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Abstract

This paper addresses the problem of approx-
imate singular value decomposition of large
dense matrices that arises naturally in many
machine learning applications. We discuss
two recently introduced sampling-based spec-
tral decomposition techniques: the Nyström
and the Column-sampling methods. We
present a theoretical comparison between the
two methods and provide novel insights re-
garding their suitability for various applica-
tions. We then provide experimental results
motivated by this theory. Finally, we pro-
pose an efficient adaptive sampling technique
to select informative columns from the origi-
nal matrix. This novel technique outperforms
standard sampling methods on a variety of
datasets.

1. Introduction

Several common methods in machine learning, such
as spectral clustering (Ng et al., 2001) and manifold
learning (de Silva & Tenenbaum, 2003), require the
computation of singular values and singular vectors
of symmetric positive semi-definite (SPSD) matrices.
Similarly, kernel-based methods can be sped up by us-
ing low-rank approximations of SPSD kernel matri-
ces, which can be achieved via spectral decomposi-
tion (Williams & Seeger, 2000; Zhang et al., 2008).
The computational complexity of Singular Value De-
composition (SVD) of n× n SPSD matrices is O(n3),
which presents a major challenge in large-scale applica-
tions. Large-scale data sets have been used in several
recent studies (Platt, 2004; Chang et al., 2008; Tal-
walkar et al., 2008). The size of such datasets can be
Appearing in Proceedings of the 26 th International Confer-
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in the order of millions and the O(n3) complexity is
infeasible at this scale.

Many of the aforementioned applications require only
some of the top or bottom singular values and singular
vectors. If the input matrix is sparse, one can use effi-
cient iterative methods, e.g., Jacobi or Arnoldi. How-
ever, for large dense matrices that arise naturally in
many applications, e.g., manifold learning and kernel
methods, iterative techniques are also quite expensive.
In fact, for many real-world problems, even storing the
full dense matrix becomes infeasible. For example, an
input set containing 1 million points requires storage
of a 4 TB SPSD matrix.

Sampling-based methods provide a powerful alterna-
tive for approximate spectral decomposition. They
operate on a small part of the original matrix and
often eliminate the need for storing the full matrix.
In the last decade, two sampling-based approxima-
tion techniques have been introduced (Frieze et al.,
1998; Williams & Seeger, 2000; Drineas & Mahoney,
2005). However, their similarities and relative advan-
tages have not been well studied. Also, there exist
no clear guidelines on which method to use for spe-
cific applications. This work introduces a theoretical
framework to compare these methods and provides the
first exhaustive empirical comparison on a variety of
datasets. The analysis and subsequent experiments
reveal the counter-intuitive behavior of these methods
for different tasks.

Another important component of sampling-based ap-
proximations is the sampling strategy used to select
informative columns of the original matrix. Among
the techniques that sample columns according to some
fixed distribution, uniform sampling has been shown to
be quite effective in practice (Williams & Seeger, 2000;
de Silva & Tenenbaum, 2003; Kumar et al., 2009),
and a bound on approximation error has also been de-
rived (Kumar et al., 2009). As an improvement over
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the fixed-distribution techniques, an adaptive, error-
driven sampling technique with better theoretical ap-
proximation accuracy was recently introduced (Desh-
pande et al., 2006). However, this technique requires
the full matrix to be available at each step, and is thus
infeasible for large matrices. In the second part of this
work, we propose a simple and efficient algorithm for
adaptive sampling that uses only a small submatrix
at each step. In comparison to non-adaptive sampling
techniques, we show that the proposed adaptive sam-
pling can provide more accurate low-rank approxima-
tion, particularly for higher ranks.

2. Approximate spectral decomposition

Two different sampling-based methods, i.e., Nyström
and Column-sampling, have recently been introduced
for spectral decomposition of large matrices using sub-
sets of their columns. Let G be an SPSD matrix of
size n×n with spectral decomposition G = UGΣGU

⊤
G ,

where ΣG contains the singular values of G and UG

the associated singular vectors. Suppose we randomly
sample l≪ n columns of G uniformly without replace-
ment.1 Let C be the n × l matrix of these sampled
columns, and W be the l × l matrix consisting of the
intersection of these l columns with the corresponding
l rows of G. Since G is SPSD, W is also SPSD. With-
out loss of generality, we can rearrange the columns
and rows of G such that:

G =

[

W G⊤
21

G21 G22

]

and C =

[

W
G21

]

. (1)

The approximation techniques discussed next use the
SVD of W and C to generate approximations of UG

and ΣG.

2.1. Nyström method

The Nyström method was presented in (Williams &
Seeger, 2000) to speed up kernel machines and has
been used in applications ranging from manifold learn-
ing to image segmentation (Platt, 2004; Fowlkes et al.,
2004; Talwalkar et al., 2008). The Nyström method
uses W and C from (1) to approximate G as:

G ≈ G̃ = CW−1C⊤. (2)

If W is not invertible, its pseudoinverse can be used
(Drineas & Mahoney, 2005). If W = UwΣwU

⊤
w , the

approximate singular values and singular vectors of G
are (Williams & Seeger, 2000):

Σnys =
(n

l

)

Σw and Unys =

√

l

n
CUwΣ

−1

w . (3)

1Other sampling schemes are possible (see Section 4).

If k ≤ l singular values and singular vectors are needed,
the run time of this algorithm is O(l3+nlk): l3 for SVD
on W and nlk for multiplication with C.

2.2. Column-sampling method

The Column-sampling method was introduced to ap-
proximate the SVD of any rectangular matrix (Frieze
et al., 1998). It approximates the spectral decom-
position of G by using the SVD of C directly. If
C = UcΣcV

⊤
c and we assume uniform sampling, the

approximate singular values and singular vectors of G
are given as:

Σcol =

√

n

l
Σc and Ucol = Uc = CVcΣ

−1

c . (4)

The runtime of the Column-sampling method is dom-
inated by the SVD of C. Even when only k singular
values and singular vectors are required, the algorithm
takes O(nl2) time and is thus more expensive than
Nyström. Often, in practice, the SVD of C⊤C (O(l3))
is performed instead of the SVD of C. However, it
is still substantially more expensive than the Nyström
method due to the additional cost of computing C⊤C.

3. Nyström vs Column-sampling

Given that two sampling-based techniques exist to ap-
proximate the SVD of SPSD matrices, we pose a natu-
ral question: which method should one use to approx-
imate singular values, singular vectors and low-rank
approximations? We first analyze the form of these ap-
proximations and then empirically evaluate their per-
formance in Section 3.3 on a variety of datasets.

3.1. Singular values and singular vectors

As shown in (3) and (4), the singular values of G
are approximated as the scaled singular values of W
and C, respectively. The scaling terms are quite rudi-
mentary and are primarily meant to compensate for
the ‘small sample size’ effect for both approximations.
However, the form of singular vectors is more inter-
esting. The Column-sampling singular vectors (Ucol)
are orthonormal since they are the singular vectors of
C. In contrast, the Nyström singular vectors (Unys)
are approximated by extrapolating the singular vec-
tors of W as shown in (3), and are not orthonormal.
It is easy to verify that U⊤

nysUnys 6= Il, where Il is the
identity matrix of size l. As we show in Section 3.3,
this adversely affects the accuracy of singular vector
approximation from the Nyström method.

It is possible to orthonormalize the Nyström singular
vectors by using QR decomposition. Since Unys ∝
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CUwΣ
−1

w , where Uw is orthogonal and Σw is diagonal,
this simply implies that QR decomposition creates an
orthonormal span of C rotated by Uw. However, the
complexity of QR decomposition of Unys is the same as
that of the SVD of C. Thus, the computational cost of
orthogonalizing Unys would nullify the computational
benefit of Nyström over Column-sampling.

3.2. Low-rank approximation

Several studies have shown that the accuracy of low-
rank approximations of kernel matrices is tied to
the performance of kernel-based learning algorithms
(Williams & Seeger, 2000; Talwalkar et al., 2008;
Zhang et al., 2008). Hence, accurate low-rank ap-
proximations are of great practical interest in machine
learning. Suppose we are interested in approximating
G with a matrix of rank k ≪ n, denoted as Gk. It is
well-known that the Gk that minimizes the Frobenius
norm of the error, i.e., ||G−Gk||F , is given by,

Ĝk = UG,kΣG,kU
⊤
G,k = UG,kU

⊤
G,kG = GUG,kU

⊤
G,k (5)

where UG,k contains the singular vectors of G corre-
sponding to top k singular values contained in ΣG,k.
We refer to UG,kΣG,kU

⊤
G,k as Spectral Reconstruction,

since it uses both the singular values and vectors, and
UG,kU

⊤
G,kG as Matrix Projection, since it uses only sin-

gular vectors to compute the projection of G onto the
space spanned by vectors UG,k. These two low-rank
approximations are equal only if ΣG,k and UG,k con-
tain the true singular values and singular vectors of G.
Since this is not the case for approximate methods such
as Nyström and Column-sampling, these two measures
generally give different errors. Thus, we analyze each
measure separately in the following sections.

3.2.1. Matrix projection

For Column-sampling, using (4), the low-rank approx-
imation via matrix projection is

Gcol
k = Ucol,kU

⊤
col,kG = Uc,kU

⊤
c,kG = C(C⊤C)−1

k C⊤G,
(6)

where Ux,k are the first k vectors of Ux and (C⊤C)−1

k =
VC,kΣ

−2

C,kV
⊤
C,k. Clearly, if k = l, (C⊤C)k = C⊤C.

Similarly, using (3), the Nyström matrix projection is

Gnys
k = Unys,kU

⊤
nys,kG = C(

l

n
W−2

k )C⊤G, (7)

where Wk = Uw,kΣw,kU
⊤
w,k, and if k = l, Wk = W .

As shown in (6) and (7), the two methods have similar
expressions for matrix projection, except that C⊤C
is replaced by a scaled W 2. Furthermore, the scaling
term appears only in the Nyström expression. We now

present Theorem 1 and Observations 1 and 2, which
provide further insights about these two methods.

Theorem 1. The Column-sampling and Nyström ma-

trix projections are of the form UcRU⊤
c G, where R ∈

R
l×l is SPSD. Further, Column-sampling gives the

lowest reconstruction error (measured in ‖·‖F ) among

all such approximations if k = l.

Proof. From (6), it is easy to see that

Gcol
k =Uc,kU

⊤
c,kG = UcRcolU

⊤
c G, (8)

where Rcol =
[

Ik 0

0 0

]

. Similarly, from (7) we can derive

Gnys
k = UcRnysU

⊤
c G where Rnys = Y Σ−2

w,kY
⊤, (9)

and Y =
√

l/nΣcV
⊤
c Uw,k. Note that both Rcol and

Rnys are SPSD matrices. Furthermore, if k = l, Rcol =
I. Let E be the (squared) reconstruction error for
an approximation of the form UcRU⊤

c G, where R is
an arbitrary SPSD matrix. Hence, when k = l, the
difference in reconstruction error between the generic
and the Column-sampling approximations is

E−Ecol =‖G−UcRU⊤
c G‖2F − ‖G−UcU

⊤
c G‖2F

=Tr
[

G⊤(I − UcRU⊤
c )⊤(I − UcRU⊤

c )G
]

−Tr
[

G⊤(I − UcU
⊤
c )⊤(I − UcU

⊤
c )G

]

=Tr
[

G⊤(UcR
2U⊤

c − 2UcRU⊤
c + UcU

⊤
c )G

]

=Tr
[

((R− I)U⊤
c G)⊤((R− I)U⊤

c G)
]

≥ 0. (10)

We used the fact that U⊤
c Uc = I, and that A⊤A is

SPSD for any matrix A.

Observation 1. For k = l, matrix projection for

Column-sampling reconstructs C exactly. This can be

seen by block-decomposing G as: G = [C C̄], where
C̄ = [G21 G22]

⊤, and using (6):

Gcol
l =C(C⊤C)−1C⊤G= [C C(C⊤C)−1C⊤C̄]. (11)

Observation 2. For k = l, the span of the orthogonal-

ized Nyström singular vectors equals the span of Ucol,

as discussed in Section 3.1. Hence, matrix projec-

tion is identical for Column-sampling and Orthonor-

mal Nyström for k = l.

From an application point of view, matrix projec-
tion approximations tend to be more accurate than
the spectral reconstruction approximations discussed
in the next section (results omitted due to space con-
straints). However, these low-rank approximations are
not necessarily symmetric and require storage of all
entries of G. For large-scale problems, this storage
requirement may be inefficient or even infeasible.
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3.2.2. Spectral reconstruction

Using (3), the Nyström spectral reconstruction is:

Gnys
k = Unys,kΣnys,kU

⊤
nys,k = CW−1

k C⊤. (12)

When k = l, this approximation perfectly recon-
structs three blocks of G, and G22 is approximated
as G21W

−1G21, which is the Schur Complement of W
in G (Williams & Seeger, 2000):

Gnys
l = CW−1C⊤ =

[

W G⊤
21

G21 G21W
−1G⊤

21

]

. (13)

The Column-sampling spectral reconstruction has a
similar form as (12):

Gcol
k =Ucol,kΣcol,kU

⊤
col,k=C

( l

n
(C⊤C)k

)− 1

2C⊤. (14)

In contrast with matrix projection, the scaling term
now appears in the Column-sampling reconstruction.
To analyze the two approximations, we consider an al-
ternative characterization based on the fact that since
G is SPSD, there exists an X ∈ R

m×n such that
G = X⊤X. Similar to (Drineas & Mahoney, 2005),
we define a zero-one sampling matrix, S ∈ R

n×l, that
selects l columns from G, i.e., C = GS. Each col-
umn of S has exactly one non-zero entry per column.
Further, W = S⊤GS = (XS)⊤XS = X ′⊤X ′, where
X ′ ∈ R

m×l contains l sampled columns of X and
X ′ = UX′ΣX′V ⊤

X′ is the SVD of X ′. We use these
definitions to present Theorems 2 and 3.

Theorem 2. Column-sampling and Nyström spec-

tral reconstructions are of the form X⊤UX′,kZU⊤
X′,kX,

where Z∈Rk×k is SPSD. Further, among all approxi-

mations of this form, neither the Column-sampling nor

the Nyström approximation is optimal (in ‖·‖F ).

Proof. If α =
√

n/l, then starting from (14) and ex-
pressing C and W in terms of X and S, we have

Gcol
k =αGS(S⊤G2S)

−1/2
k S⊤G⊤

=αX⊤X ′
(

VC,kΣ
2

C,kV
⊤
C,k

)−1/2
X ′⊤X

=X⊤UX′,kZcolU
⊤
X′,kX, (15)

where Zcol = αΣX′V ⊤
X′VC,kΣ

−1

C,kV
⊤
C,kVX′ΣX′ . Simi-

larly, from (12) we have:

Gnys
k =GS(S⊤GS)−1

k S⊤G⊤

=X⊤X ′
(

X ′⊤X ′
)−1

k
X ′⊤X

=X⊤UX′,kU
⊤
X′,kX. (16)

Clearly, Znys = I. Next, we analyze the error, E, for
an arbitrary Z, which yields the approximation GZ

k :

E = ‖G−GZ
k ‖

2

F = ‖X⊤(I−UX′,kZU⊤
X′,k)X‖

2

F . (17)

Let X = UXΣXV ⊤
X and Y = U⊤

XUX′,k. Then,

E = Tr
[(

(I − UX′,kZU⊤
X′,k)UXΣ2

XU⊤
X

)2]

=Tr
[(

UXΣXU⊤
X (I − UX′,kZU⊤

X′,k)UXΣXU⊤
X

)2]

=Tr
[(

UXΣX(I − Y ZY ⊤)ΣXU⊤
X

)2]

=Tr
[

ΣX(I − Y ZY ⊤)Σ2

X(I − Y ZY ⊤)ΣX

)]

=Tr
[

Σ4

X−2Σ
2

XY ZY ⊤Σ2

X+ΣXY ZY ⊤Σ2

XY ZY ⊤ΣX

)]

.
(18)

To find Ẑ, the Z that minimizes (18), we set:

∂E/∂Z = −2Y ⊤Σ4

XY + 2(Y ⊤Σ2

XY )Ẑ(Y ⊤Σ2

XY ) = 0

and solve for Ẑ:

Ẑ = (Y ⊤Σ2

XY )−1(Y ⊤Σ4

XY )(Y ⊤Σ2

XY )−1.

Clearly Ẑ is different from Zcol and Znys, and since

Σ2

X = ΣG, Ẑ depends on the spectrum of G.

While Theorem 2 shows that the optimal approxi-
mation is data-dependent and may differ from the
Nyström and Column-sampling approximations, The-
orem 3 reveals that in certain instances the Nyström
method is optimal. In contrast, the Column-sampling
method enjoys no such guarantee.

Theorem 3. Suppose r = rank(G) ≤ k ≤ l and

rank(W ) = r. Then, the Nyström approximation is

exact for spectral reconstruction. In contrast, Column-

sampling is exact iff W =
(

(l/n)C⊤C
)1/2

. Further-

more, when this very specific condition holds, Column-

Sampling trivially reduces to the Nyström method.

Proof. Since G = X⊤X, rank(G) = rank(X) = r.
Similarly, W = X ′⊤X ′ implies rank(X ′) = r. Thus
the columns of X ′ span the columns of X and UX′,r

is an orthonormal basis for X, i.e., I − UX′,rU
⊤
X′,r ∈

Null(X). Since k ≥ r, from (16) we have

‖G−Gnys
k ‖F = ‖X⊤(I − UX′,rU

⊤
X′,r)X‖F = 0. (19)

To prove the second part of the theorem, we note
that rank(C) = r. Thus, C = UC,rΣC,rV

⊤
C,r and

(C⊤C)
1/2
k = (C⊤C)1/2 = VC,rΣC,rV

⊤
C,r since k ≥ r.

If W = (1/α)(C⊤C)1/2, then the Column-sampling
and Nyström approximations are identical and hence
exact. Conversely, to exactly reconstruct G, Column-
sampling necessarily reconstructs C exactly. Using
C⊤ = [W G⊤

21
] in (14):

Gcol
k = G =⇒ αC(C⊤C)

−1/2
k W = C

=⇒ αUC,rV
⊤
C,rW = UC,rΣC,rV

⊤
C,r

=⇒ αVC,rV
⊤
C,rW = VC,rΣC,rV

⊤
C,r (20)

=⇒ W =
1

α
(C⊤C)1/2. (21)
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Dataset Data n d Kernel
PIE-2.7K faces 2731 2304 linear
PIE-7K faces 7412 2304 linear
MNIST digits 4000 784 linear
ESS proteins 4728 16 RBF

Table 1. Description of the datasets used in our experi-
ments (Sim et al., 2002; LeCun & Cortes, 2009; Talwalkar
et al., 2008). ‘n’ denotes the number of points and ‘d’
denotes the number of features in input space.

20 40 60 80 100
−0.2

−0.1

0

0.1

0.2
Singular Values

Top Singular Values

A
cc

ur
ac

y 
(N

ys
 −

 C
ol

)

 

 

PIE−2.7K

PIE−7K

MNIST

ESS

20 40 60 80 100
−0.5

0

0.5
Singular Vectors

Top Singular Vectors

A
cc

ur
ac

y 
(N

ys
 −

 C
ol

)

 

 

PIE−2.7K

PIE−7K

MNIST

ESS

(a) (b)

200 400 600 800 1000
−1

−0.5

0

0.5

1
Matrix Projection

# Sampled Columns (l )

A
cc

ur
ac

y 
(N

ys
 −

 C
ol

)

 

 

PIE−2.7K

PIE−7K

MNIST

ESS

100 200 400 600 800 1000
−1

−0.5

0

0.5

1
Spectral Reconstruction

# Sampled Columns (l )

A
cc

ur
ac

y 
(N

ys
 −

 C
ol

)

 

 

PIE−2.7K

PIE−7K

MNIST

ESS

DEXT

(c) (d)

Figure 1. Differences in accuracy between Nyström and
Column-Sampling. Values above zero indicate better per-
formance of Nyström and vice-versa. (a) Top 100 singular
values with l = 600. (b) Top 100 singular vectors with
l = 600. (c) Matrix projection accuracy for k = 100. (d)
Spectral reconstruction accuracy for k = 100.

In (20) we use U⊤
C,rUC,r = I, while (21) follows since

VC,rV
⊤
C,r is an orthogonal projection onto the span of

the rows of C and the columns of W lie within this
span implying VC,rV

⊤
C,rW = W .

3.3. Empirical comparison

To test the accuracy of singular values/vectors and
low-rank approximations for different methods, we
used several kernel matrices arising in different ap-
plications, as described in Table 1. We worked with
datasets containing less than ten thousand points to
be able to compare with exact SVD. We fixed k to be
100 in all the experiments, which captures more than
90% of the spectral energy for each dataset.

For singular values, we measured percentage accuracy
of the approximate singular values with respect to
the exact ones. For a fixed l, we performed 10 tri-

als by selecting columns uniformly at random from G.
We show in Figure 1(a) the difference in mean per-
centage accuracy for the two methods for l = 600.
The Column-sampling method generates more accu-
rate singular values than the Nyström method for the
top 50 singular values, which contain more than 80% of
the spectral energy for each of the datasets. A similar
trend was observed for other values of l.

For singular vectors, the accuracy was measured by
the dot product i.e., cosine of principal angles between
the exact and the approximate singular vectors. Fig-
ure 1(b) shows the difference in mean accuracy be-
tween Nyström and Column-sampling methods. The
top 100 singular vectors were all better approximated
by Column-sampling for all datasets. This trend was
observed for other values of l as well. This result is
not surprising since the singular vectors approximated
by the Nyström method are not orthonormal.

Next we compared the low-rank approximations gener-
ated by the two methods using matrix projection and
spectral reconstruction as described in Section 3.2.1
and Section 3.2.2, respectively. We measured the ac-
curacy of reconstruction relative to the optimal rank-k
approximation, Ĝk, as:

relative accuracy =
||G− Ĝk||F

||G−G
nys/col
k ||F

. (22)

The relative accuracy will approach one for good ap-
proximations. Results are shown in Figure 1(c) and
(d). As motivated by Theorem 1 and consistent
with the superior performance of Column-sampling in
approximating singular values and vectors, Column-
sampling generates better reconstructions via matrix
projection. This was observed not only for l = k but
also for other values of l. In contrast, the Nyström
method produces superior results for spectral recon-
struction. These results are somewhat surprising
given the relatively poor quality of the singular val-
ues/vectors for the Nyström method, but they are in
agreement with the consequences of Theorem 3. We
also note that for both reconstruction measures, the
methods that exactly reconstruct subsets of the orig-
inal matrix when k = l (see (11) and (13)) generate
better approximations. Interestingly, these are also
the two methods that do not contain scaling terms
(see (6) and (12)).

Further, as stated in Theorem 2, the optimal spectral
reconstruction approximation is tied to the spectrum
of G. Our results suggest that the relative accuracies
of Nyström and Column-sampling spectral reconstruc-
tions are also tied to this spectrum. When we analyzed
spectral reconstruction performance on a sparse kernel
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Figure 2. (a) Difference in matrix projection between
Column-sampling and Orthonormal Nyström (k = 100).
Values above zero indicate better performance of Column-
sampling. (b) Difference in spectral reconstruction be-
tween Nyström and Orthonormal Nyström (k = 100). Val-
ues above zero indicate better performance of Nyström
method. (c) Difference in spectral reconstruction accu-
racy between Nyström and Column-sampling for various
k and fixed l = 600. Values above zero indicate better
performance of Nyström method. (d) Number of columns
needed to achieve 75% relative accuracy for Nyström spec-
tral reconstruction as a function of n.

matrix with a slowly decaying spectrum, we found that
Nyström and Column-sampling approximations were
roughly equivalent (‘DEXT’ in Figure 1(d)). This re-
sult contrasts the results for dense kernel matrices with
exponentially decaying spectra arising from the other
datasets used in the experiments.

One factor that impacts the accuracy of the Nyström
method for some tasks is the non-orthonormality of
its singular vectors (Section 3.1). When orthonormal-
ized, the error in resulting singular vectors is reduced
(not shown) and the corresponding Nyström matrix
projection error is reduced considerably as shown in
Figure 2(a). Further, as discussed in Observation 2
and seen in Figure 2(a) when l = 100, Orthonormal
Nyström is identical to Column-sampling when k = l.
However, since orthonormalization is computationally
costly, it is avoided in practice. Moreover, the accu-
racy of Orthogonal Nyström spectral reconstruction is
actually worse relative to the standard Nyström ap-
proximation, as shown in Figure 2(b). This surprising
result can be attributed to the fact that orthonormal-
ization of the singular vectors leads to the loss of some

of the unique properties described in Section 3.2.2. For
instance, Theorem 3 no longer holds and the scaling
terms do not cancel out, i.e., Gnys

k 6= CW−1

k C⊤.

Even though matrix projection tends to produce more
accurate approximations, spectral reconstruction is of
great practical interest for large-scale problems since,
unlike matrix projection, it does not use all entries
in G to produce a low-rank approximation. Thus,
we further expand upon the results from Figure 1(d).
We first tested the accuracy of spectral reconstruc-
tion for the two methods for varying values of k and
a fixed l. We found that the Nyström method out-
performs Column-sampling across all tested values of
k, as shown in Figure 2(c). Next, we addressed an-
other basic issue: how many columns do we need to
obtain reasonable reconstruction accuracy? For very
large matrices (n ≈ O(106)), one would wish to select
only a small fraction of the samples. Hence, we per-
formed an experiment in which we fixed k and varied
the size of our dataset (n). For each n, we performed
grid search over l to find the minimal l for which the
relative accuracy of Nyström spectral reconstruction
was at least 75%. Figure 2(d) shows that the required
l does not grow linearly with n. The l

n ratio actually
decreases quickly as n increases, lending support to the
use of sampling-based algorithms for large-scale data.

4. Sampling Techniques

In Section 3, we focused on uniformly sampling
columns to create low-rank approximations. Since ap-
proximation techniques operate on a small subset of
G, i.e., C, the selection of columns can significantly
influence the accuracy of approximation. In this sec-
tion we discuss various sampling options that aim to
select informative columns from G. The most common
sampling techniques select columns using a fixed prob-
ability distribution, with uniform sampling being the
most basic of these non-adaptive approaches. Alterna-
tively, the ith column can be sampled non-uniformly
with a weight that is proportional to either the cor-
responding diagonal element, Gii (diagonal) or the
squared L2 norm of the column (column-norm). The
non-adaptive sampling methods have been combined
with SVD approximation algorithms to bound the re-
construction error (Drineas & Mahoney, 2005; Ku-
mar et al., 2009). Interestingly, the non-uniform ap-
proaches are often outperformed by uniform sampling
for dense matrices (Kumar et al., 2009). Contrary to
the non-adaptive sampling methods, an adaptive sam-
pling technique with better theoretical approximation
accuracy (adaptive-full) was proposed in (Deshpande
et al., 2006). It requires a full pass through G in each
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iteration. Another interesting technique that selects
informative columns based on k-means clustering has
been shown to give good empirical accuracy (Zhang
et al., 2008). However, both methods are computa-
tionally inefficient for large G.

4.1. Proposed Adaptive Sampling Method

Instead of sampling all l columns from a fixed distribu-
tion, adaptive sampling alternates between selecting a
set of columns and updating the distribution over all
the columns. Starting with an initial distribution over
the columns, s < l columns are chosen to form a set
C ′. The probabilities are then updated as a function
of previously chosen columns and s new columns are
sampled and incorporated in C ′. This process is re-
peated until l columns have been selected.

Input: n×n SPSD matrixG, number of columns to be
chosen (l), initial probability distribution over [1 . . . n]
(P0), number of columns selected at each iteration (s)
Output: l indices corresponding to columns of G
Sample-Adaptive(G,n, l, P0, s)

1 R← set of s indices sampled according to P0

2 t← l
s − 1 ✄ number of iterations

3 for i ∈ [1 . . . t] do
4 Pi ← Update-Probability-Partial(R)
5 Ri ← set of s indices sampled according to Pi

6 R← R ∪Ri

7 return R

Update-Probability-Partial(R)

1 C ′ ← columns of G corresponding to indices in R

2 k′ ← Choose-rank() ✄ low rank (k) or |R|
2

3 Σnys, Unys ← Do-Nyström (C ′, k′) ✄ see eq (3)
4 C ′

nys ← Spectral reconstruction using Σnys, Unys

5 E ← C ′ − C ′
nys

6 for j ∈ [1 . . . n] do
7 if j ∈ R then

8 Pj ← 0 ✄ sample without replacement
9 else Pj ← ||Ej ||

2

2

10 P ← P
||P ||2

11 return P

Figure 3. The proposed adaptive sampling technique that
uses only a small subset of the original matrix G to com-
pute probability distribution over columns. Note that it
does not need to store or run a full pass over G.

We propose a simple sampling technique (adaptive-
partial) that incorporates the advantages of adaptive
sampling while avoiding the computational and stor-
age burdens of the technique in (Deshpande et al.,
2006). At each iterative step, we measure the recon-
struction error for each row of C ′ and the distribution

over corresponding columns of G is updated propor-
tional to this error. Unlike (Deshpande et al., 2006),
we compute the error for C ′, which is much smaller
than G, thus avoiding the O(n2) computation. As
described in (13), if k′ is fixed to be the number of
columns in C ′, it will lead to C ′

nys = C ′ resulting
in perfect reconstruction of C ′. So, one must choose
a smaller k′ to generate non-zero reconstruction er-
rors from which probabilities can be updated (we used
k′ = (# columns in C ′)/2 in our experiments). One
artifact of using a k′ smaller than the rank of C ′ is
that all the columns of G will have a non-zero probabil-
ity of being selected, which could lead to the selection
of previously selected columns in the next iteration.
However, sampling without replacement strategy alle-
viates this problem. Working with C ′ instead of G to
iteratively compute errors makes this algorithm signif-
icantly more efficient than that of (Deshpande et al.,
2006), as each iteration is O(nlk′ + l3) and requires at
most the storage of l columns of G. The details of the
proposed sampling technique are outlined in Figure 3.

4.2. Sampling Experiments

We used the datasets already shown in Table 1, and
compared the effect of different sampling techniques
on the relative accuracy of Nyström spectral recon-
struction for k = 100. The results for PIE-7K are
presented in Figure 4(a) for varying values of l. The
results across datasets (Figure 4(b)) show that our
adaptive-partial sampling technique outperforms all
non-adaptive methods. They show that adaptive-
partial performs roughly the same as adaptive-full for
smaller l and outperforms it for larger l, while being
much cheaper computationally (Figure 5(a)).

Next, we wished to identify the situations where adap-
tive sampling is most effective. It is well-known that
most matrices arising in real-world applications ex-
hibit a fast decaying singular value spectrum. For
these matrices, sampling based spectral decomposi-
tion methods generally provide accurate estimates of
the top few singular values/vectors. However, the ac-
curacy generally deteriorates for subsequent singular
values/vectors. To test this behavior, we conducted
an experiment with the PIE-7K dataset, where the
relative accuracy for Nyström spectral reconstruction
was measured by varying k for a fixed l. As shown
in Figure 5(b), the relative accuracy for all sampling
methods decreases as k is increased, thus verifying the
deterioration in quality of singular value/vector ap-
proximation as k increases. However, by performing
error-driven sampling, the proposed adaptive sampling
provides better relative accuracy as k increases.
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l Dataset Uniform Diagonal Col-Norm Adapt-Partial Adapt-Full
PIE-2.7K 67.2 (±1.1) 62.1 (±0.9) 59.7 (±1.0) 70.4 (±0.9) 72.6 (±1.0)
PIE-7K 57.5 (±1.1) 50.8 (±1.9) 56.8 (±1.6) 62.8 (±0.9) 64.3 (±0.7)

400 MNIST 67.4 (±0.7) 67.4 (±0.4) 65.3 (±0.5) 69.3 (±0.7) 69.2 (±0.7)
ESS 61.0 (±1.7) 61.5 (±1.5) 57.5 (±1.9) 65.0 (±1.0) 63.9 (±0.9)

PIE-2.7K 84.1 (±0.5) 77.8 (±0.6) 73.9 (±1.0) 86.5 (±0.4) 87.7 (±0.4)
PIE-7K 73.8 (±1.2) 64.9 (±1.8) 71.8 (±3.0) 78.5 (±0.5) 74.1 (±0.6)

800 MNIST 83.3 (±0.3) 83.0 (±0.3) 80.4 (±0.4) 84.2 (±0.4) 80.7 (±0.5)
ESS 78.1 (±1.0) 79.2 (±0.9) 75.4 (±1.2) 80.6 (±1.1) 74.8 (±0.8)

(a) (b)

Figure 4. Nyström spectral reconstruction accuracy for various sampling methods for k = 100. (a) Results for PIE-7K
using several values of l. (b) Results for all datasets for two values of l with k = 100. Numbers in parenthesis indicate
the standard deviations for 10 different runs for each l.

5. Conclusions and Future Work

We presented an analysis of two sampling-based tech-
niques for approximating SVD on large dense SPSD
matrices, and provided a theoretical and empirical
comparison. Although the Column-sampling method
generates more accurate singular values/vectors and
low-rank matrix projections, the Nyström method con-
structs better low-rank spectral approximations, which
are of great practical interest as they do not use the
full matrix. We also presented a novel adaptive sam-
pling technique that results in improved performance
over standard techniques and is significantly more ef-
ficient than the existing adaptive method. An impor-
tant question left to study is how different properties of
SPSD matrices, e.g., sparsity and singular value spec-
trum, affect the quality of SVD approximations and
the effectiveness of various sampling techniques.
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Figure 5. Results on PIE-7K for different sampling tech-
niques. Left: Empirical run times (Matlab) for Nyström
method for k = 100. Right: Mean Nyström spectral recon-
struction accuracy for varying k and fixed l = 600.
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