optimal solutions in short computing times

as compared to other plausible policies in several numerical examples.

1 Introduction

Stochastic programs that aim to minimize the expectations of random functions are rarely solv-

able by direct application of standard optimization algorithms. The sample average approximation

(SAA) approach is a well-known framework for solving such difficult problems where a standard op-

timization algorithm is applied to an approximation of the stochastic program obtained by replacing

the expectation by its sample average. The SAA approach is intuitive, simple, and has a strong

theoretical foundation; see [2] and Chapter 5 of [46] for a summary of results, and [24, 50, 23, 1]

for examples of applications. However, the framework suffers from a main difficulty: what is an

appropriate sample size? A large sample size provides good accuracy in SAA, but results in a high

computational cost. A small sample size is computationally inexpensive, but gives poor accuracy

as the sample average only coarsely approximates the expectation. It is often difficult in practice

to select a suitable sample size that balances accuracy and computational cost without extensive

trial and error.

There is empirical evidence that a variable sample size during the calculations of SAA may

reduce the computing time compared to a fixed sample-size policy [47, 16, 15, 3, 39, 34, 4, 30].

This is often caused by the fact that substantial objective function improvements can be achieved

with small sample sizes in the early stages of the calculations. In addition, convergence of iterates

to optimal and stationary solutions can typically only be ensured if the sample size is increased

to infinity, see, e.g., [48]. We refer to this refinement of the SAA approach as the variable sample

average approximations (VSAA) approach. There is also ample empirical evidence from other fields

such as semi-infinite programming [12, 40], minimax optimization [53, 35], and optimal control

[44, 6, 32] that adaptive precision-adjustment schemes may reduce computing times.

It is extremely difficult for a user to select not only one, but multiple sample sizes that overall

balance computational cost and accuracy. Clearly, the number of possible sample sizes is infinite

and the interaction between different stages of the calculations complicates the matter. This paper

addresses the issue of how to best vary the sample size in VSAA so that a near-optimal solution

can be obtain in short computing time. We develop a novel approach to sample-size selection based

on discrete-time optimal control and closed-loop feedback.

While the issue of sample-size selection arises in all applications of SAA and VSAA, this

paper is motivated by the specific case of smooth stochastic programs where the sample average

problems are approximately solved by standard nonlinear programming algorithms. This case

involves smooth sample average problems where gradients are computed relatively easily and arises

for example in estimation of mixed logit models [3], search theory (see Section 5), and engineering

design [38]. Important models such as two-stage stochastic programs with recourse [19], conditional

Value-at-Risk minimization [36], inventory control problems [52], and complex engineering design

problems [39] involve nonsmooth random functions and sample average problems. However, these

nonsmooth functions can sometimes be approximated with high accuracy by smooth functions

[1, 52]. Hence, the results of this paper may also be applicable in such contexts as we demonstrate

in two numerical examples. Applications with integer restrictions and/or functions whose gradients

may not exist or may not be easily available are beyond the scope of the paper; see [49, 42, 17, 8]

for an overview of that area of research. We note that stochastic programs may also be solved by

stochastic approximation [9, 21, 27] and stochastic decomposition [13, 18], which can be viewed

as a version of VSAA, under suitable assumptions. In this paper we focus on VSAA without

decomposition.

Existing sample-size selection policies for the VSAA approach aim at increasing the sample

size sufficiently fast such that the algorithmic improvement (eventually) dominates the sampling

error leading to convergence to optimal or stationary solutions [48, 47, 16, 3, 39, 30]. We also find

studies of consistency of VSAA estimators defined by variable sample sizes [15].

The issue of determining a computationally efficient sample-size selection policy has received

much less attention than that of asymptotic convergence. The recent paper [30] defines classes

2

of “optimal sample sizes” that best balance, in some asymptotic sense, sampling error and rate

of convergence of the optimization algorithm used to minimize the sample average. These results

provide guidance on how to choose sample sizes, but still require the user to select parameters

that specify the exact sequence of sample sizes to use. We show empirically in this paper that

the recommendations of [30] may be poor and highly sensitive to the selection of parameters.

Consequently, we find a need for sample-size selection policies that do not require hard-to-select

user specified parameters. Such policies become especially important when stochastic programs

are solved as part of decision-support tools operated by personnel not trained in mathematical

programming.

In [34], we eliminate essentially all user input and let a solution of an auxiliary nonlinear

program determine the sample size during various stages of the calculations. The objective function

of the nonlinear program is to minimize the computational cost to reach a near-optimal solution.

Typically, the nonlinear program depends on unknown parameters, but computational tests indicate

that even with estimates of these parameters the resulting sample-size selection policy provides

reduction in computing times compared to an alternative policy. We find similar efforts to efficiently

control the precision of function (and gradient) evaluations and algorithm parameters in other areas

such as for instance semi-infinite programming [12], interior-point methods [20], interacting-particle

algorithms [25], and simulated annealing [26].

While we here focus on obtaining a near-optimal solution, the authors of [4] deal with how to

efficiently estimate the quality of a given sequence of candidate solutions. That paper provides rules

for selecting variable sample sizes for that estimation at each iteration of the procedure. The rules

are based on heuristically minimizing the computational cost required by the estimation procedure

before a termination criterion is met. The computational effort to generate candidate solutions is

not considered. The procedure requires the solution of the sample average problems to optimality,

which may be computationally costly or, possibly, unattainable in finite computing time in the case

of nonlinear random functions.

In this paper, we view a VSAA algorithm for solving a stochastic program as a discrete-

time dynamic system subject to random disturbances due to the unknown sample averages. A

similar perspective is taken in [20] in the context of interior-point methods for solving deterministic

nonlinear programs and in [25] for interacting-particle algorithms. Since the VSAA approach

with sample average problems solved by nonlinear programming algorithms represent a substantial

departure from those contexts, we are unable to build on those studies.

We provide control inputs to the discrete-time dynamic system by selecting sample sizes for

each stage of the calculations as well as the duration of each stage. Our goal is to control the system

such that the expected computing time to reach a near-optimal solution of the stochastic program

is minimized. As the system (i.e., the algorithm) is highly complex, we develop a surrogate model

of the behavior of the system that can be used for real-time control of the system. Behavioral

3

models for algorithms in other areas of optimization are discussed in [29, 43]. The surrogate model

leads to a surrogate discrete-time optimal-control problem in the form of a dynamic program.

While the auxiliary nonlinear program for sample-size selection in [34] is deterministic and

provides no feedback about observed realizations of sample averages and algorithmic improvement,

the surrogate optimal-control problem in the present paper accounts for the inherent uncertainty in

VSAA and the possibility of recourse in future stages of the calculations. As the surrogate optimal-

control problem depends on unknown parameters, we solve it after each stage of the calculations

to utilize the latest estimates of those parameters.

We obtain the surrogate discrete-time optimal-control problem through relatively straight-

forward derivations, make use of approximations, and estimate several unknown parameters. In

spite of this, we show in numerical examples that the sample-size selection policy generated by the

optimal-control problem is consistently better than the asymptotically optimal policy of [30] and

typically better than other plausible polices.

While our sample-size selection policy does depend on some user specified parameters, they

are relatively easy to select and usually much easier to select than picking sequences of sample

sizes directly. Hence, the proposed policy is well suited for implementation in automated decision-

support tools and for use by other than experts in numerical optimization.

In section 2, we define the stochastic program considered and describe the sample-size selection

problem within a VSAA algorithm as a discrete-time optimal-control problem. We show that

the algorithm generates a near-optimal solution in finite time almost surely for a broad range of

sample-size selections. However, the “best” sample-size selection as defined by the optimal-control

problem appears difficult to determine and Section 3 defines an alternative, surrogate optimal-

control problem that is tractable. The surrogate optimal-control problem depends on unknown

parameters that are estimated by procedures described in Section 4. Section 4 also describes the

full algorithm which integrates the surrogate optimal-control problem and the parameter estimation

procedures within a receding-horizon framework. Section 5 gives a summary of numerical results.

2 Problem Statements

2.1 Stochastic Optimization Problem and Sample Average Approximations

We consider the probability space (Ω,F , IP), with Ω ⊂ IRr and F ⊂ 2Ω being the Borel sigma

algebra, and the random function F : IRd×Ω → IR. We let the expected value function f : IRd → IR

be defined by

f(x) := IE[F (x, ω)], (1)

where IE denotes the expectation with respect to the known probability distribution IP. Moreover,

we define the problem

P : min
x∈X

f(x), (2)

4

where X ⊂ IRd is a convex compact set. We assume that F (·, ω) is continuous on X for IP-almost

every ω ∈ Ω and that there exists a measurable function C : Ω → IR such that IE[C(ω)] < ∞ and

|F (x, ω)| ≤ C(ω) for all x ∈ X and IP-almost every ω ∈ Ω. This implies that f(·) is well-defined

and continuous on X (see Theorem 7.43 in [46]). Hence, the optimal value of P, denoted f∗, is

defined and finite. We denote the set of optimal solutions of P by X∗ and the set of ϵ-optimal

solutions by X∗
ϵ , i.e., for any ϵ ≥ 0,

X∗
ϵ := {x ∈ X|f(x)− f∗ ≤ ϵ}. (3)

For a general probability distribution IP, we are unable to compute f(x) exactly. Hence, we

approximate it using the random sample average function fN : IRd → IR, N ∈ IIN := {1, 2, 3, ...},
defined by

fN (x) :=
N∑
j=1

F (x, ωj)/N, (4)

where ω1, ω2, ..., ωN is a sample of size N consisting of independent random vectors with distribution

IP. In fN (x) as well as in other expressions below, we suppress the dependence on the sample in

the notation. Moreover, we denote a random vector and its realization with the same symbol. The

meaning should be clear from the context.

Various sample sizes give rise to a family of (random) approximations of P. Let {PN}N∈IIN be

this family, where, for any N ∈ IIN, the (random) sample average problem PN is defined by

PN : min
x∈X

fN (x). (5)

Since fN (·) is continuous on X almost surely, the minimum value of PN , denoted by f∗
N , is defined

and finite almost surely. Let X̂∗
N be the set of optimal solutions of PN .

In this paper, we aim to approximately solve P by means of approximately solving a sequence

of problems of the form PN with varying, well-selected N . We assume that for any N ∈ IIN there

exists a suitable algorithm for solving PN given by an algorithm map AN : X → X and that

AN (·) is a random function defined on the product space Ω × Ω × ... generated by independent

sampling from IP. We view fN (·) as defined on the same product space. While we could state the

sample-size control problem below without further assumptions, we need the following assumption

about uniformly linear convergence of the algorithm map in our solution approach, where we use

the abbreviation a.s. for almost surely. We find a similar linear rate of convergence assumption in

[30], which also discusses other rates.

Assumption 1 There exists a constant θ ∈ (0, 1) such that

fN (AN (x))− f∗
N ≤ θ(fN (x)− f∗

N) a.s. (6)

for all x ∈ X and N ∈ IIN.

5

When applied to PN , with F (·, ω) being continuously differentiable for IP-almost every ω ∈ Ω,

gradient methods based on feasible directions typically satisfy linear rate of convergence under

standard assumptions. For example, the projected gradient method with Armijo step size rule

progresses at least at a linear rate in all iterations when applied to a smooth, strongly convex

problem; see, e.g., Theorem 1.3.18 in [33]. Assumption 1 requires that there exists a uniform rate

of convergence coefficient θ that is valid almost surely. This holds, for instance, when there exist

two positive numbers λmin and λmax such that the eigenvalues of fN (x), for all x ∈ X and N ∈ IIN,

belong to the interval [λmin, λmax] almost surely. In the case of nonconvex problem, one cannot

expect Assumption 1 to hold for all x ∈ X but possibly only near a strict local minimum. Hence,

we anticipate that the sample size recommendations derived below, which to some extent are based

on Assumption 1, are most effective for convex problems and for nonconvex problems at iterates

near a strict local minimum. (We examine numerically a nonconvex problem instance in Section 5

and find that the sample size recommendations also are quite effective some distance from a local

minimum.)

While we in this paper focus on linearly convergent algorithm maps, the methodology is, in

principle, also applicable to superlinearly convergent algorithm maps as a linear rate provides a

conservative estimate of the progress of a superlinearly convergent algorithm map. However, it is

beyond the scope of the paper to examine this aspect further.

It is well known that under the stated assumption on F (·, ·), independent sampling, and com-

pactness of X, fN (x) converges to f(x) uniformly on X, as N → ∞, almost surely; see for example

Theorem 7.48 in [46]. Now suppose that we apply an algorithm map AN (·) to PN . Then under

Assumption 1, for any ϵ > 0, a sufficiently large N , and a sufficiently large number of iterations

of the algorithm map, one obtains a solution in X∗
ϵ almost surely. Unfortunately, this simple ap-

proach has several drawbacks. First, if ϵ is relatively close to zero, both N and the number of

iterations may be large resulting in a high computational cost. Second, since only a single sample

is used, it may be difficult to estimate the variability in f∗
N and, hence, to estimate the quality of

the obtained solution. Third, in practice, the algorithm map may only guarantee convergence to a

global minimizer of PN when starting sufficiently close to one. In such cases, the use of multiple

samples “randomize” the sequence of iterates and therefore may increase the chance to obtain a

good local minimum. This effect is not present when we use a single sample.

As argued above, a variable sample size may in part overcome the first drawback of the simple

approach. Hence, we consider the approximate solution of a sequence of problems {PNk
}∞k=1 with

typically increasing sample sizes Nk. While we could have let the sample for PNk+1
contain the

sample for PNk
, we let PNk+1

be independent of PNk
for all k. This construction addresses the

second and third drawbacks discussed above. Hence, we consider the following stagewise approach

where at stage k an independent sample of size Nk is generated from IP. The sample of a stage

is independent of the samples of previous stages. We find a similar stagewise sampling scheme in

6

[15]. After the sample generation, nk iterations with the algorithm map ANk
(·), warm started with

the solution from the previous stage, are carried out on PNk
using the generated sample. Since

the iterations are warm started, nk may often be relatively small. We view AN1(·), AN2(·), ...,
and fN1(·), fN2(·), ... as random functions defined on a common probability space Ω̄ generated

by Ω, where any element ω̄ ∈ Ω̄ is of the form ω̄ = (ω1, ω2,), with ωk = (ωk
1 , ω

k
2 , ...), ω

k
j ∈ Ω,

k = 1, 2, ...,, j = 1, 2, ..., being the sample for stage k. We denote the corresponding probability by

ĪP and observe that this construction is possible due to the assumption about independence and

the Kolmogorov consistency theorem. The approach is described in the following algorithm.

Algorithm 1 (Basic Algorithm for P)

Data. Initial solution x00 ∈ X and sample size bounds {(Nmin
k , Nmax

k)}∞k=1, Nmin
k , Nmax

k ∈ IIN,

k ∈ IIN.

Step 0. Set n0 = 0, x10 = x00, and stage counter k = 1.

Step 1a. Determine a sample size Nk ∈ [Nmin
k , Nmax

k] and a number of iterations nk ≥ 1, which

may depend on the previous samples ω1, ω2, ..., ωk−1.

Step 1b. Generate an independent sample {ωk
j }

Nk
j=1 from IP.

Step 2. For i = 0 to nk − 1: Compute xki+1 = ANk
(xki) using the sample generated in Step 1b.

Step 3. Set xk+1
0 = xknk

, replace k by k + 1, and go to Step 1a.

The following theorem shows that Algorithm 1 generates a near-optimal solution in finite time

almost surely under a relatively mild assumption on the selection of sample sizes {Nk}∞k=1. The

theorem requires the following assumption, which is taken from p. 393 in [46].

Assumption 2 We assume that the following hold:

(i) For every x ∈ X, the moment-generating function Mx(t) := IE[exp(t(F (x, ω)− f(x)))] is finite

valued for all t in a neighborhood of zero.

(ii) There exists a measurable function κ : Ω → [0,∞) such that

|F (x′, ω)− F (x, ω)| ≤ κ(ω)∥x′ − x∥ (7)

for all ω ∈ Ω and x′, x ∈ X.

(iii) The moment-generating function Mκ(t) := IE[exp(tκ(ω))] of κ(ω) is finite valued for all t in

a neighborhood of zero.

7

Theorem 1 Suppose that Assumptions 1 and 2 hold and that the sequence {xknk
}∞k=1 is generated by

Algorithm 1. If there exists a constant M ∈ IIN such that the sample size bounds {(Nmin
k , Nmax

k)}∞k=1

satisfy
∞∑
k=1

αNmin
k < ∞ (8)

for all α ∈ (0, 1) and Nmax
k ∈ [Nmin

k , Nmin
k +M] for all k ∈ IIN, then for every ϵ > 0 there exists a

k∗ϵ ∈ IIN such that xknk
∈ X∗

ϵ for all k ≥ k∗ϵ almost surely.

Proof: Let {Ñm
k }∞k=1 be a deterministic sequence of sample sizes with Ñm

k = Nmin
k + m, with

m ∈ {0, 1, 2, ...,M}. First, we develop a uniform law of large numbers for fÑm
k
(·) as k → ∞. Under

Assumption 2, it follows by Theorem 7.65 in [46] that for any δ > 0, there exist constants Cm > 0

and βm > 0, independent of k, such that

ĪP

(
sup
x∈X

|fÑm
k
(x)− f(x)| ≥ δ

)
≤ Cme−Ñm

k βm (9)

for all k ∈ IIN. Since the events {supx∈X |fÑm
k
(x) − f(x)| ≥ δ}, k ∈ IIN, are independent, it follows

by the same arguments as in the proof of Proposition 3.1 of [15] that

∞∑
k=1

ĪP

(
sup
x∈X

|fÑm
k
(x)− f(x)| ≥ δ

)
≤

∞∑
k=1

Cme−Ñm
k βm = Cm

∞∑
k=1

(e−βm)Ñ
m
k , (10)

which is finite by (8). Hence, by the first Borel-Cantelli Lemma, ĪP(supx∈X |fÑm
k
(x) − f(x)| ≥

δ infinitely often) = 0 and consequently supx∈X |fÑm
k
(x)− f(x)| → 0, as k → ∞, almost surely.

Second, we examine the error at the end of the k-th stage, which we denote by ek := f(xknk
)−f∗,

k ∈ IIN. Let ϵ > 0 be arbitrary and set γ = (1−θ)ϵ/8, where θ ∈ (0, 1) is as in Assumption 1. Then,

from above there exists a kmϵ > 1, m ∈ {0, 1, 2, ...,M}, possibly dependent on the sample ω̄ ∈ Ω,

such that supx∈X |fÑm
k
(x) − f(x)| ≤ γ for all k ≥ kmϵ almost surely. Let kϵ = maxm=0,1,...,M kmϵ .

Hence, when also using Assumption 1 and the fact that Nk takes on values in [Nmin
k , Nmax

k] ⊂
[Nmin

k , Nmin
k +M], we obtain that

ek ≤ fNk
(xknk

)− f∗
Nk

+ 2γ

≤ θnk [fNk
(xk0)− f∗

Nk
] + 2γ

≤ θnk [f(xk−1
nk−1

)− f∗] + 4γ

= θnkek−1 + 4γ

≤ θek−1 + 4γ

for any k ≥ kϵ almost surely. We observe that any sequence {ak}∞k=1, with ak ∈ [0,∞), k ∈ IIN,

constructed by the recursion ak = ξak−1 + b, with ξ ∈ (0, 1) and b ∈ [0,∞), converges to b/(1− ξ),

as k → ∞. Hence, there exists a k∗ϵ ≥ kϵ such that ek ≤ 8γ/(1− θ) for all k ≥ k∗ϵ almost surely. In

view of the choice of γ, the conclusion follows.

8

We observe that the requirement (8) is only slightly restrictive as the minimum sample size

sequences defined by Nmin
k = ck, for any c > 0, or by Nmin

k =
√
k satisfy (8); see the discussion

in [15]. In view of Theorem 1, many sample-size selections {(Nk, nk)}∞k=1 ensure that Algorithm

1 reaches a near-optimal solution in finite time. In this paper, however, we would like to find a

selection that approximately minimizes the expected computational cost required in Algorithm 1

to reach a near-optimal solution. We refer to this problem as the sample-size control problem and

formulate it as a discrete-time optimal-control problem.

We note that Algorithm 1 resembles the classical batching approach to obtain a lower bound on

the optimal value of a stochastic program with recourse [24]. In that case, a number of independent

sample average problems PN with a fixed N are solved to optimality. In the present context, we do

not assume that F (·, ω) is piecewise linear or has any other structure that allows the solution of PN

in finite time. Moreover, we allow a variable and random sample size Nk and warm-start stages,

i.e., xk+1
0 = xknk

, in an effort to reduce the computing time to obtain a near-optimal solution.

2.2 Sample-Size Control Problem

We proceed by defining the sample-size control problem, where we need the following notation.

For any sample of size N ∈ IIN and number of iterations n, let An
N (x) denote the iterate after n

iterations of the algorithm map AN (·) initialized by x. That is, An
N (x) is given by the recursion

A0
N (x) = x and, for any i = 0, 1, 2, ..., n− 1,

Ai+1
N (x) = AN (Ai

N (x)). (11)

We consider the evolution of Algorithm 1 to be a discrete-time dynamic system governed by

the dynamic equation

xknk
= Ank

Nk
(xk−1

nk−1
), k = 1, 2, 3, ..., (12)

where xk−1
nk−1

∈ X is the state at the beginning of the k-th stage, uk = (Nk, nk) ∈ IIN × (IIN ∪ {0})
is the control input for the k-th stage, and x0n0

= x10 = x00 is the initial condition. The random

sample of stage k, ωk = (ωk
1 , ω

k
2 , ...), is the disturbance induced at that stage. Clearly, for any

k ∈ IIN, xknk
is unknown prior to the realization of the samples ω1, ω2, ..., ωk. We note that since

we consider independent sampling across stages and single-point algorithm maps AN (·) (i.e., maps

that take as input a single point), it suffices to define the last iterate of a stage as the current

state. This ensures that a new sample and the last iterate of a stage is the only required input for

computing the iterates of the next stage. Multi-point algorithm maps (i.e., maps that take multiple

points as input such as Quasi-Newton methods) would require an expanded state space and are

not considered in this paper.

While Algorithm 1 is stated with an open-loop control of the sample size, i.e., {(Nk, nk)}∞k=1 is

selected in advance, we now allow a closed-loop feedback control where the sample size and number

9

of iterations for a stage is determined immediately before that stage based on the observed state at

the end of the previous stage. In view of the uncertainty in (12), feedback control potentially results

in better selection of sample sizes and circumvents the difficulty of preselecting sample sizes. Given

state x ∈ X, we define the feasible set of controls U(x) as follows: If x ∈ X∗
ϵ , then U(x) = {(1, 0)}.

Otherwise, U(x) = IIN × IIN. We could also define more restrictive choices of U(x) that ensure

growth rules of the form (8), but do not state that in detail here. For notational convenience, we

let AN (x) ∈ X∗
ϵ whenever x ∈ X∗

ϵ . That is, X
∗
ϵ is a terminal state for the dynamic system (12). Let

c : IIN×(IIN∪{0}) → [0,∞) be the computational cost of carrying out one stage. Specifically, c(N,n)

is the computational cost of carrying out n iterations of algorithm map AN (·), with c(1, 0) = 0 and

c(N,n) > 0 for N,n ∈ IIN.

Given an initial solution x00 ∈ X, we seek a policy π = {µ1, µ2, ...}, where µk : X → IIN× (IIN∪
{0}) with µk(x

k−1
nk−1

) ∈ U(xk−1
nk−1

) for all xk−1
nk−1

∈ X, k ∈ IIN, that minimizes the total cost function

Jπ(x
0
0) := lim sup

s→∞
ĪE

[
s∑

k=1

c(µk(x
k−1
nk−1

))

]
(13)

subject to the constraints (12). (In (13) we slightly abuse notation by allowing c(·, ·) to take a

two-dimensional vector as input instead of two scalar values.) Here, ĪE denotes expectation with

respect to ĪP. We assume that the cost function c(·, ·) and the policy π satisfy sufficient measurability

assumptions so that this expectation is well defined.

For a given initial solution x00 ∈ X, we define the sample-size control problem

SSCP : inf
π

Jπ(x
0
0), (14)

where the infimum is over all admissible policies. Conceptually, the solution of SSCP provides an

optimal policy that can be used in Steps 1 and 2 of Algorithm 1 to determine the next sample size

and number of iterations.

Under certain assumptions including those that ensure that the terminal state X∗
ϵ is eventually

reached with probability one as N → ∞, the optimal value of SSCP is given by Bellman’s equation

and is computable by value iterations, and a stationary optimal policy exists; see for example

Propositions 3.1.1 and 3.1.7 in [5], volume 2. However, here we focus on the practice task of

generating efficient sample size policies and do not examine these issues further. There are four

major difficulties with solving SSCP: (i) the set of ϵ-optimal solutions X∗
ϵ is typically unknown, (ii)

the state space X ⊂ IRd is continuous and potentially large-dimensional, (iii) the dynamic equation

(12) can only be evaluated by computationally costly calculations, and (iv) the expectation in (13)

cannot generally be evaluated exactly. In the next section, we present a control scheme based on a

surrogate dynamic model, receding-horizon optimization, and parameter estimation that, at least

in part, overcome these difficulties.

10

3 Surrogate Sample-Size Control Problem

Instead of attempting to solve SSCP, we construct and solve a surrogate sample-size control

problem in the form of a dynamic program. We base the surrogate problem on the asymptotic

distributions of the progress made by the algorithm map given a particular control, which we

derive next.

3.1 Asymptotic Distributions of Progress by Algorithm Map

Given a sample of size N , we consider the progress towards f∗
N after n iterations of the algorithm

map AN (·). It follows trivially from Assumption 1 and optimality of f∗
N that for any x ∈ X,

f∗
N ≤ fN (An

N (x)) ≤ f̄n
N (x) := f∗

N + θn(fN (x)− f∗
N) a.s. (15)

We are unable to derive the distribution of fN (An
N (x)), but will focus on its asymptotic distributions

as well as those of its upper and lower bounds in (15). The derivations rely on the following

assumptions.

Assumption 3 We assume that IE[F (x, ω)2] < ∞ for all x ∈ X.

Assumption 4 There exists a measurable function C : Ω → [0,∞) such that IE[C(ω)2] < ∞ and

|F (x, ω)− F (x′, ω)| ≤ C(ω)∥x− x′∥ (16)

for all x, x′ ∈ X and IP-almost every ω ∈ Ω.

Below we need the following notation. Let Y (x), x ∈ X, denote normal random variables with

mean zero, variance σ2(x) := V ar[F (x, ω)], and covariance Cov[Y (x), Y (x′)] := Cov[F (x, ω), F (x′, ω)]

for any x, x′ ∈ X. We also let ⇒ denote convergence in distribution.

It is well-known that the lower bound in (15) is typically “near” f∗ for large N as stated next.

Proposition 1 [45] Suppose that Assumptions 3 and 4 hold. Then,

N1/2(f∗
N − f∗) ⇒ inf

x∈X∗
Y (x), (17)

as N → ∞.

Consequently, if there is a unique optimal solution x∗ of P, i.e., X∗ = {x∗}, then the lower bound

f∗
N on fN (An

N (x)) (see (15)) is approximately normal with mean f∗ and variance σ2(x∗)/N for

large N .

We now turn our attention to the upper bound on fN (An
N (x)). We present two results. The

first one is an asymptotic result as N → ∞ for a given n. The second one considers the situation

when both N and n increase to infinity. Below we denote a normal random variable with mean m

and variance v by N (m, v).

11

Theorem 2 Suppose that Assumptions 1, 3, and 4 hold and that there is a unique optimal solution

x∗ of P, i.e., X∗ = {x∗}. Then, for any x ∈ X and n ∈ IIN

N1/2[f̄n
N (x)− f∗ − θn(f(x)− f∗)] ⇒ N (0, vn(x)), (18)

as N → ∞, where

vn(x) = (1− θn)2σ2(x∗) + θ2nσ2(x) + 2Cov(F (x∗, ω), F (x, ω))(1− θn)θn. (19)

Proof: By (15),

N1/2[f̄n
N (x)− f∗ − θn(f(x)− f∗)] = (1− θn)N1/2(f∗

N − f∗) (20)

+ θnN1/2(fN (x)− f(x)).

Since P has a unique optimal solution, Theorem 5.7 in [46] implies that f∗
N − fN (x∗) = op(N

−1/2)

and, hence, N1/2(f∗
N − fN (x∗)) ⇒ 0, as N → ∞. A vector-valued central limit theorem (see

Theorem 29.5 in [7]) gives that N1/2(fN (x) − f(x), fN (x∗) − f∗) ⇒ (Y (x), Y (x∗)), as N → ∞.

Combining these two results and the continuous mapping theorem (see Theorem 29.2 in [7]) yield

N1/2

(
fN (x)− f(x)

f∗
N − f∗

)
⇒
(

Y (x)
Y (x∗)

)
, (21)

as N → ∞. The result follows after another application of the continuous mapping theorem.

In view of Theorem 2, we see that the upper bound on fN (An
N (x)) is approximately normal

with mean f∗ + θn(f(x)− f∗) and variance vn(x)/N for large N . If we relax the assumption of a

unique optimal solution of P, we obtain the following asymptotic results as n,N → ∞.

Theorem 3 Suppose that Assumptions 1, 3, and 4 hold and that θnN1/2 → a ∈ [0,∞], as n,N →
∞. Then, for any x ∈ X,

θ−n[f̄n
N (x)− f∗] ⇒ f(x)− f∗, if a = ∞; (22)

N1/2[f̄n
N (x)− f∗] ⇒ inf

x′∈X∗
Y (x′) + a(f(x)− f∗), if a ∈ [0,∞); (23)

as N,n → ∞.

Proof: We only consider (23) as the other case follows by similar arguments. By definition,

N1/2[f̄n
N (x)− f∗] (24)

= N1/2(f∗
N − f∗) + θnN1/2(fN (x)− f(x)) + θnN1/2(f(x)− f∗)− θnN1/2(f∗

N − f∗).

The result now follows from Proposition 1, the central limit theorem, and Slutsky’s theorem (see,

e.g., Exercise 25.7 of [7]).

12

Corollary 1 Suppose that Assumptions 1, 3, and 4 hold and that θnN1/2 → 0, as n,N → ∞.

Then, for any x ∈ X,

N1/2[fN (An
N (x))− f∗] ⇒ inf

x′∈X∗
Y (x′) (25)

as N,n → ∞.

Proof: The result follows directly from (15), Proposition 1, and Theorem 3.

In view of Theorem 3, we observe that the upper bound on fN (An
N (x)) is approximately

normally distributed with mean f∗+ θn(f(x)− f∗) and variance σ2(x∗)/N for large n and N when

X∗ = {x∗}. Since vn(x) → σ2(x∗), as n → ∞, we find that the last observation is approximately

equivalent to the one after Theorem 2 when n is large. Moreover, Corollary 1 shows that the

lower and upper bounds on fN (An
N (x)), and hence also fN (An

N (x)), have approximately the same

distribution for large n and N when n is sufficiently large relative to N . In the next subsection, we

adopt a conservative approach and use the upper bounds from Theorems 2 and 3 to estimate the

progress of the algorithm map for different controls.

3.2 Development of Surrogate Sample-Size Control Problem

In this subsection, we model the evolution of the state xk−1
nk−1

using a surrogate dynamic equation

based on the previous subsection and a surrogate state obtained by aggregation. We note that be-

havioral models of algorithmic progress exist for local search algorithms [29] and genetic algorithms

[43]. However, these models do not seem to be applicable here.

Suppose that Algorithm 1 has carried out k − 1 stages and has reached Step 1 of the k-th

stage. At this point, we consider the current and future stages l = k, k+1, k+2, ..., in an attempt

to determine the control (Nk, nk) for the current stage. We start by considering function values

instead of iterates, which aggregates the state space from d to one dimensions. Theorems 2 and

3 indicate possible models for the evolution of function values in Algorithm 1. If nk and Nk are

large, Theorem 3 states that conditional on xk−1
nk−1

and given a unique optimal solution of P, an

upper bound on fNk
(xknk

) is approximately distributed as

N (f∗ + θnk(f(xk−1
nk−1

)− f∗), σ2(x∗)/Nk). (26)

Moreover, if only Nk is large, Theorem 2 states that conditional on xk−1
nk−1

, an upper bound on

fNk
(xknk

) is approximately distributed as

N (f∗ + θnk(f(xk−1
nk−1

)− f∗), vnk
/Nk). (27)

We note, however, that if σ(x∗) ≈ σ(xk−1
nk−1

) and Cov(F (x∗, ω), F (xk−1
nk−1

, ω)) ≈ σ(x∗)σ(xk−1
nk−1

), i.e.,

F (x∗, ω) and F (xk−1
nk−1

, ω) are highly correlated, then σ2(x∗) ≈ vnk
. Hence, (26) and (27) are approx-

imately equal in distribution when xk−1
nk−1

is close to x∗. The paragraph after Corollary 1 indicates

13

that (26) and (27) are also approximately equal in distribution when nk is large. Consequently, we

adopt the simpler expression (26) as we conjecture that for small k, xk−1
nk−1

is far from x∗ but an

efficient policy typically involves a large nk. On the other hand, when k is large, xk−1
nk−1

tends to be

close to x∗. Hence, (26) appears to be reasonably accurate in the present context.

Ideally, we would have liked to know the distribution of f(xknk
) conditional on f(xk−1

nk−1
), the

distribution of f(xk+1
nk+1

) conditional on f(xknk
), etc. However, such distributions appear inacces-

sible and we heuristically approximate them by (26), with truncation at f∗ to account for the

fundamental relation f(x) ≥ f∗ for all x ∈ X. Hence, we let

Ntrunc(f
∗ + θnk(f(xk−1

nk−1
)− f∗), σ2(x∗)/Nk, f

∗) (28)

be our approximation of the distribution of f(xknk
) conditional on f(xk−1

nk−1
), where Ntrunc(m, v, t)

denotes a truncated normally distributed random variable with an underlying normal distribution

N (m, v) and lower truncation thresholds t. The cumulative distribution function of Ntrunc(m, v, t)

is Φtrunc(ξ) = (Φ((ξ − m)/
√
v) − Φ((t − m)/

√
v))/(1 − Φ((t − m)/

√
v)), ξ ≥ t, where Φ(·) is the

standard normal cumulative distribution function.

If f(xk−1
nk−1

), f∗, θ, and σ(x∗) had been known at the beginning of the k-th stage, we could

use (28) to estimate f(xknk
). Moreover, we could use (28) recursively and estimate f(xlnl

), l =

k + 1, k + 2, In Section 4, we construct estimation schemes for f∗, θ, and σ(x∗). Since xk−1
nk−1

is

known at the beginning of the k-th stage, we can also estimate f(xk−1
nk−1

) by a sample average. Hence,

we proceed with (28) as the basis for our model of the evolution of f(xlnl
), l = k, k + 1, k + 2, ...,

in Algorithm 1. Specifically, we define fl, l = k, k + 1, k + 2, ..., to be the surrogate state at the

beginning of the l-th stage, which represents our estimate of f(xl−1
nl−1

). We let pf , p
∗, pθ, and pσ be

the estimates of f(xk−1
nk−1

), f∗, θ, and σ(x∗), respectively. To facilitate computations, we consider a

finite surrogate state space F = {ξ1, ξ2, ..., ξdf } for some positive integer df . We let ξ1 = p∗ + ϵ as

under the parameter estimate p∗ of f∗, p∗ + ϵ is a terminal surrogate state (see (3)) and there is

no need to consider states with smaller values as they would be terminal surrogate states too. We

discuss the selection of the other discretization points in Subsection 3.3.

Since (28) is a continuous random variable, we also discretize its support to obtain surrogate

state transition probabilities. Specifically, given estimates pf , p
∗, pθ, and pσ as well as control input

(N,n) and current surrogate state ξi, the next surrogate state is given by the random variable

Ntrunc(p
∗ + pnθ (ξi − p∗), p2σ/N, p∗); see (28). With small exceptions due to end effects, we set the

surrogate state transition probability to surrogate state ξj to be the probability that this random

variable takes on a value in (ξj−1, ξj]. That is, the surrogate state transition probability from

surrogate state ξi to surrogate state ξj , given control input (N,n), is expressed as

η(ξi, ξj , N, n) =
Φ([ξj − p∗ − pnθ (ξi − p∗)]N1/2/pσ)− Φ([ξj−1 − p∗ − pnθ (ξi − p∗)]N1/2/pσ)

1− Φ(−pnθ (ξi − p∗)N1/2/pσ)
, (29)

14

if i ∈ {2, 3, ..., df} and j ∈ {2, 3, ..., df − 1}, and when j = 1 as

η(ξi, ξ1, N, n) =
Φ([ϵ− pnθ (ξi − p∗)]N1/2/pσ)− Φ(−pnθ (ξi − p∗)N1/2/pσ)

1− Φ(−pnθ (ξi − p∗)N1/2/pσ)
. (30)

It is expressed as

η(ξi, ξdf , N, n) =
1− Φ([ξdf−1 − p∗ − pnθ (ξi − p∗)]N1/2/pσ)

1− Φ(−pnθ (ξi − p∗)N1/2/pσ)
, (31)

if i ∈ {2, 3, ..., df} and j = df . Finally, it is expressed as

η(ξ1, ξj , N, n) = 1 (32)

if j = 1 and zero for j > 0 as ξ1 is a terminal surrogate state. In our implementation, if

η(ξi, ξj , N, n) ≤ 10−6, we set that transition probability equal to zero and renormalize the above

probabilities.

We define the feasible set of controls R(ξ) in surrogate state ξ ∈ F as follows: If ξ = ξ1,

then R(ξ) := {(1, 0)}. Otherwise, R(ξ) := DN × Dn, where DN ⊂ IIN and Dn ⊂ IIN are finite

subsets of cardinality dN and dn, respectively, representing possible sample sizes and numbers of

iterations. We discuss in Subsection 3.3 how to select these sets. Finally, while SSCP has an

infinite horizon, we find it of little value to consider more than a moderate number of stages due to

inaccuracy in parameter estimates. Hence, we consider s+ 1 stages, where s is given, and include

an end cost cend(ξ), which equals zero if ξ = ξ1 and a large constant otherwise. We use 1020 in our

implementation.

We set the per-stage computational cost function

c(N,n) = wNn+ w∗N∗, (33)

where the first term models the work to carry out n iterations of the algorithm map AN (·) (see

Step 2 of Algorithm 1), with w > 0 being a parameter that we estimate based on observed run

times as described in Subsection 4.1. An alternative polynomial model of computational cost based

on linear regression is used in [12]. However, we find (33) reasonable in the present situation as the

time required to calculate fN (x) and ∇fN (x) for a given x is linear in N . Hence, the effort required

to apply the algorithm map once tends to be linear in N . The second term in (33) accounts for the

effort to compute pf , the estimate of f(xk−1
nk−1

), which is needed to initialize the dynamic evolution

of fl as given by the transition probabilities (29)-(32). This estimate is simply fN∗(xk−1
nk−1

), where

N∗ is a fixed sample size. We model the effort to carry out this estimation by w∗N∗, where the

parameter w∗ is estimated based on observed computing times as described in Subsection 4.1. To

explicitly indicate the dependence on the parameters w and w∗, we write the computational cost

function as c(N,n;w,w∗).

15

We now define the surrogate sample-size control problem. Given a stopping tolerance ϵ > 0 and

the estimates pf , p
∗, pθ, pσ, pw, and p∗w of f(xk−1

nk−1
), f∗, θ, σ2(x∗), w, and w∗, respectively, at the

beginning of stage k, we seek an admissible policy π = {µk, µk+1, ..., µk+s}, where µl : F → IIN× IIN,

l = k, k+1, k+2, ..., k+ s, with µl(ξ) ∈ R(ξ) for all ξ ∈ F and l = k, k+1, ..., k+ s, that minimizes

the total surrogate cost function

Jk,π(pf , p
∗, pθ, pσ, pw, p

∗
w, ϵ) := E

[
k+s∑
l=k

c(µl(fl); pw, p
∗
w) + cend(fk+s+1)

]
(34)

subject to the initial condition fk = pf and the transition probabilities (29)-(32). Here, E denotes

expectation with respect to those transition probabilities. Then, we define the surrogate sample-size

control problem

S-SSCPk(pf , p
∗, pθ, pσ, pw, p

∗
w, ϵ) : min

π
Jk,π(pf , p

∗, pθ, pσ, pw, p
∗
w, ϵ), (35)

where the minimum is over all admissible policies. S-SSCPk is essentially a stochastic shortest

path problem (see for example [5], Section 7.2, Vol. 1 and Chapter 2, Vol. 2) with a finite time

horizon, where the goal is to reach the terminal surrogate state in minimum expected cost and

where the choice of N and n influences the conditional probability mass function of the next

surrogate state as given by (29)-(32). Using an instance of S-SSCPk occurring during the solution

of QUAD described in Section 5, Figure 1 illustrates the trade-off between computational effort and

a probability mass function that offers good odds for reaching the terminal surrogate state in the

next stage or, at least, a much improved surrogate state. For parameters p∗ = 1329.6, pθ = 0.72,

pσ = 308, and ϵ = 1.3, the four subplots of Figure 1 give the probability mass function of the next

surrogate state given that the current surrogate state ξi = 1345.9 for various choices of N and n;

see (29)-(32). The upper left plot shows the situation for N = 11, 000 and n = 3, which essentially

guarantee a move to an improved surrogate state as almost all of the probability mass is below

1345.9. However, the probability of reaching the terminal surrogate state is slim—about 3.5%; see

the left most bar. It is much more likely to land in a surrogate state around 1337. The situation

is much improved when using N = 11, 000 and n = 17; see the upper right subplot. The larger

number of iterations makes it much more likely to reach the terminal surrogate state in the next

stage (about 34%). Of course, improved likelihood of termination comes with the an increase in

computing effort from Nn = 33, 000 in the first subplot to Nn = 187, 000. We obtain the more

favorable probability mass function by increasing n. Would it be more beneficial to increase the

sample size N instead? The bottom right subplot shows the situation for N = 61718 and n = 3,

which require similar computing effort as the subplot above. While the variability in the next

surrogate state is reduced somewhat, the chance to reach the terminal state is negligible. Clearly,

in this instance, it is more favorable to use a relatively large n at the expense of a large N . Such

trade-offs are automatically examined during the solution of S-SSCPk. The bottom left subplot

16

1330 1335 1340 1345 1350 1355
0

0.2

0.4

0.6

0.8

N=11000, n=3

1330 1335 1340 1345 1350 1355
0

0.2

0.4

0.6

0.8

N=11000, n=17

1330 1335 1340 1345 1350 1355
0

0.2

0.4

0.6

0.8

N=137795, n=17

1330 1335 1340 1345 1350 1355
0

0.2

0.4

0.6

0.8

N=61718, n=3

Figure 1: Example of transition probabilities in (29)-(32) from surrogate state ξi = 1345.9 for
various choices of N and n under parameters p∗ = 1329.6, pθ = 0.72, pσ = 308, and ϵ = 1.3.

shows the situation when both N and n are large, which come at a high computational cost, but

almost guarantee termination in the next stage.

The next subsection discusses the solution of S-SSCPk.

3.3 Solution of Surrogate Sample-Size Control Problem

Since the parameters pf , p
∗, pθ, pσ, pw, and p∗w may not be accurate estimates of the corresponding

underlying quantities, we propose to repeatedly reestimate these parameters and resolve S-SSCPk

as Algorithm 1 progresses. In our implementation, we opt to restimate and resolve at every stage,

but other strategies are obviously also possible.

S-SSCPk is a dynamic program with df states, s + 1 stages, and dNdn possible decisions in

all states except the terminal surrogate state ξ1. Hence, the computational complexity of solving

S-SSCPk using backward recursion is O(sdNdnd
2
f). The solution time of S-SSCPk adds to the

overall calculation time for Algorithm 1 and, hence, it should not be so large that it offsets the

computational savings resulting from the presumably “good” selections of sample sizes given by S-

SSCPk. The threshold at which the effort to solve S-SSCPk outweighs its benefits is applications

17

dependent. In complex applications where one iteration of Algorithm 1 may take several hours, as

in some engineering applications, a solution time of several minutes for S-SSCPk is insignificant.

However, if one iteration of Algorithm 1 takes only several minutes, then S-SSCPk must be solved

quicker. Since the solution time for S-SSCPk is essentially the same for complex as for simple

applications, it appears that the benefits of selecting sample sizes according to S-SSCPk would be

greater for more complex applications. However, in Section 5, we see that the benefit may also be

substantial in the case of relatively simple applications.

In view of the above discussion, it is important, at least in some applications, to ensure that

the solution time for S-SSCPk is short by selecting small integers for s, dN , dn, and df . We next

discuss suitable values for F , DN , and Dn.

We first consider the set F = {ξ1, ξ2, ..., ξdf } of discretized surrogate states. As stated above

ξ1 = p∗ + ϵ. Next, we include the initial state of S-SSCPk, pf , in F . We see from (28) that it is

unlikely to transition from pf to a surrogate state that is much larger than pf . Hence, we set the

largest state in F to be ξdf = pf + z1−αf
pσ/

√
Nk−1, where z1−αf

is the (1 − αf)-quantile of the

standard normal distribution. We use αf = 0.025. In view of (28) with f(xk−1
nk−1

), f∗, and σ2(x∗)

replaced by pf , p
∗, and p2σ, respectively, the probability to transit from pf to a state exceeding ξdf

is at most 0.05 regardless of the values of nk, Nk ≥ Nk−1, and p∗ ≤ pf . Since there is a need for

more accurate discretization near the terminal surrogate state ξ1 than near the largest state ξdf ,

we use 2df/3 + 1 evenly spaced discretization points in the interval [p∗ + ϵ, pf] and df/3 evenly

spaced discretization points for the interval [pf , pf + z1−αf
pσ/

√
Nk−1)], where we ensure that df is

divisible by 3. Certainly, other discretization schemes may also be possible including those involving

segments associated with equal probabilities.

We second consider the set of possible sample sizes DN . We include dN integers inDN obtained

by evenly discretizing the interval [∆min
N Nk−1,∆

max
N Nk−1] and rounding, where we use ∆min

N = 1.1

and ∆max
N = 100. Hence, we allow an increase in sample size from the previous stage with as little

as a factor of 1.1 or as much as a factor of 100. To reduce the possibility that the terminal surrogate

state ξ1 is not accessible for any control input, we also include in DN a very large integer value.

We third consider the set of possible number of iterations Dn, which we obtain by evenly

discretizing the interval [3,max{10, ⌈log(0.1ϵ/(pf − p∗))/ log pθ⌉}] and rounding, where ⌈a⌉ denotes
the smallest integer no smaller than a. We observe that the upper end of the interval is simply the

larger of 10 and the number of iterations required to reach within 0.1ϵ of the optimal value in the

presence of no uncertainty and the current parameter estimates.

While the above discretization of the surrogate state space spans the range of interesting

surrogate states and the above restriction of possible sample sizes and numbers of iterations span

the range of reasonable controls for S-SSCPk, the resolution with which those ranges are discretized

may influence the quality of the sample-size policy obtained. The number of stages s that S-SSCPk

considers may also influence the policy obtained. We discuss these parameter choices in further

18

detail in Section 5.

The policy found from solving S-SSCPk provides controls (Nk, nk), (Nk+1, nk+1), (Nk+2, nk+2),

..., (Nk+s, nk+s). However, we utilize only (Nk, nk) for the k-th stage as our approach is imple-

mented within a receding-horizon framework with parameter estimation and solution of S-SSCPk

at each stage. We refer to the resulting policy as the S-SSCP policy. We discuss the estimation of

the parameters pf , p
∗, pθ, pσ, pw, and p∗w as well as the full algorithm next.

4 Parameter Estimation and Full Algorithm

In Algorithm 1, the sample-size selection {(Nk, nk)}∞k=1 is predetermined. As argued above, it is

difficult to make a selection that balances computational effort with sampling accuracy and we

therefore turn to S-SSCPk for guidance. In this section, we incorporate S-SSCPk into Algorithm

1 resulting in a new algorithm referred to as Algorithm 2. Algorithm 2 is essentially identical to

Algorithm 1 except S-SSCPk determines the sample size and number of iterations of stage k. Since

S-SSCPk relies on parameter estimates, we also include subroutines for that estimation.

We recall that Algorithm 1 consists of three main steps: 1) generate a sample of size Nk, 2)

carrying out nk iterations on a sample average problem with Nk sample points, and 3) warm start

the next stage with the last iterate of the current stage. In Algorithm 2, Step 1 is expanded into

two parts. First, we solve S-SSCPk to obtain Nk and nk, and second we generate a sample of size

Nk. Step 2 remains unchanged. Step 3 is expanded to include estimation of pf , p
∗, pθ, pσ, pw,

and p∗w for the subsequent surrogate sample-size control problem S-SSCPk+1, based on iterates

and function values observed during stage k. The parameter estimation is carried out using six

subroutines. We present these subroutines next followed by a subroutine for initializing Algorithm

2. The section ends with the complete statement of Algorithm 2.

4.1 Parameter Estimation Subroutines

After completing nk iterations with sample size Nk in stage k of Algorithm 2, the iterates {xki }
nk
i=0

and function values {fNk
(xki)}

nk
i=0 are known. We stress that these quantities are not random at

that stage. Still, we retain similar notation to earlier when they were random and let the context

provide the clarification. We use these quantities as well as recorded computing times of the stage

to estimate the parameters pf , p
∗, pθ, pσ, pw, and p∗w for S-SSCPk+1 by means of six subroutines,

which we describe in turn.

The standard deviation σ(x∗) is estimated using the following subroutine.

Subroutine A (Computes estimates pσ of σ(x∗))

Input. Last iterate xknk
and the sample {ωk

j }
Nk
j=1 of stage k.

19

Step 1. Compute

p2σ =
1

Nk − 1

Nk∑
j=1

(F (xknk
, ωk

j)− fNk
(xknk

))2. (36)

Output. Standard deviation estimate pσ.

If xknk
= x∗, then p2σ obviously would be the standard unbiased estimator of σ(x∗)2. However,

since this equality cannot be expected to hold, the proximity of p2σ to σ(x∗)2 cannot easily be

estimated. Despite this fact, we find that p2σ suffices in the present context.

We adopt the procedure in [12] to estimate the rate of convergence coefficient θ (see Assump-

tion 1) and analyze it in detail. There is no analysis of the procedure in [12]. The procedure uses

the observed function values {fNk
(xki)}

nk
i=0 and an initial estimate of θ to compute an estimate of

f∗
Nk

. Then, a log-linear least-square regression and the estimate of f∗
Nk

generate a new estimate of

θ. This process is repeated with the new estimate replacing the initial estimate of θ until the new

estimate is essentially equal to the previous estimate as stated precisely next.

Subroutine B (Computes estimate θ̂ of rate of convergence coefficient)

Input. Previous estimate θ̂k of rate of convergence coefficient and function values {fNk
(xki)}

nk
i=0

from the current stage .

Parameter. Tolerance ϵθ > 0.

Step 0. Set subroutine iteration counter j = 0 and a0 = θ̂k.

Step 1. Estimate the minimum value of PNk
by computing

ϕ(aj) =
1

nk

nk−1∑
i=0

fNk
(xknk

)− ank−i
j fNk

(xki)

1− ank−i
j

. (37)

Step 2. Solve the least-square problem

(aj+1, bj+1) = argmin
a,b

nk∑
i=0

(log(fNk
(xki)− ϕ(aj))− i log a− log b)2. (38)

Step 3. If |aj+1 − aj | < ϵθ, set θ̂ = aj+1 and Stop. Else, replace j by j + 1 and go to Step 1.

Output. Rate of convergence coefficient estimate θ̂.

The following lemma explains Step 1 of Subroutine B and deals with the same probability

space as Assumption 1; see the preceding paragraph to that assumption.

20

Lemma 1 Suppose that Assumption 1 holds for algorithm map AN (·) with rate of convergence

coefficient θ ∈ [0, 1). If {xi}ni=0 is generated by the recursion xi+1 = AN (xi), i = 0, 1, 2, ..., with

x0 ∈ X, then,

f∗
N ≥ fN (xn)− an−ifN (xi)

1− an−i
a.s. (39)

for any i = 0, 1, ..., n− 1, a ∈ [θ, 1), n ∈ IIN, and N ∈ IIN.

Proof: By Assumption 1 and the fact that a ∈ [θ, 1),

fN (xn)− f∗
N ≤ θn−i(fN (xi)− f∗

N) ≤ an−i(fN (xi)− f∗
N) a.s. (40)

The conclusion then follows by isolating f∗
N .

It follows from Lemma 1 that if {fNk
(xki)}

nk
i=0 are generated using an algorithm map that

satisfies Assumption 1 with rate of convergence coefficient θ and aj ≥ θ, then Step 1 in Subroutine

B averages lower bounds on f∗
Nk

to obtain an estimate, denoted by ϕ(aj), of f
∗
Nk

.

Given ϕ(aj), the estimate of f∗
Nk

, Step 2 of Subroutine B computes the rate of convergence

coefficient that best fits {fNk
(xki)}

nk
i=0 in a least-square sense. Specifically, we use the regression

model

e(i) := aib (41)

to estimate the distance fNk
(xki) − f∗

Nk
after iteration i, where a and b are unknown regression

coefficients estimated based on the data set {(i, fNk
(xki) − ϕ(aj))}nk

i=0. Using a logarithmic trans-

formation, we easily obtain the values of the transformed regression coefficients log a and log b by

linear least-square regression; see (38). The corresponding values of a and b are denoted by aj+1

and bj+1.

Subroutine B is stated in [12] without any proof about its convergence. The authors’ incorrectly

claim that it provides the correct rate of convergence θ given that the sequence {fNk
(xki)}

nk
i=0 is

exactly linear, i.e., equality holds in Assumption 1. While we find that Subroutine B yields reason-

able estimates of the rate of convergence in numerical examples, the situation is more complicated

than stated in [12] as the below analysis shows.

We view Subroutine B as a fixed-point iteration and adopt the following notation. Given the

observations {fNk
(xki)}

nk
i=0, we view the calculations in Steps 1 and 2 of Subroutine B as a function

g : IR → IR that takes as input an estimate aj of the rate of convergence coefficient and returns

another estimate aj+1. We note that g(·) obviously depends on the observations {fNk
(xki)}

nk
i=0

even though it is not indicated by the notation. The properties of g(·) explain the performance of

Subroutine B as we see next. The proofs of the below results are given in the appendix due to their

lengths. We first show that Steps 1 and 2 of Subroutine B are given by a relatively simple formula.

21

Proposition 2 Suppose that {fNk
(xki)}

nk
i=0, with nk > 1, satisfies fNk

(xki) > fNk
(xki+1) for all

i = 0, 1, ..., nk − 1. Then, for any a ∈ (0, 1),

g(a) =
nk∏

i=n0
k

(
fNk

(xki)− ϕ(a)

fNk
(xknk−i)− ϕ(a)

)αi

∈ (0, 1), (42)

where n0
k := ⌊nk/2⌋ + 1, with ⌊nk/2⌋ being the largest integer no larger than n/2, αi := 12(i −

nk/2)/(n
3
k + 3n2

k + 2nk), and ϕ(a) is as in (37) with aj replaced by a.

Proof: See Appendix.

For notational convenience, we define g(0) = 0 and g(1) = 1. The next theorem states that

Subroutine B converges to a fixed point of g(·), which implies that Subroutine B terminates after

a finite number of iterations.

Theorem 4 Suppose that {fNk
(xki)}

nk
i=0, with nk > 1, satisfies fNk

(xki) > fNk
(xki+1) for all i =

0, 1, ..., nk − 1. For any a0 ∈ (0, 1), the sequence of iterates {aj}∞j=0 generated by the recursion

aj+1 = g(aj), j = 0, 1, 2, ..., converges to a fixed point a∗ ∈ [0, 1] of g(·), i.e., a∗ = g(a∗). Moreover,

if θ̂k ∈ (0, 1), Subroutine B terminates in finite time for any ϵθ > 0.

Proof: See Appendix.

We observe that the assumptions in Proposition 2 and Theorem 4 are rather weak. Subroutine

B is guaranteed to terminate when the algorithm map generates descent in the objective function

value in each iteration, which is typical for standard nonlinear programming algorithms. If the

sequence of function values {fNk
(xki)}

nk
i=0 is exactly linear with rate of convergence coefficient θNk

∈
(0, 1), then θNk

is a fixed point of g(·) as stated in the follow theorem.

Theorem 5 Suppose that {fNk
(xki)}

nk
i=0, with nk > 1, satisfies fNk

(xki+1) − f∗
Nk

= θNk
(fNk

(xki) −
f∗
Nk

) for all i = 0, 1, 2, ... and some rate of convergence coefficient θNk
∈ (0, 1). Then, θNk

= g(θNk
).

Proof: See Appendix.

In view of Theorems 4 and 5, we see that Subroutine B converges to a fixed point of g(·) and
that the true rate of convergence coefficient is a fixed point of g(·) under the assumption of exact

linear rate of convergence. Unfortunately, there may be more than one fixed point of g(·) and, hence,
we cannot guarantee that Subroutine B converges to the rate of convergence coefficient from an

arbitrary starting point. For example, if nk = 20, θ = 0.15, and fNk
(xki) = θi, i = 1, 2, , ..., nk, with

fNk
(xk0) = 1, then Subroutine B converges to the correct value 0.15 if initialized with θ̂k ∈ (0, 0.6633]

and it converges to the incorrect value 0.8625 if initialized with θ̂k ∈ [0.6633, 1). (Here numbers are

rounded to four digits.) The next theorem shows that Subroutine B indeed converges to the rate of

convergence coefficient if initialized sufficiently close to that number for a wide range of values of

θNk
. In our numerical tests, we find that the range of sufficiently close starting points is typically

rather wide as in the example given above. This experience appears consistent with that of [12].

22

Theorem 6 Suppose that {fNk
(xki)}

nk
i=0, with nk > 1, satisfies fNk

(xki+1) − f∗
Nk

= θNk
(fNk

(xki) −
f∗
Nk

) for all i = 0, 1, 2, ... and some rate of convergence coefficient θNk
∈ (0, 0.99]. If Subroutine

B has generated the sequence {aj}∞j=0, ignoring the stopping criterion in Step 3, with a0 = θ̂k

sufficiently close to θNk
, then aj → θNk

, as j → ∞.

Proof: See Appendix.

It appears that Theorem 6 also holds for θNk
∈ (0.99, 1). However, the verification of this

requires a large computational effort as can be deduced from the proof of Theorem 6, which we

have not carried out.

In view of Theorems 4, 5, and 6, we see that Subroutine B terminates in finite time under

weak assumptions and it obtains the correct rate of convergence coefficient under somewhat stronger

assumptions.

We next present a subroutine for estimating f∗ based on a weighted average of estimates of

f∗
Nl
, l = 1, 2, ..., k. We let f̂∗

k and θ̂k+1 denote the estimates of f∗ and θ, respectively, available prior

to the execution of Subroutine C.

Subroutine C (Computes estimate f̂∗
k+1 of the optimal value f∗)

Input. Previous optimal value estimate f̂∗
k , estimate of rate of convergence coefficient θ̂k+1, and

function values from the current stage {fNk
(xki)}

nk
i=0.

Step 1. Compute an estimate of f∗
Nk

:

m̂k := min
i=0,1,...,nk−1

fNk
(xknk

)− θ̂nk−i
k+1 fNk

(xki)

1− θ̂nk−i
k+1

. (43)

Step 2. Compute

f̂∗
k+1 :=

Nk∑k
l=1Nl

m̂k +

∑k−1
l=1 Nl∑k
l=1Nl

f̂∗
k . (44)

Output. Optimal value estimate f̂∗
k+1.

Step 1 of Subroutine C is the same as in [12] and in view of Lemma 1 provides a lower bound on

f∗
Nk

. The next result shows that f̂∗
k+1, on average, is a lower bound on f∗ under certain assumptions.

(Similar lower bounds on the optimal value are determined in [28, 24].) Using a lower bound, we

tend to conservatively estimate the computational effort needed to reach a near-optimal solution

of P .

Proposition 3 Suppose that {fNk
(xki)}

nk
i=0 satisfies fNk

(xki+1)− f∗
Nk

≤ θNk
(fNk

(xki)− f∗
Nk

) for all

i = 0, 1, 2, ... and some rate of convergence coefficient θNk
∈ (0, 1). If Subroutine C’s input f̂∗

k ≤ f∗

and θ̂k+1 ≥ θNk
, then E[f̂∗

k+1] ≤ f∗, where E denotes the expectation with respect to the random

sample of stage k.

23

Proof: We deduce from Lemma 1 that m̂k ≤ f∗
Nk

a.s. Hence, using the fact that E[f∗
N] ≤ f∗ for all

N ∈ IIN, see, e.g., [24], we obtain that

E[f̂∗
k+1] ≤ E

[
Nk∑k
l=1Nl

f∗
Nk

+

∑k−1
l=1 Nl∑k
l=1Nl

f̂∗
k

]
=

Nk∑k
l=1Nl

E[f∗
Nk

] +

∑k−1
l=1 Nl∑k
l=1Nl

f̂∗
k ≤ f∗. (45)

Under stronger assumptions, we also determine the asymptotic distribution of f̂∗
k+1.

Proposition 4 Suppose that Assumptions 3 and 4 hold, that P has a unique optimal solution

x∗ ∈ X, and that {fNl
(xli)}

nl
i=0, l = 1, 2, ..., k, satisfy fNl

(xli+1)− f∗
Nl

= θNl
(fNl

(xli)− f∗
Nl
) for some

rate of convergence coefficients θNl
∈ (0, 1) and for all i = 0, 1, 2, ..., nl − 1 and l = 1, 2, ..., k. Let

Sk =
∑k

l=1Nl. If Subroutine C is applied at stages l = 1, 2, ..., k with inputs f̂l from the previous

stage and θ̂l+1 ≥ θNl
, then S

1/2
k (f̂∗

k+1 − f∗) ⇒ N (0, σ2(x∗)), as Sk → ∞.

Proof: See Appendix.

In view of Proposition 4, f̂∗
k+1 is approximately normally distributed with mean f∗ and variance

σ2(x∗)/
∑k

l=1Nl for large sample sizes under the stated assumptions.

The next subroutine estimates the function value at the end of stage k.

Subroutine D (Computes estimate fN∗(xknk
) of f(xknk

))

Input. Verification sample size N∗ and last iterate xknk
.

Step 1. Generate an independent sample {ω∗
j }N

∗
j=1 from IP.

Step 2. Compute the sample average

fN∗(xknk
) =

1

N∗

N∗∑
j=1

F (xknk
, ω∗

j). (46)

Output. Function value estimate fN∗(xknk
).

Subroutine D uses the standard sample average estimator to estimate f(xknk
). Under Assump-

tion 3, the central limit theorem states that for a given xknk
∈ IRd, fN∗(xknk

) is approximately

normally distributed with mean f(xknk
) and variance σ2(xknk

)/N∗ for large N∗.

The next subroutine deals with the computational work parameters.

Subroutine E (Computes estimates of computational work parameters w and w∗)

Input. Time tk required to compute iterates during stage k and time t∗k to verify the last function

value of stage k as well as corresponding sample size Nk, iteration number nk, and verification

sample size N∗.

24

Step 1. Set pw = tk/(Nknk) and p∗w = t∗k/N
∗.

Output. Estimated computational work parameters pw and p∗w.

Subroutine E estimates the computational work parameters w and w∗ in the computational

work model (33) using two computing times observed during stage k. In principle, one could use

past stage’s computing times as well, but the simple Subroutine E performs well in the present

context with the estimated computational work parameters pw and p∗w varying little from stage to

stage in numerical tests.

Subroutines C and D do not guarantee that f̂∗
k+1 ≤ fN∗(xknk

), i.e., that the optimal value

estimate is no larger than the estimated current objective function value. That inequality may

be violated in early stages when estimates of f∗ could be poor. These estimates are intended to

be used in S-SSCPk+1 and an estimated current function value that is within ϵ of the estimated

optimal value would result in a trivial instance of S-SSCPk+1: the optimal number of iterations

for stage k + 1 would be zero since the terminal surrogate state is already reached. To avoid to

some extent such trivial instances of S-SSCPk+1 prematurely, we adopt the following subroutine

that makes adjustments to the estimates when needed.

Subroutine F (Sets estimates pf and p∗, and gives surrogate optimality status)

Input. Estimates f̂∗
k+1, fN∗(xknk

), and pσ, verification sample size N∗, total sample size
∑k

l=1Nl,

and stopping tolerance ϵ.

Step 1. If f̂∗
k+1 + ϵ < fN∗(xknk

), then set pf = fN∗(xknk
) and p∗ = f̂∗

k+1, and surrogate optimality

status to “suboptimal.”

Else set pf = fN∗(xknk
)+pσ/

√
N∗ and p∗ = f̂∗

k+1−pσ/
√∑k

l=1Nl. If p
∗+ϵ < pf , set surrogate

optimality status to “suboptimal.” Otherwise set surrogate optimality status to “optimal.”

Output. Surrogate optimality status and parameter estimates pf and p∗.

Subroutine F sets pf = fN∗(xknk
) and p∗ = f̂∗

k+1, when the estimates fN∗(xknk
) and f̂∗

k+1 appear

“reasonable” in the sense that the current estimates predict that a terminal surrogate state is not

reached. In contrast, if f̂∗
k+1+ϵ ≥ fN∗(xknk

), i.e., a near-optimal solution appears to be reached, then

Subroutine F replaces the estimates fN∗(xknk
) and f̂∗

k+1 by more conservative estimates. Specifically,

pσ/
√
N∗ is added to fN∗(xknk

) and pσ/
√∑k

l=1Nl is subtract off f̂∗
k+1, which both represent shifting

one standard deviation in the respective directions; see Proposition 4 and the discussion after

Subroutine D. If either the original parameter estimates or the conservative ones predict that a

near-optimal solution is not reached, we label the current solution “suboptimal” according to the

surrogate model. Of course, a truly near-optimal solution may be labeled “suboptimal” due to the

25

uncertainty and approximations in the surrogate model. If both the original and the conservative

estimates predict a near-optimal solution, we label the situation “optimal.” Again, we stress that

this does not imply that the current solution is nearly optimal. It merely indicates that the

surrogate model has reached the terminal surrogate state and can therefore not be used to generate

a sample size and a number of iterations for the next stage. In this case, as we see in the statement

of Algorithm 2 below, we resort to a default policy for determining sample size and number of

iterations.

4.2 Initialization Subroutine

The final subroutine determines parameters for S-SSCP1, the first surrogate sample-size control

problem to be solved at the beginning of Stage 1 of Algorithm 2.

Subroutine 0 (Computes initial parameter estimates pf , p
∗, and pσ)

Input. Initial sample size N0 and initial iterate x00.

Step 1. Generate an independent sample {ω0
j }

N0
j=1 from IP.

Step 2. Compute the sample average

fN0(x
0
0) =

1

N0

N0∑
j=1

F (x00, ω
0
j) (47)

and corresponding variance estimate

σ̂2
1 =

1

N0 − 1

N0∑
j=1

(F (x00, ω
0
j)− fN0(x

0
0))

2. (48)

Step 3. Set pf = fN0(x
0
0) + σ̂1/

√
N0, p

∗ = min{0, fN0(x
0
0)− 1}, and pσ = σ̂1.

Output. Parameter estimates pf , p
∗, and pσ.

Step 3 of Subroutine 0 computes a likely conservative estimate of f(x00) by adding one standard

deviation to the unbiased estimate fN0(x
0
0). Step 3 also computes a rudimentary estimate of f∗. If

problem specific information is available, the initial estimate of f∗ may be improved.

4.3 Full Algorithm

Combining S-SSCPk and the above subroutines with Algorithm 1, we obtain Algorithm 2. Below,

we indicate in parenthesis after a subroutine name the input parameters used in that subroutine.

Algorithm 2 (Adaptive Algorithm for P)

26

Data. Optimality tolerance ϵ > 0; initial sample size N0 ∈ IIN; verification sample size N∗; default

sample size factor γN > 0; default iteration number γn ∈ IIN; smoothing parameter αθ ∈ [0, 1];

initial estimate of rate of convergence coefficient θ̂1; initial solution x00 ∈ X; initial estimate

of work coefficients pw and p∗w.

Step 0. Run Subroutine 0(N0, x
0
0) to obtain pf , p

∗, and pσ. Set pθ = θ̂1, x
1
0 = x00, and stage

counter k = 1.

Step 1a. Solve S-SSCPk(pf , p
∗, pθ, pσ, pw, p

∗
w, ϵ) to obtain Nk and nk.

Step 1b. Generate an independent sample {ωk
j }

Nk
j=1 from IP.

Step 2. For i = 0 to nk−1: Compute xki+1 = ANk
(xki) using the sample generated in Step 1b. Let

tk denote the time to compute these iterates.

Step 3a. Run Subroutine A(xknk
, {ωk

j }
Nk
j=1) to obtain pσ.

Step 3b. Run Subroutine B(θ̂k, {fNk
(xki)}

nk
i=0) to obtain θ̂, and set θ̂k+1 = αθθ̂+ (1−αθ)θ̂k and

pθ = θ̂k+1.

Step 3c. Run Subroutine C(f̂∗
k , θ̂k+1, {fNk

(xki)}
nk
i=0) to obtain f̂∗

k+1.

Step 3d. Run Subroutine D(N∗, xknk
) to obtain fN∗(xknk

). Let t∗k be the time required to run

this subroutine.

Step 3e. Run Subroutine E(tk, t
∗
k, Nk, nk, N

∗) to obtain pw and p∗w.

Step 3f. Run Subroutine F(f̂∗
k+1, fN∗(xknk

), pσ, N
∗,
∑k

l=1Nl, ϵ) to obtain surrogate optimality

status and parameter estimates pf and p∗. Set xk+1
0 = xknk

, replace k by k + 1.

If surrogate optimality status is “suboptimal,” then go to Step 1a.

Else (surrogate optimality status is “optimal”), set Nk = ⌈γNNk−1⌉ and nk = γn and go to

Step 1b.

In Step 3b of Algorithm 2, the estimated rate of convergence coefficient is modified in view of

previous estimates using exponential smoothing. Consequently, we avoid large fluctuations in this

estimate. In Step 3f, Algorithm 2 resorts to a default policy defined by the parameters γN and γn

when the surrogate sample-size control problem believes the current iterate satisfies the required

tolerance.

Algorithm 2 is identical to Algorithm 1 except that the sample sizes and numbers of iterations

are selected in a particular manner using S-SSCPk. The underlying probability space Ω̄ of Algo-

rithm 1 is also augmented with ΩN∗×ΩN∗×... for Algorithm 2 to account for the verification sample

size; see Subroutine D. Since this change in probability space is trivial to account for in Theorem 1,

27

it follows that if the assumptions of that theorem are satisfied, then Algorithm 2 converges almost

surely to a near-optimal solution. We note that it is straightforward to impose restrictions on the

values of {Nk, nk}∞k=1 in S-SSCPk required by Theorem 1 through the construction of the sets DN

and Dn.

5 Computational Studies

In this section, we examine numerically the S-SSCP policy and compare it with practical alterna-

tives, including the asymptotically optimal policy of the recent paper [30]. Specifically, we compare

the computing time required to obtain a near-optimal solution by Algorithm 2 using different

sample-size selection policies in Step 1a. As mentioned in Section 1, stochastic programs may also

be solved by algorithms not based on SAA and VSAA. However, in this paper we do not com-

pare across algorithmic frameworks and focus on efficient sample-size selection within VSAA when

applied to smooth stochastic programs.

We implement Algorithm 2 in Matlab Version 7.4 and run the calculations on a laptop computer

with 2.16 GHz processor, 2 GB RAM, and Windows XP operating system, unless otherwise stated.

We use one iteration of the projected gradient method with Armijo step size rule (see, e.g., p. 67

of [33]) as the algorithm map AN (·). The quadratic direction finding problem in the projected

gradient method is solved using LSSOL [10] as implemented in TOMLAB 7.0 [14].

In all computational tests, we use parameters α = 0.5 and β = 0.8 in Armijo step size rule

(see p. 67 of [33]) as well as exponential smoothing parameter αθ = 1/3 in Step 3b of Algorithm 2

and tolerance ϵθ = 0.0001 in Subroutine B. We use initial sample size N0 = 1000, default sample

size factor γN = 1.1, default iteration number γn = 3, and initial estimate of rate of convergence

coefficient θ̂1 = 0.9. Our initial computational work parameters pw and p∗w are 3 and 1, respectively.

5.1 Numerical Examples

We consider the following four problem instances. The first instance is a constructed example of P

with known optimal solution. The second instance arises in investment portfolio optimization, the

third in military and civilian search and rescue operations, and the fourth in engineering design

with multiple performance functions. The second and fourth problem instances illustrate that

Algorithm 2 may be used even if F (·, ω) is nonsmooth, when proper approximations are used.

5.1.1 Problem Instance QUAD

Problem instance QUAD is defined in terms of

F (x, ω) =
20∑
i=1

ai(xi − biωi)
2 (49)

28

with bi = 21 − i, i = 1, 2, ..., 20, and ω = (ω1, ω2, ..., ω20)
′ being a vector of 20 independent and

[0, 1]-uniformly distributed random variables. We use the values ai = i, i = 1, 2, ..., 20. (We

have also examined other values for ai and obtained similar results to those reported below.) The

instances are unconstrained and we set X equal to a sufficiently large convex compact subset of

IR20 that includes all relevant solutions. Obviously, QUAD is strongly convex with a unique global

minimizer x∗ = (x∗1, ..., x
∗
20)

′, where x∗i = bi/2. The optimal value is
∑20

i=1 aib
2
i /12. Even though

solvable without VSAA, we use this simple problem instance to illustrate our approach. We set

x00 = 0 ∈ IR20 and use relative optimality tolerance 0.001, i.e., ϵ = 0.001p∗ in Algorithm 2.

5.1.2 Problem Instance PORTFOLIO

The second problem instance, PORTFOLIO, is taken from [22] and arises in optimization of in-

vestment portfolios. We consider d − 1 financial instruments with random returns given by the

(d− 1)-dimensional random vector ω = R̄ +Qu, where R̄ = (R̄1, R̄2, ..., R̄d−1)
′, with R̄i being the

expected return of instrument i, Q is an (d − 1)-by-(d − 1) matrix, and u is a standard normal

(d − 1)-dimensional random vector. As in [22], we randomly generate R̄ using an independent

sample from a uniform distribution on [0.9, 1.2] and Q using an independent sample from a uniform

distribution on [0, 0.1]. The goal is to distribute one unit of wealth across the d−1 instruments such

that the Conditional Value-at-Risk of the portfolio return is minimized and the expected portfolio

return is no smaller than 1.05. We let xi ∈ IR denote the amount of investment in instrument i,

i = 1, 2, ..., d− 1. This results in the objective function (see [22, 36])

f(x) = IE

[
xd +

1

1− t
max

{
−

d−1∑
i=1

ωixi − xd, 0

}]
, (50)

where x = (x1, x2, ..., xd)
′, with xd ∈ IR being an auxiliary decision variable, and t ∈ (0, 1) is a

probability level. The feasible region

X =

{
x ∈ IRd

∣∣∣∣∣
d−1∑
i=1

xi = 1,
d−1∑
i=1

R̄ixi ≥ 1.05, xi ≥ 0, i = 1, 2, ..., d− 1

}
. (51)

We use d = 101 and t = 0.9.

The expression inside the expectation in (50) is not continuously differentiable everywhere for

IP-almost every ω ∈ Ω. We overcome this difficulty by smoothing that expression using exponential

smoothing with smoothing parameter 103; see [1, 52, 37, 31] for other applications of this approach

as well as associated theory. This results in an error in function evaluation due to smoothing of less

than 7 · 10−4 for all x ∈ IR101 and ω ∈ IR100. This problem instance illustrates that also nonsmooth

problems may be solved approximately by Algorithm 2. Of course, as pointed out in [22], this

instance of P can be reformulated as a conic-quadratic programming problem and solved directly

without the use of VSAA. Hence, this is a convenient test instance as we are able to verify using

cvx [11] that the solutions obtained by Algorithm 2 are indeed nearly optimal.

29

We use initial solution x00 = (0, 0, ..., 0, 1, 0, 0...., 0,−1)′, where the 65-th component equals 1.

In our data, the 65-th instrument has the largest expected return. Hence, the initial solution is

the one with the largest expected portfolio return. We also set ϵ = 0.05p∗. We implement this

problem instance in Matlab Version 7.9 and run the calculations on a laptop computer with 2.26

GHz processor, 3.5 GB RAM, and Windows XP operating system.

5.1.3 Problem Instance SEARCH

The next problem instance generalizes a classical problem arising in search and detection applica-

tions. Consider an area of interest divided into d cells. A stationary target is located in one of the

cells. A priori information gives that the probability that the target is in cell i is pi, i = 1, 2, ..., d,

with
∑d

i=1 pi = 1. The goal is to optimally allocate one time unit of search effort such that the prob-

ability of not detecting the target is minimized (see, e.g., p. 5-1 in [51]). We generalize this problem

and consider a random search effectiveness in cell i per time unit. We let x = (x1, x2, ..., xd)
′ ∈ IRd,

with xi representing the number of time units allocated to cell i, and let ω = (ω1, ω2, ..., ωd)
′, with

ωi, i = 1, 2, ..., d, being independent lognormally distributed random variables (with parameters

ξi = 100ui and λi = 0, where ui ∈ (0, 1) are given data generated by independent sampling from a

uniform distribution) representing the random search effectiveness in cell i. Then, the probability

of not detecting the target is f(x) = IE[F (x, ω)], where

F (x, ω) =
d∑

i=1

pie
−ωixi . (52)

The decision variables are constrained by
∑d

i=1 xi = 1 and xi ≥ 0, i = 1, 2, ..., d. We consider

d = 100 cells. This problem instance, referred to as SEARCH, is convex. We observe that the

expectation in the objective function can be computed by (numerically) solving d one-dimensional

integrals. However, our goal is to illustrate Algorithm 2, which is based on VSAA, so we do not

pursue that avenue. For this problem instance, we use x00 = (1/100, ..., 1/100)′ ∈ IR100 and use

relative optimality tolerance 0.001, i.e., ϵ = 0.001p∗ in Algorithm 2.

5.1.4 Problem Instance TRUSS

The last problem instance deals with the design of a truss structure with topology given in Figure

2. The truss is subject to a random load L in its mid-span. L is lognormally distributed with

mean 100 kN and standard deviation 10 kN. Let Si be the yield stress of member i. Members

1-7 have lognormally distributed yield stresses with means 100, 120, 180, 190, 200, 210, and 220

N/mm2, respectively. Members 1 and 2 have standard deviation 5 N/mm2 and members 3-7

have standard deviations 10 N/mm2. The yield stresses of members 1 and 2 are correlated with

correlation coefficients 0.8. However, their correlation coefficients with the other yield stresses are

0.5. Similarly, the yield stresses of members 3-7 are correlated with correlation coefficients 0.8,

30

7

8
.6

6
m

64 53

21

10m10m

L

Figure 2: Design of Truss

but their correlation coefficients with the yield stresses of members 1 and 2 are 0.5. The load L is

independent of the yield stresses.

The design vector x = (x1, x2, ..., x7)
′ ∈ IR7, where xi is the cross-section area (in 1000 mm2)

of member i. The truss fails if any of the members exceed their yield stress and, hence, the

probability of failure is P [
∪7

i=1{Sixi − L/ζi ≤ 0}], where ζi = 1/(2
√
3) for i = 1, 2, and ζi = 1/

√
3

for i = 3, 4, ..., 7 (see [41] for details). Using the approach in [41], see also [39], we find that this

probability of failure can be approximated with high accuracy by

f(x) = IE[max{ρ, max
i=1,...,7

{1− χ2
8(r

2
i (x, ω))}} (53)

where ρ > 0 is an approximation parameter set equal to 20, χ2
8(·) is the Chi-square cumulative distri-

bution function with 8 degrees of freedom, ω is an eight-dimensional random vector of independent

standard normal random variables obtained from the original random variables (L, S1, ..., S7) using

a Nataf probability transformation, and ri(·, ω) is a smooth distance function. The function (53)

is of form (1) and is continuously differentiable under moderate assumptions [39]. As in the case

of PORTFOLIO, the expression inside the brackets in (53) is not continuously differentiable every-

where for IP-almost every ω ∈ Ω. We again overcome this difficulty by smoothing that expression

using exponential smoothing with smoothing parameter 107; see [35]. This results in an error in

function evaluation due to smoothing of less than 2 ·10−7 for all x ∈ IR7 and ω ∈ Ω. As the problem

instance is not known to be convex, it illustrates that that the proposed approach may be effective

31

in such cases too. The goal in this design problem, denoted TRUSS, is to minimize f(x) subject

to
∑7

i=1 xi = 3, xi ≤ 0.5, xi ≥ 0.2, i = 1, 2, ..., 7. We use x00 = (3/7, ..., 3/7)′ ∈ IR7 and ϵ = 0.05p∗.

5.2 Computational Results

We apply Algorithm 2 with different sample-size selection policies to the four problem instances.

The measure of performance of a policy is the computing time in Algorithm 2 until the first time

a stage k satisfies[
0,max

{
fN∗(xknk

)− f̂∗
k+1 + z1−αspσ

√
1

N∗ +
1∑k

l=1Nl

, 0

}]
⊂ [0, ϵ] (54)

at the end of the stage. Here, ϵ > 0 is the required tolerance and z1−αs is the 1−αs quantile of the

standard normal cumulative distribution function. We use αs = 0.05 in our tests. The left-hand

side in (54) is motivated as follows.

For a given x ∈ IRd, fN∗(x) and f̂∗
k+1 are independent when the sample used to compute

fN∗(x) is independent of those used to compute f̂∗
k+1. Hence, in view of Proposition 4 and the

discussion after Subroutine D, fN∗(x) − f̂∗
k+1 is approximately normally distributed with mean

f(x) − f∗ and variance σ2(x)/N∗ + σ2(x∗)/
∑k

l=1Nl for large N∗ and
∑k

l=1Nl. Consequently,

[0,max{fN∗(x) − f̂∗
k+1 + z1−αs

√
σ2(x)/N∗ + σ2(x∗)/

∑k
l=1Nl, 0}] is an approximate 100(1 − αs)%

confidence interval for f(x) − f∗. We include the max-operator in the expression for this interval

as f(x) − f∗ ≥ 0 for any x ∈ X. The assumptions underlying this confidence interval are not

fully satisfied in the context of Algorithm 2 for three reasons. First, σ(x) and σ(x∗) are assumed

known, which may not be the case. Second, since we are interested in x = xknk
, the final iterate

of the k-th stage, and xknk
is generated using the same samples as those underlying f̂∗

k+1, fN∗(xknk
)

and f̂∗
k+1 may not be independent. Third, we check the confidence interval after the completion

of each stage in Algorithm 2, which implies sequential testing that may introduce a bias not

accounted for in the confidence interval. In spite of these facts, we heuristically adopt the confidence

interval with σ(x) and σ(x∗) replaced by the standard deviation estimate pσ as the basis for our

stopping criterion, which leads to (54). Consequently, we cannot guarantee that the left-hand side

in (54) attains the stipulated coverage probability. However, we find empirically that the coverage

probabilities are satisfactory. Specifically, Algorithm 2 stops, using (54), with an xknk
that fails to

satisfy f(xknk
)− f∗ ≤ ϵ in only 1% of 320 independent runs on QUAD, which is well within the 5%

indicated by the confidence level 0.95. While not tested as comprehensively, the stopping criterion

performs well also on the other problem instances. On PORTFOLIO, the stopping criterion never

stops prematurely on 82 runs. It stops prematurely 1 time out of 90 and 0 times out of 90 for

SEARCH and TRUSS, respectively, also well within the requested 5%.

The proximity to optimality of a solution obtained by Algorithm 2 could also be estimated

using an optimality function [37], a hypothesis test of Karush-Kuhn-Tucker conditions [47], or an

32

Policy QUAD PORTFOLIO SEARCH TRUSS
Name s dN dn df avg. st.d. avg. st.d. avg. st.d. avg. st.d.

S-SSCP high 10 40 20 30 372 229 33 11 393 173 575 257
S-SSCP medium 10 40 20 15 104 72 10 3 117 47 106 79
S-SSCP low 5 20 10 15 12 3 4 1 22 7 24 11

Table 1: Total computing times (seconds), over all stages, to solve S-SSCPk in Step 1a of Algorithm
2 with stopping criterion (54) for different values of s, dN , dn, and df . The times in columns 6,
8, 10, and 12 are averages over ten runs of Algorithm 2 when applied to QUAD, PORTFOLIO,
SEARCH, and TRUSS, respectively. Standard deviations across the ten runs are listed in columns
7, 9, 11, and 13.

optimality gap estimate based on replications [28, 24]. However, we do not pursue those avenues

here as (54) appears sufficient for our purpose of compare different sample-size selection policies.

In view of (54) and the fact that αs = 0.05, we select N∗ so that the variability in fN∗(xknk
)

is relatively small. Hence, we set N∗ = ⌈(σ̂1z0.95/(ϵ/2))2⌉, which is the smallest sample size that

ensures that (54) is satisfied when fN∗(xknk
)− f̂∗

k+1 = ϵ/2 and there is no uncertainty in f∗
k+1, i.e.,∑k

l=1Nl “equals” infinity.

We start by examining the computational effort required to solve S-SSCPk in Step 1a of

Algorithm 2. As discussed in Subsection 3.3, that computational effort depends on the number

of stages s, number possible sample sizes dN , number of possible stage durations dn, and number

of discrete states df considered in S-SSCPk. Table 1 gives total computing times in seconds to

solve S-SSCPk, k = 1, 2, ..., k∗ϵ , in Algorithm 2, where k∗ϵ is the first stage satisfying the stopping

criterion (54), for different values of s, dN , dn, and df when applied to QUAD (columns 6-7),

PORTFOLIO (columns 8-9), SEARCH (columns 10-11), and TRUSS (columns 12-13). Termina-

tion occurs typically with k∗ϵ between 5 and 15. The total computing times are averages over 10

independent runs and given in columns 6, 8, 10, and 12, with corresponding standard deviations

given in columns 7, 9, 11, and 13. (The shorter times for PORTFOLIO are, in part, due to a faster

computer.) Row 3 presents results for “high” values of s, dN , dn, and df as specified in columns

2-5 and we find the corresponding total computing times to be relatively long. Row 4 gives total

computing times for a “medium” case with fewer discrete states df , which results in a reduction in

the total computing time with a factor of about four. Row 5 considers the case with “low” values of

s, dN , dn, and df . In this case, the total computing times for solving S-SSCPk, k = 1, 2, ..., k∗ϵ , is

reduced with a factor of approximately 10-30 and amounts to only about one second per solution of

the surrogate sample-size control problem. The results for all problem instances correspond closely

with what is predicted by the complexity result O(sdNdnd
2
f) for S-SSCPk; see Subsection 3.3. We

next examine how different values of s, dN , dn, and df influence the quality of the resulting S-SSCP

policy.

Using the same 10 independent runs of Algorithm 2 as in Table 1, rows 3-5 of Table 2 give

33

the average computing times in seconds over the 10 runs for Algorithm 2 applied to QUAD and

PORTFOLIO, excluding the time of Step 1a to solve S-SSCPk. (The remaining rows of Table 2

are discussed below.) Standard deviations of the times are given in columns 5 and 7. We find only

a moderate variability across rows 3-5 in Table 2 and no clear indication that larger values of s,

dN , dn, and df yield significantly better policies than smaller values.

Table 3 presents similar results as Table 2, but for problem instances SEARCH and TRUSS.

Using the same 10 independent runs of Algorithm 2 as in Table 1, rows 3-5 of Table 3 present the

average computing times in seconds over the 10 runs for Algorithm 2 excluding the time of Step 1a

to solve S-SSCPk. Again, there is only a moderate variability in computing times across rows 3-5

in Table 3 and no clear indication that larger values of s, dN , dn, and df yield significantly better

policies than smaller values. The results of rows 3-5 in Tables 2 and 3 as well as those of tests with

other values of s, dN , dn, and df not reported here, indicate that relatively small values of s, dN , dn,

and df may be sufficient to generate reasonable S-SSCP policies. In view of Table 1, small values of

s, dN , dn, and df result in essentially negligible computing times for S-SSCPk. We anticipate that

in real-world application of Algorithm 2 the main iterations of Step 2 in Algorithm 2 would require

a significant amount of time, much more than the times for the present problem instances, due to

large number of iterations, large sample sizes, and/or expansive function and gradient evaluations.

In contrast, the total computing times to solve S-SSCPk would remain about the same as they are

essentially independent of the application. They only depend on the values of s, dN , dn, and df .

Hence, we conjecture that the time to obtain the S-SSCP policy is negligible in many applications.

We next compare the S-SSCP policy with other reasonable alternatives. Rows 6-8 of Table

2 give times on QUAD and PORTFOLIO for an “additive policy” where N1 = N∗/1000 and

Nk = N1 + (N∗ − N1)k/20, k = 2, 3, ..., with nk = 5, 10, and 20, respectively, rows 9-11 give

times for a “multiplicative policy” where N1 = N∗/1000 and Nk = 1.5k−1N1, k = 2, 3, ..., with

nk = 5, 10, and 20, respectively, and rows 12-14 give times for the same multiplicative policy as

the previous rows except that Nk = 2k−1N1, k = 2, 3, Rows 15-17 report results for a fixed

policy with Nk = N∗/2 and nk = 5 for all k. In Table 2 and elsewhere we indicate in brackets

the number of terminations within a time limit, here one hour, when less than 10. Rows 18-29

follow policies deduced from the recommendation in [30]. Specifically, from an N1 given in column

3, Nk = 1.1k−1N1, k = 2, 3, ..., for rows 18-23 and Nk = 1.5k−1N1, k = 2, 3, ..., for rows 24-29.

The number of iterations carried out at each stage is determined adaptively. For QUAD, which

is unconstrained, the stage ends when the estimated distance ∥(∇2fNk
(xki))

−1∇fNk
(xki)∥ to an

optimal solution is no greater than K/
√
Nk as recommended in [30]. For constrained problems

such as PORTFOLIO, no recommendation is given and we use the distance between the current

solution and a minimizer over X of a quadratic model of fNk
(·) at the current solution as an

estimate of the distance to an optimal solution. Column 2 of rows 18-29 gives values of K. The

policies of rows 18-29 are asymptotically optimal in a sense defined in [30]. We note that N∗/1000

34

Policy QUAD PORTFOLIO
Name nk N1 avg. st.d. avg. st.d.

S-SSCP high adaptive adaptive 201 137 382 119
S-SSCP medium adaptive adaptive 250 232 468 139
S-SSCP low adaptive adaptive 129 34 629 248
Additive 5 10−3N∗ 242 59 435 132
Additive 10 10−3N∗ 434 213 525 139
Additive 20 10−3N∗ 352 172 432 113
Mult. 1.5 5 10−3N∗ 631 267 1407 312
Mult. 1.5 10 10−3N∗ 666 379 1459 335
Mult. 1.5 20 10−3N∗ 759 460 1457 519
Mult. 2 5 10−3N∗ 494 233 1085 287
Mult. 2 10 10−3N∗ 867 426 989 204
Mult. 2 20 10−3N∗ 1080 1310 986 359
Fixed 5 N∗/2 - [0] 2788 475
Fixed 10 N∗/2 - [0] 2840 1752
Fixed 25 N∗/2 - [0] 757 186
Mult. 1.1 K = 1 10 1434 170 - [0]
Mult. 1.1 K = 1 100 1039 229 - [0]
Mult. 1.1 K = 1 10−3N∗ 501 200 - [0]
Mult. 1.1 K = 0.1 10 1521 318 - [0]
Mult. 1.1 K = 0.1 100 1015 323 - [0]
Mult. 1.1 K = 0.1 10−3N∗ 974 391 - [0]
Mult. 1.5 K = 1 10 591 245 - [0]
Mult. 1.5 K = 1 100 419 151 3600 [1]
Mult. 1.5 K = 1 10−3N∗ 305 79 2868 [1]
Mult. 1.5 K = 0.1 10 864 427 - [0]
Mult. 1.5 K = 0.1 100 841 778 - [0]
Mult. 1.5 K = 0.1 10−3N∗ 573 514 - [0]

Table 2: Average and standard deviation of computing times (seconds) over ten runs of Algorithm
2 excluding the time of Step 1a when applied to QUAD and PORTFOLIO. Averages are only over
runs completed within 3600 seconds. If less than 10 runs finished within that time limit, we report
the number that did finish in brackets.

35

Policy SEARCH TRUSS
Name nk N1 avg. st.d. avg. st.d.

S-SSCP high adaptive adaptive 117 59 2157 1213
S-SSCP medium adaptive adaptive 141 62 1649 1290
S-SSCP low adaptive adaptive 118 45 2166 1793
Additive 5 10−3N∗ 134 74 1992 2240
Additive 10 10−3N∗ 253 158 2173 1369
Additive 20 10−3N∗ 210 120 6875 6280
Mult. 1.5 5 10−3N∗ 173 69 2661 2531
Mult. 1.5 10 10−3N∗ 204 145 2751 1181
Mult. 1.5 20 10−3N∗ 443 392 6756 7507
Mult. 2 5 10−3N∗ 122 67 3303 2805
Mult. 2 10 10−3N∗ 340 397 4557 4018
Mult. 2 20 10−3N∗ 404 389 10056 8098
Fixed 5 N∗/2 560 171 - [0]
Fixed 10 N∗/2 942 353 - [0]
Fixed 25 N∗/2 1138 438 - [0]

Table 3: Average and standard deviation of computing times (seconds) over ten runs of Algorithm
2 excluding the time of Step 1a when applied to SEARCH and TRUSS. Averages are only over runs
completed within 15000 seconds. If less than 10 runs finished within that time limit, we report the
number that did finish in brackets.

is typically around 600 and 100 for QUAD and PORTFOLIO, respectively. In all cases, Nk is set

to 3,000,000, if the above policies propose a sample size of larger than 3,000,000.

We see from Table 2 that the S-SSCP policies are often significantly better than the alternative

ones for both problem instances. The first additive policy on QUAD (see row 6 of Table 2) appears to

be reasonably efficient and competitive with S-SSCP medium. On PORTFOLIO, the three additive

policies are competitive. Other alternative policies, however, may require as much as an order of

magnitude more computing time. The alternative policies deduced from the recommendation in

[30] (see rows 18-29 in Table 2) may result in poor computing times, especially for PORTFOLIO

where only two instances solve within the time limit. It appears that the policies in [30] have a

tendency to “over-solve” each stage. This follows as a consequence from the difficulty of accurately

estimating the distance to an optimal solution.

Table 4 gives estimates of the value of f(·) at the final iterate of Algorithm 2 for the interesting

cases in Table 2 using an independent sample of size 500, 000, which result in small estimator errors

(95% confidence interval halfwidth of 0.8 and 0.002 for QUAD and PORTFOLIO, respectively).

We report both average estimates over the 10 runs (columns 4 and 6) as well as standard deviations

(columns 5 and 7). Since f∗ + ϵ equals 1348.8 for QUAD and −0.335 for PORTFOLIO, Table 4

indicates that all the cases that terminated by (54) return solutions within the required tolerance.

On PORTFOLIO, not all policies terminate within one hour, but we still report the estimated

function values at that time.

36

Policy QUAD PORTFOLIO
Name nk N1 avg. st.d. avg. st.d.

S-SSCP high adaptive adaptive 1347.2 0.5 −0.348 0.002
S-SSCP medium adaptive adaptive 1347.5 0.4 −0.348 0.001
S-SSCP low adaptive adaptive 1347.5 0.2 −0.347 0.001
Additive 5 10−3N∗ 1347.9 0.5 −0.346 0.001
Additive 10 10−3N∗ 1347.6 0.5 −0.347 0.001
Additive 20 10−3N∗ 1347.6 0.3 −0.346 0.001
Mult. 1.5 5 10−3N∗ 1347.4 0.3 −0.346 0.001
Mult. 2 5 10−3N∗ 1347.7 0.5 −0.348 0.001
Mult. 1.1 K = 1 10 1347.4 0.4 −0.184 0.098
Mult. 1.1 K = 1 100 1347.5 0.3 −0.291 0.032
Mult. 1.1 K = 1 10−3N∗ 1347.8 0.5 −0.308 0.022
Mult. 1.1 K = 0.1 10 1347.7 0.5 0.127 0.428
Mult. 1.1 K = 0.1 100 1348.0 1.8 −0.266 0.052
Mult. 1.1 K = 0.1 10−3N∗ 1347.6 0.3 −0.308 0.019
Mult. 1.5 K = 1 10 1347.7 0.5 −0.285 0.074
Mult. 1.5 K = 1 100 1347.8 0.5 −0.307 0.057
Mult. 1.5 K = 1 10−3N∗ 1347.4 0.6 −0.332 0.027
Mult. 1.5 K = 0.1 10 1347.6 0.5 −0.097 0.351
Mult. 1.5 K = 0.1 100 1348.1 1.2 −0.325 0.026
Mult. 1.5 K = 0.1 10−3N∗ 1347.8 0.8 −0.323 0.039

Table 4: Average and standard deviation of estimated objective function values over ten runs of
Algorithm 2 for QUAD and PORTFOLIO.

37

k S-SSCP high Additive Mult. factor 2 Mult. factor 1.1 Mult. factor 1.5
Nk nk Nk nk Nk nk Nk nk Nk nk

1 100 37 586 5 608 10 100 45 621 55
2 10000 32 29881 5 1216 10 110 24 932 24
3 11000 9 59176 5 2432 10 121 22 1397 23
4 39995 4 88471 5 4864 10 133 22 2096 21
5 43995 3 117766 5 9728 10 146 9 3144 16
6 48395 3 19456 10 161 11 4716 12
7 38912 10 177 17 7074 18
8 77824 10 195 20 10610 14
9 155648 10 214 13 15916 13
10 236 14 23873 14
11 259 17 35810 19
12 285 12 53715 22
13 314 16 80572 25
14 345 19 120859 7
15 380 13
...
71 78975 14

Table 5: Examples of sample sizes Nk and numbers of iterations nk for QUAD in policies S-SSCP
high (columns 2-3), Additive with nk = 5 and N1 = N∗/1000 (columns 4-5), Multiplicative with
factor 2, nk = 10, and N1 = N∗/1000 (columns 6-7), Multiplicative with factor 1.1, K = 1, and
N1 = 100 (columns 8-9), and Multiplicative with factor 1.5, K = 1, and N1 = N∗/1000 (columns
10-11).

38

Table 5 presents examples of sample sizes and number of iterations for QUAD for five runs

using policies from Table 2. Columns 2-3 show that the policy S-SSCP high requires six stages

and that the number of iterations tends to decrease as the stages progress. S-SSCPk identifies

this as a computationally efficient approach as the later stages necessarily would require a large

sample size. We note that in QUAD N∗ is about 6 ·105. Columns 4-5 shows comparable results for

the additive policy with nk = 5 and N1 = N∗/1000. The fixed increase in sample size after each

stage appears to be to large in this case as the sample size reaches unnecessarily high values. The

situation is similar for the multiplicative policy with factor 2, nk = 10, and N1 = N∗/1000; see

columns 6-7. For the multiplicative policies with factor 1.1, K = 1, and N1 = 100 (columns 8-9)

and with factor 1.5, K = 1, and N1 = N∗/1000 (columns 10-11), we find that the adaptive rule for

determining the number of iterations for each stage tends to result in high values of nk. Hence, the

algorithm “over-solves” each stage, which may result in long computing times. Also, the number

of stages may become excessive if the multiplicative factor is small; see columns 8-9. We observe

similar behaviors to those in Table 5 for the other problem instances.

Returning to Table 3, we see that also in the case of SEARCH and TRUSS the alternative poli-

cies perform poorly. Here, we do not examine the policies from [30] due to their poor performance

in Table 2. On SEARCH, the S-SSCP policies appear to be the fastest, but one additive policy

(row 6) and one multiplicative policy (row 12) are competitive. On the problem instance TRUSS

(see columns 6 and 7 of Table 3), the S-SSCP policies again outperform most alternative policies

with two additive policies (rows 6 and 7) being competitive. The fastest additive policy on average,

however, has a larger standard deviations (coefficient of variations of roughly 1.1) than that of

the S-SSCP policies (coefficient of variation of 0.7 on average). Hence, the user of that additive

policy is exposed to a significant risk of having a long computing time even with this “good” policy.

We observe that the best alternative policy for SEARCH (see row 12 of Table 3) is only the fifth

best alternative policy for TRUSS. Hence, as could be expected, a good alternative policy for one

problem instance may not be particularly good for another. Of course, this makes the process of

selecting a policy manually or by trial-and-error rather difficult.

Table 6 gives estimates of the value of f(·) at the final iterate of Algorithm 2 when applied to

SEARCH and TRUSS, again using a sample of size 500, 000 (which gives 95% confidence interval

halfwidth of 0.0002 and 0.0006 for SEARCH and TRUSS, respectively). We report both average

estimates over the 10 runs (columns 4 and 6) as well as standard deviations (columns 5 and 7).

Since f∗+ ϵ equals 0.5619 for SEARCH and 0.0241 for TRUSS, Table 6 indicates that all the cases

return solutions within the required tolerance.

In view of the above results, we see that even on simple problem instances a poor choice of

sample-size selection policy may result in extremely long computing times. Moreover, the recom-

mendations from [30], which are based on asymptotic analysis of sampling error and algorithmic

progress, may not be helpful in practice. In fact, on the problem instances examined, these rec-

39

Policy SEARCH TRUSS
Name nk N1 avg. st.d. avg. st.d.

S-SSCP high adaptive adaptive 0.5614 0.0001 0.0229 0.0002
S-SSCP medium adaptive adaptive 0.5614 0.0002 0.0231 0.0003
S-SSCP low adaptive adaptive 0.5614 0.0001 0.0229 0.0004
Additive 5 10−3N∗ 0.5614 0.0001 0.0231 0.0004
Additive 10 10−3N∗ 0.5614 0.0001 0.0229 0.0002
Mult. 1.5 5 10−3N∗ 0.5614 0.0001 0.0231 0.0003
Mult. 1.5 10 10−3N∗ 0.5614 0.0001 0.0231 0.0002
Mult. 2 5 10−3N∗ 0.5614 0.0001 0.0231 0.0003
Mult. 2 10 10−3N∗ 0.5614 0.0001 0.0231 0.0003

Table 6: Average and standard deviation of objective function values over ten runs of Algorithm 2
for SEARCH and TRUSS.

ommendations perform worse than simple additive or multiplicative policies. On the other hand,

the S-SSCP policy appears to be robust across values of the parameters s, dN , dn, and df and

it performs well even on ill-conditioned problems not reported here. In contrast to rigid additive

and multiplicative policies, the S-SSCP policy initially recommends many iterations per stage but

reduces the number as the sample size increases in later stages. When the sample size is large

and the surrogate terminal state is almost satisfied, the policy recommends a cautious increase in

sample size.

6 Conclusions

We considered the solution of smooth stochastic programs by sample average approximations and

formulated the problem of selecting efficient sample sizes as a discrete-time optimal-control problem

that aims to minimize the expected computing time to reach a near-optimal solution. The optimal-

control problem is intractable, but we approximate it by a surrogate sample-size control problem

using state aggregation and the result of a novel model of algorithmic behavior. The surrogate

sample-size control problem depends on unknown parameters that we estimate as the algorithm

progresses. Hence, we solve the surrogate sample-size control problem repeatedly within a receding-

horizon framework.

Even with estimates of parameters, the surrogate sample-size control problem provides a policy

for selecting sample sizes and number of iterations that outperforms most plausible alternative

policies including policies known to be optimal in some asymptotic sense. The surrogate sample-

size control problem provides a policy that appears to be robust to changing characteristics of

problem instances such as ill-conditioning. In comparison, the alternative policies may result in

dramatically varying computing times. Of course, we do not examine all possible policies in this

paper, among which there is likely to be some that are better than the surrogate sample-size

40

control policy. However, we illustrate the difficulty a user faces when selecting a policy prior to

calculations. We also show that guidance provided by recommendations in the literature may not

be helpful in practice. The approach derived in this paper eliminates the need for users to select

a policy through extensive trial-and-error or guesswork and, hence, facilitates implementation of

stochastic programming algorithms in decision-support tools.

Acknowledgement

This study is supported by AFOSR Young Investigator grant F1ATA08337G003. The author is

grateful for valuable discussions with Roberto Szechtman, Naval Postgraduate School. The author

also thanks Alexander Shapiro, Georgia Institute of Technology, for assistance with two technical

results.

Appendix

This appendix includes proofs of results in Section 4.

Proof of Proposition 2. By assumption, for any i = 0, 1, ..., nk − 1 and a ∈ (0, 1)

fNk
(xknk

)− ank−ifNk
(xki)

1− ank−i
<

fNk
(xknk

)− ank−ifNk
(xknk

)

1− ank−i
= fNk

(xknk
). (55)

Hence, ϕ(a) < fNk
(xknk

) and

fNk
(xki)− ϕ(a) > 0 (56)

for any i = 0, 1, ..., nk and a ∈ (0, 1). Consequently, the logarithmic transformation of the data

in Step 2 of Subroutine B is permissable when aj ∈ (0, 1) and regression coefficients log aj+1 and

log bj+1, j = 0, 1, ..., are given by the standard linear least-square regression formulae. Specifically,

log aj+1 =

∑nk
i=0(i− nk/2)[log(fNk

(xki)− ϕ(aj))−
∑nk

i′=0 log(fNk
(xki′)− ϕ(aj))/(nk + 1)]∑nk

i=0(i− nk/2)2
. (57)

Since the denominator in (57) simplifies to (n3
k + 3n2

k + 2nk)/12, we obtain using the definition of

αi = 12(i− nk/2)/(n
3
k + 3n2

k + 2nk) in Proposition 2 that

aj+1 = exp

{
nk∑
i=0

αi

[
log(fNk

(xki)− ϕ(aj))−
nk∑
i′=0

log(fNk
(xki′)− ϕ(aj))/(nk + 1)

]}

=
nk∏
i=0

exp

{
αi

[
log(fNk

(xki)− ϕ(aj))−
nk∑
i′=0

log(fNk
(xki′)− ϕ(aj))/(nk + 1)

]}

=
nk∏
i=0

(
(fNk

(xki)− ϕ(aj))
αi

nk∏
i′=0

(fNk
(xki′)− ϕ(aj))

−αi/(nk+1)

)

=
nk∏
i=0

(fNk
(xki)− ϕ(aj))

αi

nk∏
i′=0

(fNk
(xki′)− ϕ(aj))

−
∑nk

i=0
αi/(nk+1). (58)

41

We find that
nk∑
i=0

αi =
nk∑
i=0

12(i− nk/2)/(n
3
k + 3n2

k + 2nk)

= 12(nk(nk + 1)/2− (nk + 1)nk/2)/(n
3
k + 3n2

k + 2nk) = 0 (59)

and consequently

aj+1 =
nk∏
i=0

(fNk
(xki)− ϕ(aj))

αi . (60)

By definition, αi = 12(i−nk/2)/(n
2
k+3n2

k+2nk) = −12(nk− i−nk/2)/(n
2
k+3n2

k+2nk) = −αnk−i.

Hence,

aj+1 =

n0
k−1∏
i=0

(fNk
(xki)− ϕ(aj))

αi

nk∏
i=n0

k

(fNk
(xki)− ϕ(aj))

αi

=

n0
k−1∏
i=0

(fNk
(xki)− ϕ(aj))

−αnk−i

nk∏
i=n0

k

(fNk
(xki)− ϕ(aj))

αi

=

n0
k∏

i′=nk

(fNk
(xknk−i′)− ϕ(aj))

−αi′
nk∏

i=n0
k

(fNk
(xki)− ϕ(aj))

αi ,

=
nk∏

i′=n0
k

(fNk
(xknk−i′)− ϕ(aj))

−αi′
nk∏

i=n0
k

(fNk
(xki)− ϕ(aj))

αi ,

where we use the fact that αnk/2 = 0 when nk is an even number. The expression for g(·) then

follows by combining the two products. The positivity of g(aj) follows trivially from (56), as

g(aj) is a product of positive numbers. Since fNk
(xki) > fNk

(xki+1) for all i = 0, 1, ..., nk − 1,

(fNk
(xki) − ϕ(a))/(fNk

(xknk−i) − ϕ(a)) < 1 for all i = n0
k, n

0
k + 1, ..., nk. Moreover, αi > 0 for all

i = n0
k, n

0
k + 1, ..., nk. Hence, it follows that g(a) < 1.

Proof of Theorem 4. We first show that the derivative dg(a)/da exists and is positive on (0, 1).

For any a ∈ (0, 1) and i = n0
k, n

0
k + 1, ..., nk, let hi : (0, 1) → IR be defined by

hi(a) :=
fNk

(xki)− ϕ(a)

fNk
(xknk−i)− ϕ(a)

. (61)

By (56), hi(a) > 0 for any a ∈ (0, 1) and i = n0
k, n

0
k + 1, ..., nk and consequently

g(a) = exp

 nk∑
i=n0

k

αi log hi(a)

 . (62)

By straightforward derivation we obtain that

dg(a)

da
= g(a)

nk∑
i=n0

k

αi
dhi(a)/da

hi(a)
(63)

= g(a)
nk∑

i=n0
k

αi

(fNk
(xki)− fNk

(xknk−i))dϕ(a)/da

(fNk
(xki)− ϕ(a))(fNk

(xknk−i)− ϕ(a))
,

42

where
dϕ(a)

da
=

1

nk

nk−1∑
i=0

(nk − i)ank−i−1(fNk
(xknk

)− fNk
(xki))

(1− ank−i)2
. (64)

Since fNk
(xknk

)− fNk
(xki) < 0 for all i = 0, 1, ..., nk − 1 by assumption, it follows that dϕ(a)/da < 0

for all a ∈ (0, 1). Again, by assumption, fNk
(xki) − fNk

(xknk−i) < 0 for all i = n0
k, n

0
k + 1, ..., nk.

Hence, by (56) and the fact that αi > 0 for all i = n0
k, n

0
k +1, ..., nk, we conclude that dg(a)/da > 0

for any a ∈ (0, 1)

Since {aj}∞j=0 is contained in the compact set [0, 1] by Proposition 2, it follows that there exists

a subsequence {aj}j∈J , with J ⊂ IIN, and an a∗ ∈ [0, 1] such that aj →J a∗, as j → ∞. By the

mean value theorem, we obtain that for every j = 0, 1, 2, ...,, there exists an sj ∈ [0, 1] such that

aj+2 − aj+1 = g(aj+1)− g(aj) =
dg(aj + sj(aj+1 − aj))

da
(aj+1 − aj). (65)

Since dg(aj + sj(aj+1 − aj))/da > 0, it follows that {aj}∞j=0 generated by Subroutine B initialized

with a0 ∈ (0, 1) is either strictly increasing or strictly decreasing. That is, if a0 < a1, then aj < aj+1

for all j ∈ IIN. If a0 > a1, then aj > aj+1 for all j ∈ IIN. Hence, aj → a∗ as j → ∞. Similarly,

g(aj) ∈ (0, 1) by Proposition 2 and there must exists a convergent subsequence of {g(aj)}∞j=0 that

convergence to a point g∗ ∈ [0, 1]. Since aj+1 = g(aj), {g(aj)}∞j=0 is either strictly increasing or

strictly decreasing and therefore g(aj) → g∗, as j → ∞. Since aj+1 = g(aj) for all j ∈ IIN and

aj → a∗ and g(aj) → g∗, as j → ∞, we have that a∗ = g∗. By continuity of g(·) on (0, 1), if

a∗ ∈ (0, 1), then g(aj) → g(a∗), as j → ∞. Hence, g(a∗) = g∗ = a∗. If a∗ = 0, then g∗ = 0. If

a∗ = 1, then g∗ = 1. Since by definition g(0) = 0 and g(1) = 1, it follows that a∗ = g(a∗) in these

two cases too. The finite termination of Subroutine B follows directly from the fact that {aj}∞j=0

converges.

Proof of Theorem 5. Since fNk
(xki) = f∗

Nk
+ (θNk

)i(fNk
(xk0)− f∗

Nk
) for all i = 0, 1, 2, ...,

ϕ(θNk
) =

1

nk

nk−1∑
i=0

fNk
(xknk

)− (θNk
)nk−ifNk

(xki)

1− (θNk
)nk−i

= f∗
Nk

. (66)

It then follows by (60) that

g(θNk
) =

nk∏
i=0

(fNk
(xki)− f∗

Nk
)αi

=
nk∏
i=0

(f∗
Nk

+ θiNk
(fNk

(xk0)− f∗
Nk

)− f∗
Nk

)αi

= θ

∑nk
i=0

iαi

Nk
(fNk

(xk0)− f∗
Nk

)
∑nk

i=0
αi .

Since
∑nk

i=0 i
2 = (nk + 1)(n2

k/3 + nk/6),

nk∑
i=0

iαi =
nk∑
i=0

12(i2 − ink/2)/(n
3
k + 3n2

k + 2nk)

= 12((nk + 1)(n2
k/3 + nk/6)− nk(nk + 1)nk/4)/(n

3
k + 3n2

k + 2nk) = 1.

43

Since
∑nk

i=0 αi = 0 by (59), the conclusion follows.

Proof of Theorem 6. By Theorem 5 and (66), θNk
= g(θNk

) and ϕ(θNk
) = f∗

Nk
. Consequently,

it follows from (63) and the assumption of exact linear rate that

dg(θNk
)

da
= θNk

nk∑
i=n0

k

αi

(θiNk
− θnk−i

Nk
)dϕ(θNk

)/da

θnk
Nk

(fNk
(xk0)− f∗

Nk
)

. (67)

Since

dϕ(θNk
)

da
=

1

nk

nk−1∑
i=0

(nk − i)θnk−i−1
Nk

(θnk
Nk

− θiNk
)(fNk

(xk0)− f∗
Nk

)

(1− θnk−i
Nk

)2

= − 1

nk

nk−1∑
i=0

(nk − i)θnk−1
Nk

(fNk
(xk0)− f∗

Nk
)

1− θnk−i
Nk

, (68)

we obtain that

dg(θNk
)

da
=

− 1

nk

nk−1∑
i=0

(nk − i)θnk−1
Nk

1− θnk−i
Nk

 θNk

nk∑
i=n0

k

αi

θiNk
− θnk−i

Nk

θnk
Nk

=

 1

nk

nk−1∑
i=0

nk − i

1− θnk−i
Nk

 nk∑
i=n0

k

αi(θ
nk−i
Nk

− θiNk
)

=

(
1

nk

nk∑
i′=1

i′

1− θi
′
Nk

)
nk∑

i=n0
k

αi(θ
nk−i
Nk

− θiNk
). (69)

If nk is even, then using (59) we find that

nk∑
i=n0

k

αi = 0−
nk/2∑
i=0

12(i− nk/2)/(n
3
k + 3n2

k + 2nk)

= −12[(nk/2)(nk/2 + 1)/2− (nk/2 + 1)nk/2]/(n
3
k + 3n2

k + 2nk) = (3/2)/(nk + 1).

If nk is odd, then using (59) we find that

nk∑
i=n0

k

αi = 0−
nk/2−1/2∑

i=0

12(i− nk/2)/(n
3
k + 3n2

k + 2nk)

= −12[(nk/2− 1/2)(nk/2− 1/2 + 1)/2− (nk/2− 1/2 + 1)nk/2]/(n
3
k + 3n2

k + 2nk)

= (3/2)(nk + 1)/(nk(nk + 2)).

Since 1/(nk + 1) < (nk + 1)/(nk(nk + 2)),

nk∑
i=n0

k

αi ≤ (3/2)(nk + 1)/(nk(nk + 2)) (70)

for all nk = 2, 3,

44

The first multiplicative term in (69) decomposes as follows:

1

nk

nk∑
i=1

i

1− θiNk

=
nk + 1

2
+

1

nk

nk∑
i=1

(
i

1− θiNk

− i

)
=

nk + 1

2
+

1

nk

nk∑
i=1

iθiNk

1− θiNk

. (71)

Since 1/(1− θi
′
Nk

) ≤ 1/(1− θNk
) for any i′ ∈ IIN, we obtain from (69) using (70) and (71) that

dg(θNk
)

da
≤

(
nk + 1

2
+

1

nk

1

1− θNk

∞∑
i′=1

i′θi
′
Nk

)
3

2

nk + 1

nk(nk + 2)
. (72)

Using the mean of the geometric distribution, we deduce that
∑∞

i=1 iθ
i
Nk

= θNk
/(1− θNk

)2. Hence,

dg(θNk
)

da
≤
(
nk + 1

2
+

1

nk

θNk

(1− θNk
)3

)
3

2

nk + 1

nk(nk + 2)
≤ 3

4

nk + 1

nk
+

3

2

1

n2
k

θNk

(1− θNk
)3
. (73)

Consequently, if nk > (1 +
√
1 + 72β)/6, where β = θNk

/(1 − θNk
)3, then the right-hand size in

(73) is less than one. Hence, for nk > (1 +
√
1 + 72β)/6, dg(θNk

)/da < 1. Since θNk
/(1− θNk

)3 ≤
0.99/(1 − 0.99)3 for all θNk

∈ [0, 0.99], it follows that when nk ≥ 1408, dg(θNk
)/da < 1 for any

θNk
∈ [0, 0.99]. It then follows by the fixed point theorem that under the assumption that nk ≥ 1408,

aj → θNk
, as j → ∞, whenever a0 is sufficiently close to θNk

.

It appears difficult to examine dg(θNk
)/da analytically for 2 < nk < 1408. However, we show

that dg(θNk
)/da < 1 for all θNk

∈ (0, 0.99] and 2 ≤ nk < 1408 using the following numerical

scheme. (We note that the case with nk = 2 is easily checked analytically, but we do not show that

for brevity.) We consider the function γ : [0, 1) → IR defined for any θ ∈ [0, 1) by

γ(θ) :=

(
1

nk

nk∑
i′=1

i′

1− θi′

)
nk∑

i=n0
k

αi(θ
nk−i − θi). (74)

Obviously, for θNk
∈ (0, 1), γ(θNk

) = dg(θNk
)/da. Straightforward derivation yields that

dγ(θ)

dθ
=

nk∑
i′=1

nk∑
i=n0

k

αii
′

nk

[(nk − i)θnk−i−1 − iθi−1](1− θi
′
) + i′(θnk−i − θi)θi

′−1

(1− θi′)2
. (75)

Hence, for any θmax ∈ (0, 1),

dγ(θ)

dθ
≤ L :=

nk∑
i′=1

nk∑
i=n0

k

αii
′

nk

(nk − i)θnk−i−1
max + i′θnk−i

max θi
′−1
max

(1− θi′max)
2

(76)

for all θ ∈ (0, θmax]. Consequently, γ(·) is Lipschitz continuous on (0, θmax] with Lipschitz constant

L. Hence, it follows that it suffices to check dg(θNk
)/da for nk ∈ {2, 3, ..., 1407} and a finite number

of values for θNk
to verify that dg(θNk

)/da < 1 for all θNk
∈ (0, θmax]. Let θ̃1, θ̃2, ..., θ̃k̃ be these

values, which are computed recursively starting with θ̃1 = 0 and then by θ̃k+1 = θ̃k+(1−γ(θ̃k))/L,

k = 1, 2, ..., until a value no smaller than θmax is obtained. Let θmax = 0.99. Since we find

that γ(θ̃k) < 1 for all k in this case, it follows from the fact that γ(·) is Lipschitz continuous on

45

(0, 0.99] with Lipschitz constant L that γ(θ) < 1 for all θ ∈ [0, 0.99]. Hence, dg(θNk
)/da < 1 for all

θNk
∈ (0, 0.99] and nk = 2, 3, ..., 1407. The conclusion then follows by the fixed-point theorem.

Proof of Proposition 4. By Proposition 1, N1/2(f∗
N − f∗) ⇒ N (0, σ2(x∗)), as N → ∞.

Let {Nl(Sk)}∞Sk=1, l = 1, 2, ..., k, be such that Nl(Sk) ∈ IIN for all Sk ∈ IIN and l = 1, 2, ..., k,∑k
l=1Nl(Sk) = Sk, and Nl(Sk)/Sk → βl ∈ [0, 1], as Sk → ∞. Consequently,

∑k
l=1 βl = 1. By

Slutsky’s theorem (see, e.g., Exercise 25.7 of [7]), it then follows that for all l = 1, 2, ..., k,(
Nl(Sk)

Sk

)1/2

Nl(Sk)
1/2(f∗

Nl(Sk)
− f∗) ⇒ β

1/2
l N (0, σ2(x∗)), (77)

as Sk → ∞.

Since the sequences {fNl
(xli)}

nl
i=0, l = 1, 2, ..., k, converge exactly linearly with coefficient θ̂l+1,

it follows that the minimization in (43) can be ignored and m̂l = f∗
Nl
, l = 1, 2, ..., k. Using the

recursive formula for f̂∗
k+1 in Step 2 of Subroutine C, we find that f̂∗

k+1 =
∑k

l=1Nl(Sk)f
∗
Nl
/Sk.

Consequently,

S
1/2
k (f̂∗

k+1 − f∗) =
k∑

l=1

(
Nl(Sk)

Sk

)1/2

Nl(Sk)
1/2(f∗

Nl(Sk)
− f∗). (78)

It then follows by the continuous mapping theorem and the independence of samples across stages

that

k∑
l=1

(
Nl(Sk)

Sk

)1/2

Nl(Sk)
1/2(f∗

Nl(Sk)
− f∗) ⇒

k∑
l=1

β
1/2
l N (0, σ2(x∗)) = N (0,

k∑
l=1

βlσ
2(x∗)), (79)

as Sk → ∞. The conclusion then follows from the fact that
∑k

l=1 βl = 1.

References

[1] S. Alexander, T.F. Coleman, and Y. Li. Minimizing CVaR and VaR for a portfolio of deriva-

tives. J. Banking & Finance, 30:583–605, 2006.

[2] H. Attouch and R. J-B Wets. Epigraphical processes: laws of large numbers for random lsc

functions. In Seminaire d’Analyze Convexe, pages 13.1–13.29. Montpellier, 1990.

[3] F. Bastin, C. Cirillo, and P.L Toint. An adaptive monte carlo algorithm for computing mixed

logit estimators. Computational Management Science, 3(1):55–79, 2006.

[4] G. Bayraksan and D.P. Morton. A sequential sampling procedure for stochastic programming.

Operations Research, 59(4):898–913, 2011.

[5] D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, Belmont,

Massachusetts, 3. edition, 2007.

[6] J.T. Betts and W.P Huffman. Mesh refinement in direct transcription methods for optimal

control. Optimal Control Applications, 19:1–21, 1998.

46

[7] P. Billingsley. Probability and Measure. Wiley, New York, New York, 1995.

[8] G. Deng and M.C. Ferris. Variable-number sample-path optimization. Mathematical Program-

ming B, 117:81–109, 2009.

[9] Y. Ermoliev. Stochastic quasigradient methods. In Numerical Techniques for Stochastic Op-

timization, Yu. Ermoliev and R.J-B. Wets (Eds.), New York, New York, 1988. Springer.

[10] P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H. Wright. LSSOL 1.0 User’s

guide. Technical Report SOL-86-1, System Optimization Laboratory, Stanford University,

Stanford, California, 1986.

[11] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version

1.21. http://cvxr.com/cvx, December 2010.

[12] L. He and E. Polak. Effective diagonalization strategies for the solution of a class of optimal

design problems. IEEE Transactions on Automatic Control, 35(3):258–267, 1990.

[13] J. L. Higle and S. Sen. Stochastic Decomposition: A Statistical Method for Large Scale Stochas-

tic Linear Programming. Springer, 1996.

[14] K. Holmstrom. Tomlab optimization. http://tomopt.com, 2009.

[15] T. Homem-de-Mello. Variable-sample methods for stochastic optimization. ACM Transactions

on Modeling and Computer Simulation, 13(2):108–133, 2003.

[16] T. Homem-de-Mello, A. Shapiro, and M.L. Spearman. Finding optimal material release times

using simulation-based optimization. Management Science, 45(1):86–102, 1999.

[17] J. Hu, M.C. Fu, and S.I. Marcus. A model reference adaptive search method for global

optimization. Operations Research, 55(3):549–568, 2007.

[18] G. Infanger. Planning under uncertainty: solving large-scale stochastic linear programs. Thom-

son Learning, 1994.

[19] P. Kall and J. Meyer. Stochastic Linear Programming, Models, Theory, and Computation.

Springer, 2005.

[20] W. Kohn, Z.B. Zabinsky, and V. Brayman. Optimization of algorithmic parameters using a

meta-control approach. J. Global Optimization, 34:293–316, 2006.

[21] H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Appli-

cations. Springer, 2. edition, 2003.

47

[22] G. Lan. Convex Optimization Under Inexact First-order Information. Phd thesis, Georgia

Institute of Technology, Atlanta, Georgia, 2009.

[23] J. Linderoth, A. Shapiro, and S. Wright. The empirical behavior of sampling methods for

stochastic programming. Annals of Operations Research, 142:215–241, 2006.

[24] W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for determining

solution quality in stochastic programs. Operations Research Letters, 24:47–56, 1999.

[25] O. Molvalioglu, Z.B. Zabinsky, and W. Kohn. The interacting-particle algorithm with dynamic

heating and cooling. J. Global Optimization, 43:329–356, 2009.

[26] T. Munakata and Y. Nakamura. Temperature control for simulated annealing. Physical Review

E, 64(4):46–127, 2001.

[27] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation ap-

proach to stochastic programming. SIAM J. Optimization, 19(4):1574–1609, 2009.

[28] V.I. Norkin, G.C. Pflug, and A. Ruszczynski. A branch and bound method for stochastic

global optimization. Mathematical Programming, 83:425–450, 1998.

[29] J. Oppen and D.L. Woodruff. Parametric models of local search progress. International

Transactions in Operational Research, 16:627–640, 2009.

[30] R. Pasupathy. On choosing parameters in retrospective-approximation algorithms for stochas-

tic root finding and simulation optimization. Operations Research, 58:889–901, 2010.

[31] E.Y. Pee and J. O. Royset. On solving large-scale finite minimax problems using exponential

smoothing. Journal of Optimization Theory and Applications, 148(2):390–421, 2011.

[32] O. Pironneau and E. Polak. Consistent approximations and approximate functions and gradi-

ents in optimal control. SIAM J. Control and Optimization, 41(2):487–510, 2002.

[33] E. Polak. Optimization. Algorithms and consistent approximations. Springer, New York, New

York, 1997.

[34] E. Polak and J. O. Royset. Efficient sample sizes in stochastic nonlinear programming. J.

Computational and Applied Mathematics, 217:301–310, 2008.

[35] E. Polak, J. O. Royset, and R. S. Womersley. Algorithms with adaptive smoothing for finite

minimax problems. J. Optimization. Theory and Applications, 119(3):459–484, 2003.

[36] R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. Jour-

nal of Banking and Finance, 26:1443–1471, 2002.

48

[37] J. O. Royset. Optimality functions in stochastic programming. Mathematical Programming,

to appear, 2012.

[38] J. O. Royset and E. Polak. Implementable algorithm for stochastic programs using sample

average approximations. J. Optimization. Theory and Application, 122(1):157–184, 2004.

[39] J. O. Royset and E. Polak. Extensions of stochastic optimization results from problems with

simple to problems with complex failure probability functions. J. Optimization. Theory and

Application, 133(1):1–18, 2007.

[40] J. O. Royset, E. Polak, and A. Der Kiureghian. Adaptive approximations and exact penaliza-

tion for the solution of generalized semi-infinite min-max problems. SIAM J. Optimization,

14(1):1–34, 2003.

[41] J.O. Royset and E. Polak. Sample average approximations in reliability-based structural opti-

mization: Theory and applications. In M. Papadrakakis Y. Tsompanakis, N.D. Lagaros, edi-

tor, Structural design optimization considering uncertainties, pages 307–334. Taylor & Francis,

2008.

[42] R.Y. Rubinstein and D.P. Kroese. The cross-entropy method: a unified combinatorial approach

to combinatorial optimization, Monte-Carlo simulation, and machine learning. Springer, 2004.

[43] K. Sastry and D.E. Goldberg. Let’s get ready to rumble redux: crossover versus mutation

head to head on exponentially scaled problems. In GECCO ’07: Proceedings of the 9th annual

conference on Genetic and evolutionary computation, pages 1380–1387, New York, NY, USA,

2007. ACM.

[44] A. Schwartz and E. Polak. Consistent approximations for optimal control problems based on

Runge-Kutta integration. SIAM J. Control and Optimization, 34(4):1235–1269, 1996.

[45] A. Shapiro. Asymptotic analysis of stochastic programs. Annals of Operations Research,

30:169–186, 1991.

[46] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on Stochastic Programming: Modeling

and Theory. Society of Industrial and Applied Mathematics, 2009.

[47] A. Shapiro and T. Homem-de-Mello. A simulation-based approach to two-stage stochastic

programming with recourse. Mathematical Programming, 81:301–325, 1998.

[48] A. Shapiro and Y. Wardi. Convergence analysis of stochastic algorithms. Mathematics of

Operations Research, 21(3):615–628, 1996.

[49] J. C. Spall. Introduction to stochastic search and optimization. John Wiley and Sons, New

York, New York, 2003.

49

[50] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. Sample average approx-

imation method applied to stochastic routing problems: a computational study. Computational

Optimization and Applications, 24(2-3):289–333, 2003.

[51] A. R. Washburn. Search and Detection. INFORMS, Linthicum, Maryland, 4. edition, 2002.

[52] H. Xu and D. Zhang. Smooth sample average approximation of stationary points in nonsmooth

stochastic optimization and applications. Mathematical Programming, 119:371–401, 2009.

[53] S. Xu. Smoothing method for minimax problems. Computational Optimization and Applica-

tions, 20:267–279, 2001.

50

